NPL Report DITC 109/88
February 1988

\National Physical Laboraory
Y,

NATIONAL PHYSICAL LABORATORY

The Message Authenticator Algorithm (MAA)
and its Implementation

by

D.W. Davies

Consultant, British Technology Group

and

D.O. Clayden

Consultant, British Technology Group

© Crown copyright 1988

ISSN 0262-5369

National Physical Laboratory
Teddington, Middlesex TW11 OLW, UK

Extracts from this report may be reproduced
provided the source is acknowledged

Approved on behalf of Director, NPL, by Dr T.G. Blaney
Superintendent, Division of Information Technology and Computing

OCO~NOUITRARWNE

CONTENTS

Introduction

Purpose of the Algorithm

Implementation Considerations

General Description

Specification of the Functions Used in the Algorithm
Definition of MUL1(X,Y)

Definition of MUL2(X,Y)

Definition of MUL2A(X,Y)

The Functions BYT{X,Y} and PAT{X,Y}
The Prelude

The Main Loop

The Coda

Mode of operation

Details of the Multiplication Functions
Test Examples For Parts of the Algorithm
Test Examples for MUL1, MUL2, MUL2A
Test Examples for BYT{X,Y} and PAT{X,Y}
Test Examples for the Prelude

Test Examples for the Main Loop

Test Examples for the Whole Algorithm
Diagram Showing Data Flow
Implementation in 'C'

Implementation in Basic

References

N o

oo\l@@

10

11
11
12
13
14

16
18
20
21
29
36

—1—

The Message Authenticator Algorithm (MAA) and its Implementation

by D.W. Davies and D.O. Clayden

1 Introduction

A message authenticator algorithm (MAA) was developed by D.W.
Davies and D.O. Clayden and published in 1983 [1]. The text of
the original report is reproduced below, updated a little to

reflect events since its first publication. Examples of

programs for MAA are included in this report. The algorithm
attracted the attention of the Committee of the London Clearing
Banks and then Technical Committee 68 (Banking) of the
International Standards Organisation, which adopted it as one of
the approved algorithms for message authentication [2]. In the
course of examining the algorithm a number of bodies tested its
level of security. One potential attack was found, using a very
large amount of chosen plain text in very long and artificial
messages. It is questionable whether such an attack is

realistic, since the ability of an adversary to subject an
algorithm, with its secret key, to almost unlimited testing with
chosen text would be a fatal weakness of an authenticated
message scheme. Access to such a facility must be strictly
controlled.

To avoid even this attack, the ISO standard 8731-2 contains a
limitation of the total block of data to 1024 bytes and a 'mode
of operation' in section 5 of the standard which chains these
blocks together.

A long financial message can often be divided conveniently into
segments which are no longer than 1024 bytes - for example into
a series of separate payment messages. It is often preferable

to provide each segment with its own authenticator, in the same
way that error control is often segmented rather than covering a
whole file. To detect insertion and deletion of segments,
consecutive sequence numbering and checking can be used.
Control totals, if authenticated, can prevent truncation at the

end of the file. Another method is to send a group

authenticator calculated from the sequence of segment
authenticators. Groups of 256 segments can be authenticated in
this way and if necessary a hierarchy of such authentication is
possible, not limited to 1,000,000 blocks. This does not

conflict with ISO 8731-2 and is, in effect, an alternative mode

of operation.

.,

In the reproduction of the 1983 report given below, the ISO
'mode of operation' has been inserted, and Table 4 is given in
two versions 4(a) decimal and 4(b) hexadecimal, to help those
testing main loop implementations. Table 5 of the original
report contained an error in the first two columns of row S.
Details appear in a note below the table. Unfortunately this
error also occurs in the 1ISO version.

2 Purpose of the Algorithm

An ‘authenticator' is a number which is sent with a message so
that a check can be made by the receiver of the message that it
has not been altered since it left the sender. For

authenticators in general the sender and receiver share the
knowledge of a key K which is otherwise secret. If M is the
message, the authenticator is a function of K and M. Itis
calculated by the sender and again by the receiver. If the
receiver's calculated value equals the authenticator value
received with the message, the message is assumed to be correct.
When a well designed authenticator is used, giving a 32 bit
result, the probability that a message alteration will not be
detected is 2 “2which is small enough for most purposes.

3 Implementation Considerations

The algorithm was originally designed to be implemented on a
main frame computer. In practice, implementations in high level
languages have often proved slow in operation. The advent of
low cost computers (PCs or similar) with larger word sizes
increases the options for effective implementation of MAA.

There have been several requests for a version of the MAA, or a
new algorithm, which could be implemented on a personal
computer. The development of a new algorithm for this purpose
would be likely to take a considerable time because of the
amount of testing involved. Furthermore the MAA can now be
implemented on a PC at a useful speed.

Many users prefer a version written in a high level language.

For the highest speed the MAA needs to be written in assembly
code, but the version in this report written in 'C' has achieved
speeds of about one millisecond per message block of 32 bits on
IBM compatible PCs of various types. This report also includes
a version written in Basic,

— 3

primarily as a description of the algorithm, and also to check
results. It can be run on a BBC micro or on an IBM compatible
PC using the MTEC BBCBasic(86) interpreter which uses 32 bit
values for all arithmetic and bitwise boolean functions.

The MAA has several special requirements which influence the
choice of language in which to write a program. In particular
it needs:

1 Multiplication of two 32 bit unsigned numbers to produce a
64 bit unsigned product.

2 Addition of two unsigned 32 bit numbers to produce a 32 bit
sum and a carry bit.

3 Boolean functions of 32 bit values.

4 Splitting 32 bit unsigned values into 8 bit bytes and
concatenating back to 32 bit values.

The language 'C' copes with all of these requirements except (1)
and the carry bit of (2). However it is capable of producing a

32 bit unsigned product from the multiplication of two 16 bit
values, and the carry bit from addition can be derived from the
most significant bits of the three values involved.

Pascal has the disadvantage that the 32nd bit is treated as a
sign bit and a carry into the 33rd bit is reported as an
overflow. Dealing with this can add a considerable time
penalty. (A similar situation usually exists in Basic). We
have not written an implementation in Pascal, but methods of
dealing with these problems are illustrated in the Basic
program. In particular, the function ADDU (unsigned addition)
and the procedures MUL32 and MUL16 could be used as models for a
Pascal version. Early Pascal compilers did not implement
bitwise boolean functions, but these are now available in
Prospero Pascal version 3.

A version of the MAA has been written by D.W. Davies in assembly
code for the 6502. This takes about 6 milliseconds per message
block using the BBC model B. A version written by D.O. Clayden

in Turbo Basic (compiling) takes about 300 millisec per message
block, about the same time as the Basic program herein when run
with the MTEC BBCBasic(86) interpreter. The Turbo Basic program
illustrates methods which are applicable in

—4—

dialects which lack 32 bit boolean functions. This version and
the 6502 version can be made available on request.

4 General Description

All numbers manipulated in this algorithm are regarded as 32 bit
unsigned integers, unless otherwise stated. For such a number

N,0 <N<2 *. This algorithm can be implemented conveniently
and efficiently in a computer with word length 32 bits or more.

The message can be a bit string of any length but for input to

the algorithm we regard it as a sequence of 32 bit numbers

M, M ,---M _ of which there are n, called 'message blocks'. The

detail of how to pad out the last block M . to 32 bits is not part
of the algorithm but must be defined in any application. No

weakness is introduced by choosing one of the simplest rules,

such as extending to the right or left with zeros or ones.

During the process of testing and evaluation of this algorithm,

it was found that its use for very long messages results in some
reduction of the dependence of the authenticator on the early
data in the message. To minimise this effect, ISO 8731-2
specifies that the algorithm shall not be used for messages with
more than 1,000,000 blocks, i.e. n should not exceed 1,000,000.
Note the 'mode of operation’ which is applied to messages longer
than 1024 bytes (n>256).

The key consists of two 32 bit numbers J and K and thus has a
size of 64 bits.

The result of the algorithm is a 32 bit authenticator value
denoted Z. The calculation can be performed on messages as
short as one block (n=1).

The calculation, a flow diagram of which is shown on page 20,
has three parts:

a The 'Prelude’ is a calculation made with the keys (J and K)
alone and it generates six numbers X oY oV W, Sand T
which are used in the subsequent calculations. This part
need not be repeated until a new key is installed.

— 5

b The 'Main loop' is a calculation which is repeated for each

message block M, therefore for long messages it dominates

the calculation.

C The 'Coda’ consists of two operations of the main loop
using as its 'message blocks' the two numbers Sand T in
turn, followed by a simple calculation of Z, the
authenticator.

Therefore the processing load of the algorithm contains a part
(the main loop and coda) proportional to n+2 where n is the
message size, and a constant overhead each time the keys are
changed.

5 Specification of the Functions Used in the Algorithm

A number of functions are used in the description of the
algorithm. In the following, X and Y are 32 bit numbers and the
result is a 32 bit number except where stated otherwise.

CYC(X) is the result of a one-bit cyclic left shift of X

AND(X,Y) is the result of the logical AND operation carried out
on each of 32 bits.

OR(X,Y) is the result of the logical OR operation carried out
on each of 32 bits.

XOR(X,Y) s the result of the XOR operation (modulo 2 addition)
carried out on each of 32 bits.

ADD(X,Y) is the result of adding X and Y discarding any carry
from the 32nd bit, that is to say, addition modulo 2

CAR(X,Y) s the value of the carry from the 32nd bit when X is
added to Y, it has the value O or 1.

MUL1(X,Y), MUL2(X,Y) and MUL2A(X,Y) are three different
forms of multiplication, each with a 32 bit result.

To explain these multiplications, let the 64 bit product of X
and Y be {U,L}. Here the curly brackets mean that the values
enclosed are 'concatenated’, U on left of L. Hence U is the
upper (most significant) half of the product and L the lower
half.

32

6 Definition of MUL1(X,Y)

Multiply X and Y to produce {U,L}. With S and C as local
variables,

S:= ADD(U,L); (1)
C:= CAR(U,L);)
MUL1(X,Y):= ADD(S,C) 3)

That is to say, U is added to L with 'end around carry'.

Numerically the result is congruent to X*Y, the product of X and

Y, modulo (2 *-1). This can be seen by the following argument.
It is not necessarily the smallest residue because it may equal
2%-1.

X*Y=2 PU+L

S=U+L-2 “C from (1) and (2)
MULL(X,Y) =S+ C
=U+L-(2 2.1)C

= X*Y - (2 Z-.1)(U+C)
It is shown later that the addition (3) cannot produce a carry
from the 32nd bit (see 'details of the multiplication
functions’).

7 Definition of MUL2(X,Y)

This form of multiplication is not used in the main loop, only
in the prelude. With D, E, F, S and C as local variables,

D:= ADD(U,U); (4)
E:= CAR(U,U); (5)
F:= ADD(D,2E); (6)
S:= ADD(F,L); (7)
C:= CAR(F,L); (8)

MUL2(X,Y):= ADD(S,2C) 9)

—7—

Numerically the result is congruent to X*Y, the product of X and

Y, modulo (2 *-2). This can be seen by the following argument.
It is not necessarily the smallest residue because it may equal
2%-2.

X*Y=2 *U+L

2U=D+2 *E from (4) and (5)
F=D+2E from (6)
F+L=S+2 “C from (7) and (8)
MUL2(X,Y) =S + 2C from (9)
=F+L-(2 2_2)C
=D+2E+L-(2 #.2)C
=2U+L-(2 #-.2)E +C)

= X*Y - (2 2.2 (U+E+CQC)

It is shown later that additions (6) and (9) cannot produce a
carry from the 32nd bit (see 'details of the multiplication
functions').

8 Definition of MUL2A(X,Y)
This is a simplified form of MUL2(X,Y) used in the main loop,
which yields the correct result only when at least one of the

numbers X and Y has a zero in its most significant bit.

It is employed for economy in processing. D, S, C are local
variables.

D:= ADD(U,U); (10)
S:= ADD(D,L); (11)
C:= CAR(D,L); (12)
MUL2A(X,Y):= ADD(S,2C) (13)
The result is congruent to X*Y modulo (2 *1.2) under the

conditions stated because, in the notation of MUL2(X,Y) above,
the carry E = 0. This will be shown later (see 'details of the
multiplication functions’).

—8—

9 The Functions BYT{X,Y} and PAT{X,Y}

A procedure is used in the 'prelude’ to condition both the keys

and the results in order to prevent long strings of ones or

zeros. It produces two results which are the conditioned values

of X and Y and a number PAT{X,Y} which records the changes that
have been made. PAT{X,Y} < 255 so it is essentially an 8 bit
number.

X and Y are regarded as strings of bytes. Using the notation
{X,Y...} for concatenating,

xXy}={ ,B,B,B.B,B.B.B}

Thus bytes B -B , are derived from X and B -B ,fromY.

0 4

The procedure is best described by a program where each byte B
is regarded as an integer of length 8 bits:

P:=0;
fori:=0to 7 do
begin
P:=2*P;
if B, =0then
begin
P=P+1;
B' =P
end
elseifB |, =255then
begin
P=P+1;
B', =255-P
end
else
B' =B,

end;
The results are:

BYT{X,Y} = {B'
and PAT{X,Y}=P

B' 17B' 27B' 37B' 4’B' S’B' G’B' 7}

[0}

Examples for checking an implementation of this function are
given later.

10 The Prelude

{J,.K} :=BYT{K};
P = PAT{J,K}; (14)
Q = (1+P)*(1+P)

First, a calculation using J . producesH ,,H ,andH ,from which X

V, and S are derived.

J1,=MUL1Q@ ,J) J2 ;=MUL2(J J);

2
J1,=MUL1(J1 ,,J1)); J2 =MUL2(32 ,J2);
J1,.=MUL1(J1 ,,J1), J2 o=MUL2(32 ,J2); (15)
J1,=MUL1(J1 ,J1 ,); J2 =MUL2(J2 ,J2);

H,:= XOR@J1 ,,J2);
H:= XOR(J1 ,,J2); (16)
H,:= XOR(J1 ,,J2 ,);

A similar calculation using K , produces H
Y,, Wand T are derived.

571

K1,:= MULL(K K) K2 ,'= MUL2(K K)
K1,:= MUL1(K1 ,K1); K2 ;= MUL2(K2 ,K2);

2
4 4
K1:= MULL(K K1); K2 .= MUL2(K K2) (17)
K1:= MULL(K1 ,K1); K2 = MUL2(K2 ,K2));
K1,:= MULL(K1 K1); K2 ;= MUL2(K2 ,K2);

H:= XOR(K1 _,K2);

H:= MUL2(H ,Q);

H,:= XOR(K1 ,,K2); (19)
H:= XOR(K1 ,,K2 ,);

Finally, the results are conditioned by the BYT function:
XY =BYT{H ,H}
{V, W} =BYT{H _H.} (20)
{S,T} =BYT{H o H o}

Examples are given later for checking this part of the
algorithm, except for lines (14).

H ,and H , from which

[0}

— 10 —

11 The Main Loop

This loop is performed in turn for each of the message blocks M

In addition to M ., the principal values employed are X and Y and

the main results are the new values of X and Y. It also uses V

and W and modifies V at each performance. Note that X, Y and V

are initialised with the values provided by the Prelude. In

order to use the same keys again, the initial values of X, Y and

V must be preserved, therefore they are denoted X s Y ;andV and
there is an initialising step X:= X e Y=Y V=V after which
the main loop is entered for the first time. The 'coda’, used

after all message blocks have been processed by n cycles of the

loop, is described in the next section.

The program is shown in columns to clarify its 'parallel’
operation but it should be read in normal reading order, left to
right on each line

V:=CYC(V); (22)
E:= XOR(V,W); (21)
X:= XOR(X,M); Y:= XOR(Y,M); (22)
F:= ADD(E,Y); G:= ADD(E,X); (23)
F:= OR(F,A); G:= OR(G,B); (23)
F:= AND(F,C); G:= AND(G,D); (23)
X:= MUL1(X,F); Y:= MUL2A(Y,G) (24)

The numbers A, B, C, D are constants which are, in hexadecimal
notation:

Constant A: 0204 0801
Constant B: 0080 4021
Constant C: BFEF 7FDF
Constant D: 7DFE FBFF

Lines (21) are common to both paths. Line (22) introduces the
message block M .. Lines (23) prepare the multipliers and line
(24) generates new X and Y values. Only X, Y and V are modified
for use in the next cycle. F and G are local variables. Since

the constant D has its most significant digit zero, G < 2

this ensures that MUL2A in line (24) will give the correct

result, a multiplication modulo 2 o1,

31

and

12 The Coda

After the last message block M . has been processed, the main loop
is performed with 'message block' S, then again with block T,
le.
M+1 = S’ M w2 T.
After this, the authenticator is calculated as Z = XOR(X,Y) and
the algorithm is complete. The values X oY oV W, Sand T
should be retained in order to calculate further authenticator
values without repeating the prelude (key calculation) until the
keys are changed.

13 Mode of operation

ISO 8731-2 contains this mode of operation for messages longer
than 1024 bytes. The word 'segment’ is used here to avoid
confusion with the blocks B . of 4 bytes.

Messages longer than 1024 bytes shall be divided into
segments of 1024 bytes and chained as follows:

For the first segment of 1024 bytes the MAC (4 bytes) shall
be formed. The MAC value shall be prefixed to (but not
transmitted in) the second segment and the resultant 1028
bytes authenticated. This procedure shall continue, with
the MAC of each segment prefixed to the next, until the

last segment, which need not be of size 1024 bytes, and the
final MAC shall be used as the transmitted MAC for the
whole message.

14 Details of the Multiplication Functions
Recalling that X*Y produces the 64 bit product {U,L},
If X,Y <2 %1, XYy <2%2%+1
Hence U <2 -2

and L <2 *-1, ie no restriction

1 In the calculation of MUL1(X,Y)
2°C+S=U+L < 2 *-3 from (1) and (2)

If a carry occurs, C=1and S <2 *-3
Hence MUL1(X,Y)=S +C < 2 *-2 can produce no carry

2 In the calculation of MUL2(X,Y)
2’E+D=2U <2 *-4from (4) and (5)

If a carry is produced, E=1and D <2 %4
Hence F=D + 2E < 2 *-2 can produce no carry

32

If no carry is produced F = 2U is even and less than 2
Hence F <2 *-2in either case

Also2 *C+S=F+L < 2 *-3 from (7) and (8)

If a carry is produced, C=1and S <2 *-3
Hence MUL2(X,Y) =S + 2C < 2 *-1 can produce no carry
3 In the calculation of MUL2A(X,Y) where X <2*1,Y <2%1

XY <2 %2%2%+1

HenceU <2 *-1,2U <2 *-2 can produce no carry
2°C+S=D+L=2U+L <2 *-3

If a carry is produced, C=1and S <2 *-3
Hence MUL2A(X,Y) =S + 2C < 2 *-1 can produce no carry

15 Test Examples For Parts of the Algorithm

For most parts of the algorithm, simple test examples are given.
The data used are not always realistic, ie they are not values
which could be produced by earlier parts of the algorithm, and
artificial values of constants are used. This is done to keep

the test cases so simple that they can be verified by a pencil

and paper calculation and thus the verification of the

algorithm's implementations does not consist of comparing one
machine implementation with another. The parts thus tested are:

MUL1, MUL2, MUL2A

BYT{X,Y} and PAT{X,Y}

Prelude, except the initial BYT{J,K} operation

Main loop
The Coda is not tested separately because it uses only the main
loop and one XOR function. For testing the whole algorithm,
some results of test runs with the NPL implementation are given,

but it would be difficult to test even the simplest case of the
complete algorithm by pencil and paper calculation.

— 13—

16 Test Examples for MUL1, MUL2, MUL2A

It is suggested that the multiplication operations should be

tested with very small numbers and very large numbers. To

represent a large number we use the ones complement. Thus if a

is a small number (say less than 4096) we use the notation ~a to
mean its ones complement, ie 2 ® -1 -a. Examples for testing
MUL1, MUL2 and MULZ2A are given in Table 1.

For small numbers a and b, all three multiplication functions
produce their true product a*b. When large numbers are used the
functions can give different results. They should be tested

both ways round, with MUL(x,y) and MUL(y,X) to verify that these
are equal.

(1) Test cases for MUL1

In modulo 2 * - 1 arithmetic ~a is effectively -a, therefore the
results are very simple

MUL1(~a,b) = MUL1(a,~b) = ~(a*b)
MUL1(~a,~b) = a*b

(2) Test cases for MUL2

MUL2(~a,b) = ~(a*b - b + 1)
MUL2(a,~b) =~(a*b -a + 1)
MUL2(~a,~b)=a*b-a-b+1

(3) Test cases for MUL2A

This will give the same result as MUL2 when tested with numbers
within its range. For testing with large numbers, ~a and
~b -2 * must be used.

MUL2A(~a,b) = ~(@*b - b + 1)
MUL2A(a,~b) =~(@*b-a + 1)
MUL2A(~a,~b-2 *)=2 *(@1-p)+a*b+p-b-1

where p is the parity of a; the value of its least significant
bit.

That is, for even values of a the result is 2 “+ab-b-1
for odd values of a the resultis a*b - b

— 14 —

a b result

MUL1 0000 000F 0000 00OE 0000 00D2
FFFF FFFO 0000 000E FFFF FF2D
FFFF FFFO FFFF FFF1 0000 00D2

MUL2 0000 000F 0000 000E 0000 00D2
FFFF FFFO 0000 000E FFFF FF3A
FFFF FFFO FFFF FFF1 0000 00B6

MUL2A 0000 000F 0000 000E 0000 00D2
FFFF FFFO 0000 000E FFFF FF3A
7FFF FFFO FFFF FFF1 8000 00C2
FFFF FFFO 7FFF FFF1 0000 00C4

Table 1 Test cases for Multiplication Functions (hexadecimal)

17 Test Examples for BYT{X,Y} and PAT{X,Y}

Three cases for testing these functions are listed in Table 2

X Y

{X,Y} 00000000 000000 00
BYT{X,Y} 010307 O0F 1F 3F 7F FF
PAT{X,Y} FF

{X,Y} FFFFO00FF FFFFFFFF
BYT{X,Y} FEFC 07 FO EO CO 80 00
PAT{X,Y} FF

{X,Y} ABOOFFCD FFEF 0001
BYT{X,Y} ABO1FCCD F2EF 3501
PAT{X,Y} 6A

Table 2 Test cases for the BYT and PAT Functions

— 15 —

18 Test Examples for the Prelude

An example is given in Table 3. The initial BYT{J,K} operation
is not tested. We assume that the results from lines (14) are

J, = 0000 0100, K, =0000 0080, P=1,
J1, 0001 0000 J2 , 0001 0000
J1, 0000 0001 J2 , 0000 0002
J1, 0001 0000 J2 . 0002 0000
J1, 0000 0001 J2 , 0000 0004
H, 0000 0003
H, 0003 0000
H, 0000 0005
K1, 0000 4000 K2 , 0000 4000
K1, 1000 0000 K2 , 1000 0000
K1, 0000 0008 K2 . 0000 0010
K1, 0002 0000 K2 . 0004 0000
K1, 8000 0000 K2 , 0000 0002
H, 0000 0018
H 00000060 (Q=4)
H, 0006 0000
H, 8000 0002
{X,Y } 0103 0703 1D3B 7760 PAT{X Y} EE
v,W} 0103 050B 1706 5DBB PAT{V W} BB
{S,T} 0103 0705 8039 7302 PAT{S,T} E6

Table 3 Test cases for lines (15) - (20) of the Prelude

The PAT values obtained from conditioning the results of the
prelude are quoted above for checking purposes but are not used
in the algorithm.

— 16 —

19 Test Examples for the Main Loop

In Table 4, three examples of single block messages are given,

using small and large numbers. There are two versions of Table

4, 4a in decimal and 4b in hexadecimal notation. In the decimal

table there is a convention that ~a is 2 ¥ -.1-a. Inthe third
example there are two cases of large numbers which must have

zero in the 32nd bit, shown as ~2 - 2 *and~3-2 * respectively.
They could have been written 2 “.2and2 * -3respectively.

In order to keep the numbers small, artificial values of the

constants A, B, C and D are used. Three single block examples

are followed by a message of three blocks, in order to check
that the implementation correctly retains the value of X, Y and
W. The final S and T cycles of the coda are not included in

this table.

Single block messages

Three-block message

A B 4 1 1 4 1 2 2 1 2 1 2 1
C D ~8 ~4 ~6 ~3 ~1 ~2* ~4 ~4 ~4 ~4 ~4 ~4
vV W 3 3 3 3 7 7 11 2 1 4 1
X, Y, 2 3 ~2 ~3 ~2 ~3 1 2 3 2 20 9
M 5 1 8 0 1 2
V 6 6 14 2 4 8 CYC
E 5 5 9 3 5 9 XOR
XY 7 6 ~3 ~2 ~10~11 (1 2 2 3 22 11 XOR
F G 11 12 2 1 ~2 ~1 5 4 8 7 20 31 ADD
F G 15 13 35 ~2 ~1 7 5 10 7 22 31 OR
F G 7 9 1 4 ~3 ~3* 31 10 3 18 27 AND
XY 49 54 ~3 ~5 30 30 3 2 20 9 396 297 | MUL
Z 7 6 0 1 29 165 XOR
*_2 31
Table 4a Test Cases for the Main Loop (decimal)

Single block messages

Three-block message

A 4 1 1 2 2 2

B 1 4 2 1 1 1
C | FFFFFFF7 FFFFFFF9 FFFFFFFE | FFFFFFFB FFFFFFFB FFFFFFFB
D | FFFFFFFB FFFFFFFC 7FFFFFFD | FFFFFFFB FFFFFFFB FFFFFFFB
Y 3 3 7 1 2 4
W 3 3 7 11 1
X, 2 FFFFFFFD FFFFFFFD 1 3 14
Y, 3 FFFFFFFC FFFFFFFC 2 2 9
M 5 1 8 o 1 2
Vv 6 6 E 2 4 8

E 5 5 9 3 5 9
X 7 FFFFFFFC FFFFFFF5 1 2 16
Y 6 FFFFFFFD FFFFFFF4 2 3 B
F B 2 FFFFFFFD 5 8 14
G C 1FFFFFFFE 4 7 IF
F F 3 FFFFFFFD 7 A 16
G D 5FFFFFFFE 5 7 IF
F 7 1FFFFFFFC 3 A 12
G 9 4 7FFFFFFC 1 3 1B
X 31 FFFFFFFC 1E 3 14 18C
Y 36 FFFFFFFA 1E 2 9 129
Z 7 6 0 1 1D A5

Table 4b

Test Cases for the Main Loop (hexadecimal)

— 18 —

20 Test Examples for the Whole Algorithm

Using the NPL implementation of the algorithm, the four test
examples with two block messages given in Table 5 were
calculated. For ease of checking, intermediate results are
tabulated: the results of the prelude and the X and Y values
after each operation of the main loop, that is for M

and T.

OOFF OOFF OOFF OOFF 5555 5555 5555 5555
0000 0000 0000 0000 5A35 D667 5A35 D667
FF FF 00 00

4A64 5A01 4A64 5A01 34AC F886 34AC F886

50DE C930 50DE C930 7397 C9AE 7397 COAE

5CCA 3239 5CCA 3239 7201 FADC 7201 FADC
FECC AAGE FECC AAGE 2829 040B 2829 040B

5555 5555 AAAA AAAA 0000 0000 FFFF FFFF
48B2 04D6 6AEB ACF8 2FD7 6FFB 8DC8 BBDE
5834 A585 9DB1 5CF6 550D 91CE FE4E 5BDD

AAAA AAAA 5555 5555 FFFF FFFF 0000 0000
4F99 8EO01 270E EDAF A70F C148 CBC8 65BA
BEO9F 0917 B814 2629 1D10 D8D3 0297 AF6F
S51ED E9C7 51ED E9C7 9E2E 7B36 9E2E 7B36
3449 25FC 2990 7CD8 B1CC 1CC5 3CF3 A7D2
DB91 02B0 BA92 DB12 29C1 485F 160E E9B5
24B6 6FB5 24B6 6FB5 1364 7149 1364 7149
277B 4B25 28EA D8B3 288F C786 D048 2465
D636 250D 81D1 0CA3 9115 A558 7050 ECS5E
F14D 6E28 A93B D410 B99A 62DE A018 C83B

o o o

-

N

NLXA<LXN <KX ZI<LKXZIs<<K<KXTR“

Table 5 Test Cases for the Whole Algorithm

Note. Table 5 of the original report contained an error in
the first two columns of row S. The values 51ED E967 (twice)
should have been 51ED E9C7.

17

M

21

— 19—

A further set of test cases for the whole algorithm is given

in Table 6. The J and K values were chosen to give long
strings of zeros after conditioning. The message consists of
20 blocks of zeros. Intermediate values of X and Y are listed
as well as the final authenticator value Z.

J = 8001 8001, K = 8001 8000
block X Y

1 303F F4AA 1277 A6D4 all message blocks are zeros
2 55DD 063F 4C49 AAEO
3 51AF 3C1D 5BCO 2502
4 A44A AACO 63C7 ODBA
5 4D53 901A 2E80 AC30
6 5F38 EEF1 2A60 91AE
7 F023 9DD5 3DD8 1AC6
8 EB35B97F 9372 CDC6
9 4DA1 24A1 C6B1 317E
10 7F83 9576 74B3 9176
11 11A9 D254 D786 34BC
12 D880 4CA5 FDC1 A8BA
13 3F6F 7248 11AC 46BS8
14 ACBC 13DD 33D5 A466
15 4CE9 33E1 C21A 1846
16 C1ED 90DD CD95 9B46
17 3CD5 4DEB 613F 8E2A
18 BBA5 7835 07C7 2EAA
19 D784 3FDC 6AD6 EBA4

20 S5EBA 06C2 9189 6CFA z
S 1D9C 9655 98D1 CC75
T 7BC1 80AB AOB8 7B77 DB79 FBDC

Table 6 Test case for a 20 block message

Keys

PRELUDE

Storage for
future use

i

Initialization

X
MAIN LOOP

Contains:
MUL1
MUL2A

i
X
CODA

— 20—

1 1

Prelude contains BYT/PAT, MUL1, MUL2

l l l l l
X Y, Vv, W S T
i i i i i i
l l l
X=X, Y=Y, V=V,
LY LV
w Message
MAIN LOOP ——
- M, '
| | | M1
| | | | |
| | | | |
l l l
W | |
MAIN LOOP ——
- M
M. 4”,
i i i i i i
LY LV
W
MAIN LOOP ——
| | | S
l l l
W
MAIN LOOP ——
| | T
LY
l
XOR Discard V

21 Diagram showing data flow

22 Implementation in 'C'

The 'C' program is written in the form of a series of

functions or procedures with a main program designed to run

the tests described above. The larger functions described in

the algorithm are implemented as functions or procedures, but

the smaller ones, such as ADD, AND and CAR, are implemented in
a single line of code. Two versions of the mainloop are

provided called 'mainloopl’ which outputs intermediate values

for checking, and 'mainloop2' which is designed for maximum
speed. The latter includes versions of mull and mul2a copied

in full to avoid the time taken to call the functions.

'C' does not provide the carry bit from the addition of two
unsigned values, but there are many ways of deriving it. The
method used was selected after speed trials.

The function mul32 employs shifts of 16 bits. An alternative
method is to employ a 'union’ to access the halves of an
unsigned long variable. However with the Turbo and Zorland
compilers this takes longer than the method shown.

Those wishing to use the functions or procedures will need to
write their own main program to cope with input and output.

A time measurement option has been included although time
measurement is not part of standard 'C' and involves accessing
the operating system. Inaccuracies of about a tenth of a
second are likely, so measurements of short time intervals
should be treated with reserve. The method 'guesstime’ has
been chosen as it is likely to be portable. It uses the one
second clock in MS-DOS, and interpolates for fractions of a
second.

The time measured for the main loop on IBM compatibles is
approximately 1 millisec when compiled by the Turbo compiler
and 1.1 millisec when compiled by the Zorland compiler.

Time measurement may need alternative methods when using
compilers other than Turbo or Zorland, or operating systems
other than MS-DOS.

/* MAA Message Authenticator Algorithm by D W Davies, NPL 1983. */

/* Version in C by D O Clayden, NPL 1987. */

/* Copyright NPL 1987 */

/* Version MAA7C22 suitable for running all tests and timing. */
/* Most printf statements are for test purposes only. */

/* Mainloop time about 1 millisec excl input, on M24 and PC1512. */

#include <stdio.h>
#include <time.h>
#include <dos.h>

#define BIT31 0x80000000L
#define FFFF OxFFFFL
unsigned long a,b,c,d,I,m,s,t,u,v,w,x,y,z,pat,sum,t4,t5,v0,x0,y0;

int menul()

{
int m;
printf(" 1 Test small functions (Tables 1,2)\n");
printf(" 2 Test prelude (Table 3)\n");
printf(" 3 Test main (Table 4)\n");
printf(" 4 Test prelude + main + coda (Table 5)\n");
printf(" 5 Test and timing of repeated message blocks (Table 6)\n");
printf(" 6 Quit to C \n");
scanf("%d",&m);
return(m);

} * menul */

void mul32(a,b)
unsigned long a,b;
/* unsigned 64 bit product in u(upper) and I(lower) */
{
unsigned long p1,p2,p3,sum;
pl=(a&FFFF)*(b&FFFF);
p2=(a&FFFF)*(b>>16);
p3=(a>>16)*(b&FFFF);
sum=(p1>>16)+(p2&FFFF)+(p3&FFFF);
I=(p1l&FFFF)+(sum<<16);
u=(sum>>16)+(p2>>16)+(p3>>16)+((a>>16)*(b>>16));
} A mul32 */

— 23—

unsigned long mull(a,b)
unsigned long a,b;
{
unsigned long s,car;
mul32(a,b);
S=u+l;
car=((uM)&BIT31)? !(s&BIT31):(u&BIT31)!=0;
return(s+car);
} A mull */

unsigned long mul2(a,b)
unsigned long a,b;
{
unsigned long d.f,s,car;
mul32(a,b);
d=u+u; car=(u&BIT31)!=0;
f=d+car+car;
s=f+l;
car=((f\)&BIT31)? !(s&BIT31):(f&BIT31)!=0;
return(s+car+car);
} A mul2 */

unsigned long mul2a(a,b)
unsigned long a,b;
{
unsigned long d,s,car;
mul32(a,b);
d=u+u;
s=d+l;
car=((d")&BIT31)? !(s&BIT31):(d&BIT31)!=0;
return(s+car+car);
} I+ mul2a */

void byt(x,y)
unsigned long x,y;
{
unsigned long p;
inti,b[8];
for (i=3; i>=0; i) {
b[i]=x&255; b[i+4]=y&255;
X=x>>8; y=y>>8;
}
p=0;
for (i=0; i<8; i++) {
p=p+p;
if (b[i][==0) {p+=1, b[i]=p;} else if (b[i]==255) {p+=1; b[i]=255

pat=p; x=0; y=0;
for (i=0; i<4; i++) {
X=(x<<8)+b[i]; y=(y<<8)+b[i+4];
}
u=x; I=y;
}/* byt */

-p}

— 24 —

void prelude(x,y,test)
unsigned long X,y;
int test;
{
unsigned long j1[10],j2[10],k1[10],k2[10],h[10];
unsigned long p,q;
byt(x,y);
j1[0]=u; K1[0]=I; p=pat;
if (test>0) {
j1[0]=x; K1[0]=y;
printf("Enter P (2 hex): \n");
scanf("%X",&p);
}
0=(p+1)*(p+1);
J1[2]=mul1(j1[0],j1[C]); j2[2]=mul2(j1[0],j1[O]);
J1[4]=mul1(j1[2] j1[2]); j2[4]=mul2(j2[2] j2[2]);
J1[6]=mul1(j1[2] j1[4]); j2[6]=mul2(j2[2] j2[4]);
J1[8]=mul1(j1[2] j1[6]); j2[8]=mul2(j2[2] j2[6]);
h[4]=1[4]"j2[4]; h[6]=}1[6]"j2[6]; h[8]=]1[8]"2[8];
printf("H4= %lIX \n",h[4]);
printf("H6= %IX \n",h[6]);
printf("H8= %lIX \n",h[8]);

k1[2]=mul1(k1[0],k1[0]); k2[2]=mul2(k1[O],k1[O]);

k1[4]=mull(k1[2] k1[2]); k2[4]=mul2(k2[2],k2[2]);
k1[5]=mul1(k1[0],k1[4]); k2[5]=mul2(k1[0],k2[4]);

k1[7]=mull(k1[2] k1[5]); k2[7]=mul2(k2[2],k2[5]);

k1[9]=mul1(k1[2] k1[7]); k2[9]=mul2(k2[2],k2[7]);

h[0]=k1[5]"k2[5]; h[5]=mul2(h[0],q); h[7]=k1[7]"k2[7]: h[9]=k1[9]"k2[9];

printf("HO= %lIX \n",h[0]);

printf("H5= %lIX \n",h[5]);

printf("H7= %lIX \n",h[7]);

printf("H9= %IX \n",h[9]);

byt(h[4],h[5]);

x0=u; y0=l;

printf("X0= %IX",x0);
printf(" YO= %IX",y0);
printf(" PAT= %IX \n",pat);

byt(h[6].h[7]);

vO=u; w=l;

printf("V0= %IX",v0);
printf(" W= %IX",w);
printf(" PAT= %IX \n",pat);

byt(h[8],h[9]);

s=u; t=I;

printf("S= %IX",s);

printf(" T= %IX" t);

printf(" PAT= %IX \n",pat);
} I* prelude */

— 25 __

void abcd()

{
a=0x2040801L;
b=0x804021L;
c=0xBFEF7FDFL;
d=0x7DFEFBFFL;
printf("A= %IX \n",a);
printf("B= %IX \n",b);
printf("C= %IX \n",c);
printf("D= %1X \n",d);

} I* abed */

void inmain()
{
abcd();
printf("Press 1 to enter A,B,C,D,V,W,X0,YO,M ");
printf("else <RET> for standard ABCD\n");
if ((getch())=="1) {
printf("Enter A (8 hex): \n"); scanf("%IX",&a);
printf("Enter B (8 hex): \n"); scanf("%IX",&b);
printf("~(8)=FFFFFFF7,~(4)=FFFFFFFB,~(6)=FFFFFFF9,~(3)=FFFFFFFC \n");
printf("~(1)=FFFFFFFE,~(2*)=7FFFFFFD,~(2)=FFFFFFFD \n");
printf("Enter C (8 hex): \n"); scanf("%lIX",&c);
printf("Enter D (8 hex): \n"); scanf("%IX",&d);
printf("Enter V (8 hex): \n"); scanf("%IX",&v);
printf("Enter W (8 hex): \n"); scanf("%IX",&w);
printf("Enter X0 (8 hex): \n"); scanf("%IX",&x);
printf("Enter YO (8 hex): \n"); scanf("%IX",&y);
printf("Enter M (8 hex): \n"); scanf("%IX",&m);
} /¥ inmain */

void mainloop1(m)

unsigned long m;

{
unsigned long e,f,g;
printf("Results are in hexadecimal \n");
v=(v&BIT31)? (v<<1)|1L:v<<]; * v=cyc(v); */

printf("V= %IX \n",v);

e=viw;, printf("E= %IX \n",e);
X=xX"m; printf("X= %IX ",x);
y=y~m; printf(" Y= %IX \n",y);
f=e+y; printf("F= %IX ",f);
g=e+x; printf(" G= %IX \n",g);
f=fla; printf("F= %IX ",f);
g=g|b; printf(" G= %IX \n",g);
f=f&c; printf("F= %lIX "/f);
g=0&d; printf(" G= %IX \n",g);
x=mull(x,f); printf("X= %IX "x);
y=mul2a(y,g); printf(" Y= %IX\n"y);

} /* mainloopl */

— 26—

void mainloop2(m)
unsigned long m;
/* as mainloopl without printf. Mull, mul2a copied to save time */
{
unsigned long e.f,g,s;
int car;
v=(V&BIT31)? (v<<1)|1L:V<<1,; [*V=CYC(V); */
e=viw;
X=x"m; y=y*m;
f=e+y, g=e+x
f=fla; g=g|b;
f=f&c; g=g&d;

[* x=mul1(x,f); */
mul32(x,f);
s=u+l;
car=((uM)&BIT31)? !(s&BIT31):(u&BIT31)!=0;
x=(car) ? S+1L:S;

[* y=mul2a(y,q); */
mul32(y,q);
g=u+u;
s=g+l;
car=((g™)&BIT31)? !(s&BIT31):(g&BIT31)!=0;
y=(car)? s+2L:s;
} I* mainloop2 */

/* NOTE. Time measurement is not standard C, hence may not be portable. */

/* Guesstime + fracsec uses the 1 second clock of MS
/* Works with Turbo and Zorland compilers. */

signed long fracsec()

{
unsigned long i;
i=0; t5=time(NULL);

do i++; [* count while waiting for next second */
while (time(NULL)==t5);
return (i);

} I* fracsec */

float guesstime()

/* Uses fracsec and time (which counts whole seconds). */
/* Probably most portable, may be least accurate if interrupted. */
/* OK for Turbo and Zorland versions 1 and 2. */
{

unsigned long i,j,secs;

t4=t5;

i=fracsec(); secs=t5 -t4 -1; j=fracsec();

if (i>]) i=j;

return (secs+(j -i)/(float)j);

} I* guesstime */

-DOS.

*/

main()
{
unsigned long i,t1,t2;
long ti;
int nn,ii,choice,disp,car;
float tf;
t5=0;
do{
choice=menul();
printf("Note all results (except time) are in hexadecimal \n");
switch(choice) {
case 1:{
printf(" Enter X (8 hex): \n"); scanf("%IX",&x);
printf(" Enter Y (8 hex): \n"); scanf("%IX",&y);
SUM=X+Y;
printf("Sum= %IX",sum);
car=((x"y)&BIT31) ? |(sum&BIT31):(x&BIT31)!=0;
printf(" Carry= %X \n",car);
SUM=X+X;
car=(x&BIT31)!=0;
printf("2*X= %IX",sum);
printf(" Carry= %X\n",car);
printf("Product= %IX\n",x*y);
mul32(x,y);
printf("mul32 upper= %IX",u);
printf(" mul32 lower= %IX \n",l);
printf("cyc= %IX\n",((x<<1)|((x&BIT31)>>31)));
printf("mull=%IX\n",mull(x,y));
printf("mul2="%IX\n",mul2(x,y));
printf("mul2a= %IX\n",mul2a(x,y));
byt(x,y);
printf("byt upper= %IX",u);
printf(" byt lower= %IX\n",I);
printf("pat= %X\n",pat);
}; break;

case 2:{
printf(" Enter J1 (8 hex): \n"); scanf("%IX",&Xx);
printf(" Enter K1 (8 hex): \n"); scanf("%lIX",&y);
prelude(x,y,1);

}; break;

case 3:{

inmain();

mainloopl(m);

z=x"y; printf("Z= %IX\n",z);
}; break;

— 28 —

case 4:{
printf(" Enter J (8 hex): \n"); scanf("%IX",&x);
printf(" Enter K (8 hex): \n"); scanf("%lIX",&y);
prelude(x,y,0);
x=X0; y=y0; v=v0; abcd();
do {
printf(" Enter M (8 hex): \n"); scanf("%IX",&m);
mainloop2(m);
printf("X= %IX",x); printf(" Y= %IX\n",y);
printf("Press 1 for coda else <RET> for another message \n");
} while ((getch())!="1";
mainloop2(s);
printf("X= %IX",x); printf(" Y= %IX\n",y);
mainloop2(t);
printf("X= %IX",x); printf(" Y= %IX\n",y);
z=x"y; printf("Z= %IX\n",z);
}; break;
case 5
printf(" Enter J (8 hex): \n"); scanf("%IX",&x);
printf(" Enter K (8 hex): \n"); scanf("%lIX",&y);
prelude(x,y,0);
x=X0; y=y0; v=v0; abcd();
printf(" Enter M (8 hex): \n"); scanf("%IX",&m);
printf(" Enter number of repeated message blocks: \n");
scanf("%d",&nn);
printf(" Press 1 to display X,Y values ");
printf("else RET to measure time\n");
disp=getch();
if (disp=="1") {
for (ii=1; ii<=nn; ii++) {
mainloop2(m);
printf("X= %IX",x); printf(" Y= %IX\n",y);
}
printf(" Press a key to proceed \n"); disp=getch();
}
else {
i=fracsec();
for (ii=1; ii<=nn; ii++) {mainloop2(m);}
tf=guesstime();
printf("Seconds in mainloop (guesstime)= %6.2\n",tf); i=i;
printf("Millisecs per message block= %6.2f\n",tf*1000.0/nn);
}
printf("X= %IX",x); printf(" Y= %IX\n",y);
mainloop2(s);
printf("X= %IX",x); printf(" Y= %IX\n",y);
mainloop2(t);
printf("X= %IX",x); printf(" Y= %IX\n",y);
z=x"y; printf("Z= %1X \n",z);
}; break;
}
} while (choice!=6);
} /* main */

— 29 __

23 Implementation in Basic

This version was originally developed on a BBC Model B micro,
and also runs with the M-TEC BBCBASIC(86) interpreter [3] on
IBM compatibles. Both of these interpreters provide 32 bit
arithmetic and boolean functions.

The function ADDU executes unsigned addition and also leaves
the value of the carry bit in the variable CAR%. Itis

designed to avoid causing overflow. There are many different
ways of programming unsigned addition, the choice being
between using conditional statements or complicated boolean
expressions. The speed will depend upon the characteristics

of the compiler or interpreter. The method shown was the
fastest found using M-TEC Basic.

Multiplication is performed by the procedure MUL32 (which uses
MUL16) to produce a 64 bit unsigned product in U% and L%.

In the Prelude, the J values, K values and H values are stored
in individual variables although they could equally well be
stored in arrays.

10 *KEY4SAVE"MAA7B05.BBC"|M

20 REM Message Authenticator Algorithm by D W Davies 1983
30 REM Version in 32 bit Basic for signed arithmetic by D O Clayden 1987
40 REM Copyright NPL 1987

50 REM Works correctly on BBC Model B

60 REM and in MTEC BBCBASIC(86) on IBM compatible PCs
70 :

80 DIM ABYT%(8)

90 VDU15

100 G4%=&40000000: G8%=&80000000: G3F%=&3FFFFFFF: REM GLOBAL CONSTANTS
110:

120 ON FNMENU1 GOT0140,320,360,400,530,680

130:

140 PROCFETCH("X","Y",8)

150 SUM%=FNADDU(X%,Y%)

160 PRINT"SUM=";~SUM%

170 PRINT"CARRY=";CAR%

180 PROCMUL32(X%,Y%)

190 PRINT"MUL32 UPPER=";~U%;" LOWER=";~L%

200 PROD%=FNMUL1(X%,Y %)

210 PRINT"MUL1=";~PROD%

220 PROD%=FNMUL2(X%,Y %)

230 PRINT"MUL2=";~PROD%

240 PROD%=FNMUL2A(X%,Y %)

250 PRINT"MUL2A=";~PROD%

260 PROCBYT(X%,Y%)

270 PRINT"BYT UPPER=";~U%;" LOWER=",~L%;;" PAT=",~PAT%
280 PROD%=FNCY C(X%)

290 PRINT"CYC=",~PROD%

300 GOTO120

310:

320 PROCFETCH("J1","K1",8)

330 PROCPRELUDE(X%,Y%,1)

340 GOTO120

350:

360 PROCINMAIN

370 PROCMAIN1(M%)

380 GOTO120

— 31—

390:
400 PROCFETCH("J","K",8)
410 PROCPRELUDE(X%,Y%,0)
420 X%=X0%: Y%=Y0%: V%=V0%
430 PROCABCD
440 INPUT"MESSAGE (8HEX)", T$:M%=EVAL("&"+T$)
450 PROCMAIN2(M%)
460 INPUT"Press 1 for Coda and exit else RET for more message",1%
470 IF 1%=0 THEN 440
480 PROCMAIN2(S%)
490 PROCMAIN2(T%)
500 Z%=X%EORY%:PRINT"Z=",~Z2%
510 GOTO120
520:
530 PROCFETCH("J","K",8)
540 PROCPRELUDE(X%,Y%,0)
550 X%=X0%: Y%=Y0%: V%=V0%
560 PROCABCD
570 INPUT"MESSAGE (8HEX)", T$:M%=EVAL("&"+T$)
580 INPUT"Enter number of repeated message blocks",BLOCKS%
590 FOR NN%=1 TO BLOCKS%
600 PROCMAIN2(M%)
610 IF NN%MOD10=0 THEN INPUT"Press RET to continue":INPUTZ%
620 NEXT
630 PROCMAIN2(S%)
640 PROCMAIN2(T%)
650 Z%=X%EORY%:PRINT"Z=",~Z2%
660 GOTO120
670 :
680 END
690 :
(continued overleaf)

— 32—

690 :

700 DEF FNADDU(X%,Y%)

710 LOCALS%,T%

720 S%=(X%ANDG3F%)+(Y%ANDG3F%)

730 T%=X%EORY%

740 IF T%ANDG4% THEN CAR%=S%ANDG4%:S%=S%EORG4% ELSE CAR%=X%ANDG4%
750 IF CAR% THEN S%=S%EORG8%

760 IF T%ANDG8% THEN CAR%=S%ANDG8%:S%=S%EORG8% ELSE CAR%=X%ANDG8%
770 IF CAR% THEN CAR%=1

780 =S%

790:

800 DEF FNMUL16(X%,Y%)

810 LOCAL P1%,P2%

820 IF (X%ANDY%AND&8000)=0 THEN =X%*Y%
830 P1%=X%*(Y%AND&7FFF)

840 P2%=(X%AND&7FFF)*&8000

850 P1%=FNADDU(P1%,P2%)

860 =FNADDU(P1%,&40000000)

870 :

880 DEF PROCMUL32(X%,Y%)

890 LOCAL XU%,XL%,YU%,YL%,P1%,P2%,H8%,H10%,HF%,H7F%
900 H8%=&8000: H10%=&10000: HF%=&FFFF: H7F%=&7FFF0000
910 XU%=(X%ANDH7F%)DIVH10%

920 IF X%<0 THEN XU%=XU%+H8%

930 XL%=X%ANDHF%

940 YU%=(Y%ANDH7F%)DIVH10%

950 IF Y%<0 THEN YU%=YU%+H8%

960 YL%=Y%ANDHF%

970 L%=FNMUL16(XL%,YL%)

980 P1%=FNMUL16(XL%,YU%)

990 P2%=FNMUL16(XU%,YL%)

1000 P1%=FNADDU(P1%,P2%)

1010 U%=(P1%ANDH7F%)DIVH10%

1020 IF P1%<0 THEN U%=U%+H8%

1030 U%=U%+CAR%*H10%

1040 P1%=(P1%ANDHF%)*H8%

1050 P1%=FNADDU(P1%,P1%)

1060 L%=FNADDU(L%,P1%)

1070 U%=U%+CAR%

1080 P1%=FNMUL16(XU%,YU%)

1090 U%=FNADDU(U%,P1%)

1100 ENDPROC

1110:

1120 DEF FNMENU1

1130 LOCAL N%

1140 PRINT"Message Authenticator Menu"

1150 PRINT"1 Test small functions (Tables 1,2)"
1160 PRINT"2 Test Prelude (Table 3)"

1170 PRINT"3 Test Main (Table 4)"

1180 PRINT"4 Test Prelude+Main+Coda (Table 5)"
1190 PRINT"5 Test repeated message blocks (Table 6)"
1200 PRINT"6 Quit"

1210 INPUT"Select by number",N%

1220 IF (N%<1)OR(N%>6) THEN 1140

1230 =N%

1240

1250 DEF PROCFETCH(A$,B$,N%)

1260 LOCAL T$

1270 PRINTAS;" (";N%;"HEX)";:INPUTT$:X%=EVAL("&"+T$)

1280 PRINTBS;" (";N%;"HEX)";:INPUTT$:Y%=EVAL("&"+T$)

1290 ENDPROC

1300 :

1310 DEF FNMUL1(X%,Y%)

1320 LOCAL S%

1330 PROCMUL32(X%,Y%)

1340 S%=FNADDU(U%,L%)

1350 =FNADDU(S%,CAR%)

1360 :

1370 DEF FNMUL2(X%,Y%)

1380 LOCAL D%,F%,S%

1390 PROCMUL32(X%,Y%)

1400 D%=FNADDU(U%,U%)

1410 F%=FNADDU(D%,CAR%+CAR%)

1420 S%=FNADDU(F%,L%)

1430 =FNADDU(S%,CAR%+CAR%)

1440 :

1450 DEF FNMUL2A(X%,Y%)

1460 LOCAL D%,S%

1470 PROCMUL32(X%,Y %)

1480 D%=FNADDU(U%,U%)

1490 S%=FNADDU(D%,L%)

1500 =FNADDU(S%,CAR%+CAR%)

1510 :

1520 DEF FNCYC(X%)

1530 =FNADDU(X%,X%)+CAR%

1540 :

1550 DEF PROCBYT(X%,Y%)

1560 LOCAL 1%,P%

1570 FOR 1%=3 TO 0 STEP -1

1580 ABYT%(1%)=X%AND&FF:ABYT%(1%+4)=Y%AND&FF

1590 IF X%>=0 THEN X%=X%DIV&100 ELSE X%=(X%AND&7FFFFFFF)DIV&100+&800000

1600 IF Y%>=0 THEN Y%=Y%DIV&100 ELSE Y%=(Y%AND&7FFFFFFF)DIV&100+&800000

1610 NEXT

1620 P%=0

1630 FOR [%=0 TO 7

1640 P%=P%*2

1650 IF ABYT%(1%)=0 THEN P%=P%+1:ABYT%(1%)=P% ELSE
IF ABYT%(1%)=&FF THEN P%=P%+1:ABYT%(1%)=&FF -P%

1660 NEXT

1670 PAT%=P%

1680 X%=0:Y%=0

1690 FOR 1%=0 TO 3

1700 X%=X%*&80:X%=FNADDU(X%,X%)

1710 Y%=Y%*&80

1720 Y%=FNADDU(Y%,Y%)

1730 X%=X%+ABYT%(1%)

1740 Y%=Y%+ABYT%(1%+4)

1750 NEXT

1760 U%=X%:L%=Y%

1770 ENDPROC

— 34—

1780 :
1790 DEF PROCPRELUDE(X%,Y%, TEST%)

1800 LOCAL P%,Q%,J19%,J12%,J22%,J14%,J24%,J16%,J26%,J18%,J28%
1810 LOCAL K1%,K12%,K22%,K14%,K24%,K15%,K25%,K17%,K27%,K19%,K29%
1820 LOCAL HO0%,H49%,H5%, H6%,H7%,H8%, H9%
1830 PROCBYT(X%,Y%)

1840 J1%=U%: K1%=L%: P%=PAT%

1850 PRINT"P=";~P%

1860 IF TEST% THEN J1%=X%:K1%=Y%:INPUT"P",P%
1870 Q%=(1+P%)*(1+P%)

1880 J12%=FNMUL1(J1%,J1%)

1890 J22%=FNMUL2(J1%,J1%)

1900 J14%=FNMUL1(J12%,J12%)

1910 J24%=FNMUL2(J22%,J22%)

1920 J16%=FNMUL1(J12%,J14%)

1930 J26%=FNMUL2(J22%,J24%)

1940 J18%=FNMUL1(J12%,J16%)

1950 J28%=FNMUL2(J22%,J26%)

1960 H4%=J14%EORJ24%

1970 H6%=J16%EORJ26%

1980 H8%=J18%EORJ28%

1990 PRINT"H4=";~H4%

2000 PRINT"H6=";~H6%

2010 PRINT"H8=";~H8%

2020 K12%=FNMUL1(K1%,K1%)

2030 K22%=FNMUL2(K1%,K1%)

2040 K14%=FNMUL1(K12%,K12%)

2050 K24%=FNMUL2(K22%,K22%)

2060 K15%=FNMUL1(K1%,K14%)

2070 K25%=FNMUL2(K1%,K24%)

2080 K17%=FNMUL1(K12%,K15%)

2090 K27%=FNMUL2(K22%,K25%)

2100 K19%=FNMUL1(K12%,K17%)

2110 K29%=FNMUL2(K22%,K27%)

2120 H0%=K15%EORK25%

2130 H5%=FNMUL2(H0%,Q%)

2140 H7%=K17%EORK27%

2150 H9%=K19%EORK29%

2160 PRINT"HO=";~H0%

2170 PRINT"H5=";~H5%

2180 PRINT"H7="~H7%

2190 PRINT"H9=";~H9%

2200 PROCBY T(H4%,H5%)

2210 X0%=U%:Y0%=L%

2220 PRINT"X0=";~X0%;" YO=";~Y0%"PAT="~PAT%
2230 PROCBYT(H6%,H7%)

2240 VO%=U%: W%=L%

2250 PRINT"VO=";~V0%;" W="~W%"PAT=",~PAT%
2260 PROCBYT(H8%,H9%)

2270 S%=U%: T%=L%

2280 PRINT"S="~S%;" T=",~T%"PAT="~PAT%
2290 PRINT"END OF PRELUDE"

2300 ENDPROC

2310:

2320 DEF PROCINMAIN

2330 LOCAL T$

2340 INPUT"A (BHEX)", T$:A%=EVAL("&"+T$)
2350 INPUT"B (BHEX)", T$:B%=EVAL("&"+T$)
2360 INPUT"C (8HEX)", T$:C%=EVAL("&"+T$)
2370 INPUT"D (8HEX)", T$:D%=EVAL("&"+T$)
2380 INPUT"V (BHEX)", T$:V%=EVAL("&"+T$)
2390 INPUT"W (8HEX)", T$:W%=EVAL("&"+T$)
2400 INPUT"X (BHEX)", T$:X%=EVAL("&"+T$)
2410 INPUT"Y (BHEX)", T$:Y%=EVAL("&"+T$)
2420 INPUT"M (8HEX)", T$:M%=EVAL("&"+T$)
2430 ENDPROC

2440 :

2450 DEF PROCABCD

2460 A%=&02040801

2470 B%=&00804021

2480 C%=&BFEF7FDF

2490 D%=&7DFEFBFF

2500 ENDPROC

2510:

2520 DEF PROCMAIN1(M%)

2530 LOCAL E%,F%,G%,TO

2540 TO=TIME

2550 V%=FNCYC(V%):PRINT"V=";~V%

2560 E%=V%EORW%:PRINT"E=";~E%

2570 X%=X%EORM%:PRINT"X=";~X%;

2580 Y%=Y%EORM%:PRINT" Y=";~Y%

2590 F%=FNADDU(E%,Y%):PRINT"F=";~F%;
2600 G%=FNADDU(E%,X%):PRINT" G=";~G%
2610 F%=F%0RA%:PRINT"F=";~F%;

2620 G%=G%ORB%:PRINT" G=";,~G%

2630 F%=F%ANDC%:PRINT"F=";~F%);

2640 G%=G%ANDD%:PRINT" G=";~G%

2650 X%=FNMULZ1(X%,F%)

2660 Y%=FNMUL2A(Y%,G%)

2670 PRINT"Seconds inside Main=";(TIME -T0)/100
2680 PRINT"X=";~X%;" Y=";~Y%

2690 PRINT"X EOR Y=";~X%EORY%

2700 ENDPROC

2710:

2720 DEF PROCMAIN2(M%)

2730 LOCAL E%,F%,G%,TO

2740 TO=TIME

2750 V%=FNCYC(V%)

2760 E%=V%EORW%

2770 X%=X%EORM%

2780 Y%=Y%EORM%

2790 F%=FNADDU(E%,Y%)

2800 G%=FNADDU(E%,X%)

2810 F%=F%ORA%

2820 G%=G%ORB%

2830 F%=F%ANDC%

2840 G%=G%ANDD%

2850 X%=FNMUL1(X%,F%)

2860 Y%=FNMUL2A(Y%,G%)

2870 PRINT"Seconds inside Main=";(TIME -T0)/100
2880 PRINT"X=";~X%;" Y=";~Y%

2890 ENDPROC

— 36 —

24 References

[1] A Message Authenticator Algorithm Suitable for a Main
Frame Computer by D.W. Davies and D.O. Clayden. NPL
Report DITC 17/83, February 1983.

[2] 1SO 8731-2 Banking - Approved algorithms for message
authentication - Part 2: Message authenticator algorithm.

[3] BBCBASIC(86). An interpreter for BBC Basic which runs on
IBM compatibles under MS-DOS. M-TEC Computer Services
(UK), Ollands Road, Reepham, Norfolk NR10 4EL, UK.

