The Unheralded Value of the Multiway Rendezvous:
lllustration with the Production Cell Benchmark

Hubert Garavel Wendelin Serwe
INRIA Grenoble, France
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France

Hubert.Garavel@inria.fr Wendelin.SerweQinria.fr

The multiway rendezvous introduced in Theoretical CSP isveguful paradigm to achieve synchro-
nization and communication among a group of (possibly mbam two) processes. We illustrate
the advantages of this paradigm on the production cell beack, a model of a real metal process-
ing plant, for which we propose a compositional softwaretamler, which is written in LNT and
LOTOS, and makes intensive use of the multiway rendezvous.

1 Introduction

We investigate the design of software controllers for campystems. Concurrency is a natural way
to specify such controllers by decomposing their softwate separate processes, each dedicated to a
specific activity or a specific aspect of the system. For imsaan automatic pilot may include two
concurrent processes that control roll and pitch, resgelgti also, a controller for a robot operating in
a space witin degrees of freedom may contairprocesses, each supervising the robot motion within a
given degree of freedom.

Concurrency is a high-level specification paradigm thattmimplemented in diverse ways. On the
one hand, implementations can be done in hardware, in sa&twa in a combination of both. On the
other hand, implementations may either preserve the coarey present at the specification level by
translating it into parallel code, or remove concurrencyekyanding/flattening it into sequential code.

Whatever implementation techniques are chosen, the eliffgarocesses that constitute a controller,
even if they can be independent to a large degree, must alebreynize, communicate, and co-operate
to achieve common goals and enforce global constraintsyiamgpto the system. Among the various
paradigms proposed for synchronization and communicatioe multiway rendezvous designed for
Theoretical CSPI[1] [45] [64] presents major advantages, although these are not alveagsiyed or
put forward.

In this article, we illustrate the merits of the multiway dezvous on a benchmark that once enjoyed
a large visibility among the formal methods community: tmeduction cell case studysf]. For this
benchmark, we developed a software controller, which makessive use of the multiway rendezvous
and enjoys a nicely distributed architecture. This cotdrolas first designed in LOTOS], then in
LNT [17]. The full code of the LNT specification, which is easier tadeis given in AppendixC, but
most of the discussion applies to both LOTOS and LNT.

The remainder of this article is organized as follows. Sec# recalls the principles and benefits
of the multiway rendezvous. Secti@udescribes the production cell case study, an overview ofidibr
specifications already developed for this benchmark beivengn AppendixA. Section4 presents the
principles and the architecture of our LOTOS and LNT spediibms. Sectiorb details how controller

H. Hermanns, P. Hofner (Eds.): Models for
Formal Analysis of Real Systems (MARS 2017) © H. Garavel & W. Serwe
EPTCS 244, 2017, pp. 23040, doi:10.4204/EPTCS.244.10

http://dx.doi.org/10.4204/EPTCS.244.10

H. Garavel & W. Serwe 231

implementations can be generated automatically from theseifications and Sectighdiscussses vali-
dation issues. Finally, Sectiohgives a few concluding remarks.

2 The Multiway Rendezvous

From an historical point of view, the multiway rendezvousx@ a concept designed in one day, but
rather the result of a long evolution alternating majortshgind incremental improvements:

e From the origins to the mid-70s, interprocess communioatias mostly achieved using shared
variables, whereas synchronization between concurrestepses relied upon memory-based
mechanisms (semaphores, locks, critical sections, &agh approaches had several drawbacks:
lack of abstraction, existence of multiple incompatiblenaatics, difficulty to design correct pro-
grams, and difficulty for automated tools to analyze proegss which variables can be maodified
by other processes at any time.

e In 1978, C.A.R. Hoare introduced CS#], a language built around the conceptrendezvous
a newmessage-passingaradigm unifying synchronization and communication. 4 &dvantage
of this paradigm is that the few places where a variable camddified by a concurrent process
are explicitly documented. In CSP, a rendezvous can only pdéce between two processes (a
sender and a receiver) and the parallel architecture isl*baded”, as each process must explicitly
indicate, at each rendezvous point, the name of the comtyprecess it communicates with.

e In 1980, R. Milner proposed CC$(], a language that reuses the concept of binary rendezvous,
for which he defined a formal semantics. CCS solves the afemdoned issue with CSP by intro-
ducing the concept gdort that allows for reusable process components and paragextgrarallel
architectures. In CCS, processes no longer refer direaththier processes but only indirectly,
using ports, which are intermediate communication objgsconnect processes together.

e In 1984, S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe dedignefined version of CSP named
TCSP ([Theoretical CSP[11] [45], which combines ideas from CSP and CCS. A major innovation
brought by TCSP is thenultiway rendezvousvhich generalizes binary rendezvous to more than
two processes. A formal semantics (given in terms of trandsefusals) takes care of the presence
of multiple senders and/or receivers.

e At the same time, an ISO standardization committee headdel Byinksma had undertaken the
definition of LOTOS, a new formal language to describe comigation protocols. The committee
initially selected the binary rendezvous of CCS, until Aldcher presented the TCSP multiway
rendezvous, which was adopted and included in the stand€lrdJOTOS brought useful features,
such as multiple value parameters, strict type checkind,tla@ extension afelection predicates
(i.e., Boolean guards that forbid rendezvous if they evalt@afalse) to multiwvay rendezvous.

In our opinion, multiway rendezvous is one of the best fesgwf LOTOS, while none of the two
other standards, Estelléd] and SDL [L6] that competed with LOTOS at those times, provided a
similar expressiveness. It is therefore no surprise thatiway rendezvous has been preserved in
the next-generation languages based on LOTOS, namely EBISCAU] and LNT [17], as well as

in the FDR2 p6] implementation of TCSP.

e In 1999, H. Garavel and M. Sighireanu proposed “graphicafafel composition operator§{],
which taken arguments (whereas the traditional parallel compositiparators accept only two
arguments) and are thus better in line with the concept ofiway rendezvous. These operators
have been implemented in LNT and are used in Appefdaf the present article.

232 The Unheralded Value of the Multiway Rendezvous

Beyond these languages, the multiway rendezvous paradigmdt spread as largely as one would
wish. One reason for this is the influence of CCS, which pr@smain incompatible paradigm of binary-
only communication. Another reason is the high difficultyptoperly implement multiway rendezvous,
either in a sequential setting or in a distributed settiiog;thie latter point, which is even more difficult,
let us mention recent work that implements the LOTOS muliinendezvous among a collection of
distributed processes interconnected by POSIX sock&ls[P4] [23]. However, concepts similar or
close to the multiway rendezvous are indeed present inicexanputer languages or models:

e The mCRL2 process algebrad] also contains multiway synchronization. Compared to LGTO
and CSP, the main difference is that mMCRL2 actions are “awdply” (at least syntactically),
because mCRL2 does not feature the CSP notations for inpdtswputs: ?” is absent and
is implicit — see P9, Section 3.3] for details.

e Petri nets can naturally express multiway synchronizatietweenn > 2 processes by means of
transitions having input places and output places. The CAESAR compil&d, which translates
LOTOS terms to interpreted Petri nets, uses this Petrigatife to implement LOTOS multiway
rendezvous.

e Barriers are lower-level mechanisms to collectively synoize a set of processes or threads. The
multiway rendezvous can be seen as a powerful generalizafibarriers with: (i) data exchange
capabilities taking place when all the processes/threads teached the barrier, and (ii) the pos-
sibility for a process to choose between different barriers

e Synchronous languages also possess related conceptaistamcie, Estereb] [62] can synchro-
nizen > 2 actions and compose together the values carried by eables# fictions. To a certain
extent, the multiway rendezvous imports synchronous quedato an asynchronous setting: one
can indeed use the multiway rendezvous to force a set of c@rtiprocesses to synchronize, and
possibly exchange values at every tick of some logical clock

In spite of the implementation difficulties, the multiwaynoezvous remains a natural way to ex-
press synchronization among a set of distributed processewell as an irreplaceable mechanism to
describe certain situations that, even if less frequent thimary communication, are not uncommon.
Four examples of such situations are:

e Observers It is often useful to monitor data exchanges between twonsomcating processes.
For instance, one may wish to count the number of messagbamyed between these processes or
to build the list of such messages. This is not easy in langgitat rely on binary communication,
and even impossible in the case of CCS, where the synchtimmizzf an emission and a reception
is immediately turned into a(i.e., invisible or almost invisible) action. On the comjranultiway
rendezvous makes it easy to introduce a third “observertgs® that also synchronizes on the
communication action using a three-party rendezvous,outtperturbing the two other processes.

e Supervisors A step beyond observers is to introduce a third “superViponcess that not only
observes communications passively, but also activelyfares by allowing or blocking certain
communications, depending on the communication contertéoathe internal state of the super-
visor process. For instance, a supervisor process mayiserétions by forcing them to occur
in a specified order. This is easy to achieve using multiwagksgonization, as a rendezvous can
only take place when all participants (including the sujsemy agree.

An extended form of supervision is tlvenstraint-orientedspecification styleg8] [69], in which
each process imposes its specific constraints over excthiaage values or action order. Putting all

H. Garavel & W. Serwe 233

these processes in parallel using multiway rendezvous arsdo taking the logical conjunction
of all the constraints expressed by these processes. Thatexeof such a parallel composition
behaves like a constraint solver that searches for possitugions, if any.

e ConsensusThe multiway rendezvous betweamprocesses is a powerful abstraction that achieves,
in a single atomic operation, a distributed consensus poht@escribing the same protocol using
binary communications is likely to cause an exponentiaiblp, as all possible interleavings be-
tween the actions of theprocesses may occur. A salient example can be four@glir§ection 3],
where multiway rendezvous is used to model the arbitratiectranism of the SCSI-2 hardware
bus. In this example, an eight-party rendezvous expressesge atomic action: (i) a voting pro-
cedure in which each hardware device declares whether itsviaraccess the bus or not; (ii) the
selection, among all devices requesting access, of thealaith the lowest number; and (iii) the
notification to each device whether it was granted accesstor n

e Coordination In the present article, we illustrate yet another applicabf the multiway ren-
dezvous. Given a software controller for a system evolving space witm degrees of freedom,
each degree being managed by a separate concurrent pnod¢ksscontroller, we use the multi-
way rendezvous to express high-level coordination goalsd®n these processes, such as moving
from a starting poinA to a target poinB. Each process is responsible for moving along one axis;
depending on their respective speed, the various processgseach their target in a nondeter-
ministic order. Therefore, poirB is only reached when all processes have individually redche
their target, which is conveniently expressed by a multin@ydezvous between synchronizing
then processes. As a side remark, we only use the synchronizedioabilities of the multiway
rendezvous, as the problem requires no exchange of valuers avtailtiway rendezvous take place.

3 The Production Cell Case Study

The case study “Control Software for an Industrial ProduciCell” [53] [55] was proposed in the 90s
as a benchmark to assess the benefits of different formaloaetpplied to a common critical software
system. The task descriptiofd] required to use a formal method to develop a software cbetrior a
production cell, replicating a real metal processing plattarlsrune, Germany. The benchmark became
popular and, in 1995, a book devoted to the production cek study was publishe&).

3.1 Overview of the Production Cell

The production cell operates on metal plateshjankg, which are brought into the cell byfaed belt
transported to @ressvia anelevating rotary tableand a two-armedobot, before they leave the cell on
thedeposit belt Diverging from the concrete production cell and to obtaayelic behaviour, the blanks
are transported by eranefrom the deposit back to the feed belt.

The production cell is controlled by thirteaactuators A, ..., A1z (motors and magnets) and is
equipped with fourteesensors § ..., Si4 (switches, potentiometers, and photoelectric cells) tivele
status information to the controller.

3.2 The Graphical Simulator of the Production Cell

A graphical simulator{] [10], written in Tcl/Tk, enables prototype controllers to bdidated and pro-
vides a reference to compare the controllers obtained fraeoutable formal methods. Unfortunately,

234 The Unheralded Value of the Multiway Rendezvous

Messane:

ELEVATIMNG
ROTARY TABLE
—

o powered by

o CAIP

Figure 1: Screenshot of the graphical simulator

the Tcl/Tk source code of this simulator is no longer avddabday, as the FTP servétp.fzi.de
hosting the original version of the simulator does not seemespond any more. Luckily, a copy of
the simulator was archived at INRIA Grenoble, improved irewa points, and regularly adapted to the
latest versions of Tcl/Tk and operating systems (Linux, ®8¢cWindows, etc.). A screenshot of this
simulator is shown in Figurg.

The simulator has two functioning modeasynchronousr synchronous In principle, the asyn-
chronous mode, which isvent-driven should be more efficient, as the production cell contrallees
not poll periodically the sensors and, thus, avoids busiivgaloops (i.e., reading the value of sensors
when this is not necessary). Alas, ther_guard command, which allows actions to be triggered when
certain conditions (depending on sensor values) becoraednes not seem to function, and its usage is
discouraged by the authors of the simulatty, [Section A.5.9].

Therefore, the synchronous mode, which isysle-driven remains the only available option. This
mode is activated via the command-line optiaic and achieves bidirectional communication between
the simulator and its controller via a simple protocol basadcharacter-string commands and replies.
In this mode, the production cell controller is expectedadqrm an infinite loop of successiveaction
stepsi.e., periodically: (i) acquire the current values of &hsors by sendingget_status command to
the simulator; (ii) compute the appropriate reaction) §énd a sequence of commands to the actuators
(at most one command per actuator); and (iv) terminate theeiwureaction step by sendingraact
command that instructs the simulator to update its statexéguting all received actuator commands.

3.3 Prior Work on the Production Cell

The literature about the production cell case study is atndThe reference book§] describes the
application of 18 different formal methods to the produatizell case study. It then provides a brief

H. Garavel & W. Serwe 235

comparative survey of these experimeriig][[55]. Since then, further experiments with other formal
methods have been published separately. Some approasbexend the original task description, e.g.,
[71] which investigates fault-tolerance, aritb], which considers a production cell with two presses.

In total, nearly 28 different formal methods have been appto the production cell case study.
AppendixA of the present article gives two overview tables providiitgibgraphic references. Unfor-
tunately, most of the source specifications are no longdladle, so that it is difficult to discuss their
characteristics in detail and make a precise comparisaneeset them.

Because the production cell benchmark comes with a grdpsiicaulator, it clearly calls forex-
ecutableformal methods, i.e., those from which executable code @agdmerated automatically and
connected to the simulator. However, only five prior experits with executable formal methods can be
found in the literature, with three out of five experimentingedone with synchronous languages (see
Table4 in AppendixA).

The present article rather explores the asynchronous $ieeecutable formal methods. Although
several approaches have specified the production cellatlemntas a set of distributed processes com-
bined using rendezvou$J]| or alternative synchronization primitives, such as ifaee functions §] or
coordinated atomic actiongJ], there was no automatic code generation from these moélet§.as far
as we are aware, no prior approach uses multiway rendezvous.

4 The LOTOS and LNT Specifications of the Production Cell Contoller

An early LOTOS specification of a controller for the prodoaticell was developed in July 1994 by the
first author, and revised in August 1994 to produce a secorgiovetaking advantage of the multiway
rendezvous and enabled the automatic generation of clamtioiplementation in C. Although there
was a kind offer to submit this specification for publicationthe reference booksf], there were still
technical problems in connecting the controller to the biegd simulator, so that the LOTOS chapter for
the book was left unfinished, the LOTOS specification beinly orentioned in the comparative survey
that forms Chapter 3 of the book4]. The matter was put aside until 1997, where a fully function
version with an operational connection to the simulator agseved with the help of Mark Jorgensen and
integrated as a demonstration examptethe CADP toolbox. In 2013, the specification was translléte
LNT, mostly by the second author, who also simplified the L&pecification and improved its runtime
performance. Both specifications have been further enldan@017 when preparing the present article.
The latest version of the LNT specification is provided in Apgix C.

4.1 Architectural Decomposition of the Controller

We first present the principles underlying the productidhamtroller in LOTOS and LNT. Rather than
having a monolithic controller (which, because of its coexgly, could not easily evolve if the production
cell was modified or reorganized), itis desirable to dedigncontroller in a modular way, by assembling
simpler components together.

The most natural way to decompose the controller is to folloetopology of the production cell,
whose different devices (feed belt, rotary table, robopadét belt, crane) form a logical ring in which
each device has to watch for its neighbours, with the additidact that the robot and the press must
communicate with each other. The overall architecture efctbntroller is illustrated in Figurg.

lftp://ftp.inrialpes.fr/pub/vasy/demos/demo_19

ftp://ftp.inrialpes.fr/pub/vasy/demos/demo_19

236 The Unheralded Value of the Multiway Rendezvous
process role
P1 move the lower part of the press vertically
P2 extend or retract the first robot arm
P3 extend or retract the second robot arm

P4 pick up or drop a metal plate with the first robot arm
P5 pick up or drop a metal plate with the second robot arm
P6 rotate the robot

P7 rotate the rotary table

P8 move the rotary table vertically

P9 move gripper of the travelling crane horizontally
P10 move gripper of the travelling crane vertically
P11 pick up or drop a metal plate with crane’s gripper
P12 start or stop the motor of the feed belt

P13 start or stop the motor of the deposit belt

Table 1: Processes of the production cell controller

gates actuator
PRESS_UPWARD, PRESS_STOP, PRESS_DOWNWARD
ARM1_FORWARD, ARM1_STOP, ARM1_BACKWARD
ARM2_FORWARD, ARM2_STOP, ARM2_BACKWARD
ARM1_MAG_ON, ARM1_MAG_QOFF

1
2
3
4
5 ARM2_MAG_ON, ARM2_MAG_QOFF
6
7
8
9

press
extension of arm 1
extension of arm 2
magnet of arm 1
magnet of arm 2

robot rotation

table rotation

table elevation

move crane horizontally
move crane vertically

ROBOT_LEFT, ROBOT_STOP, ROBOT_RIGHT

TABLE_LEFT, TABLE_STOP_H, TABLE_RIGHT

TABLE_UPWARD, TABLE_STOP_V, TABLE_DOWNWARD

CRANE_TO_BELT2, CRANE_STOP_H, CRANE_TO_BELT1
10 CRANE_LIFT, CRANE_STOP_V, CRANE_LOWER

11 CRANE_MAG_ON, CRANE_MAG_OFF
12 BELT1_START, BELT1_STOP, BLANK_ADD
13 BELT2_START, BELT2_STOP

crane’s magnet
feed belt
deposit belt

Table 2: Gates grouped according to the controlled actuator

More precisely, we choose to manage each separately dabteotevice (or degree of freedom of
a device) of the production cell by a dedicated process. ©he&aller can thus be decomposed into 13
concurrent processed, ..., P13, each process; being in charge of the corresponding actuaip(see
Table1l — the indices of actuators are those givenif][and [10]).

Parallel composition is the natural way to express that tbegsseg; are largely independent from
each other. Our controller is thus designed as a set of LOTMAS.BT processes that execute simulta-
neously and synchronize by rendezvous to coordinate thosements involving several devices.

To each of the 34 protocol commands sent to actuators (&€ks_upward, press_stop, etc.), we
associate a corresponding LOTOS or LNT gate (narredS_UPWARD, PRESS_STOP, etc.) and we divide
these gates into 13 groups numbered from 1 to 13, such thap goontains the gates related to actuator
A [58, Section 2.2.1]. The gateL.ANK_ADD (corresponding to the commamdank_add) is added to
group 12 (feed belt) because new metal blanks are insertedhia production cell via the feed belt.
Each process; is responsible for accessing the gates of groapd no other process.; can access
these gates. Tablelists the gates in each group.

H. Garavel & W. Serwe 237

ARMR_NAG_ON
ARMR_NAG_OFF
ARML_BACKWARD
ARML_FORWARD
ARML_STCP

Deposit Belt

s
_ N

BELT2_START
BELT2_STOP

p3 L—x ARM2_ BACKWARD
P S— ARM2_FORWARD

CRANE_NMAG_ON =
-
CRANE_NAG _OFF magnet] arm2
——\— ARM2_STCP

CRANE_LOVER

i s ROBOT_LEFT
CRANE_LI FT _ o / ALPe: o P6 ROBOT_RI GHT
CRANE_STOP_V ’ JEitea PA2 T (ro | ROBOTSTOP
' UP_M70
DC_READY UP_15
! DOMN_15
"""" R DOWN_M70

CRANE TO BELTI N___ ————(
CRANE_TO BELT?2 =l P9 al
CRANE_STOP_H s lorzontd

Il
“ PRESS_UPWARD
1) PRESS DOVAVARD
L~ PRESS_STCP

FT READY ;
\\ . e,
BELT1_STOP v TAL
BELT1_START _ P12 \ T ARML_NMAG_ON
BLANK_ADD \ . . N magnett)= ARML_MAG_OFF
\ So
\

\ =<
TA;@ELE’UPV\ASB 5 N __) P7 \ TABLE_LEFT GL -
DONNAY =
TABLE STOP V oyommrimmmrdid elevation) Table rotation TABLE RI GHT

- o TABLE_STOP_H
@
GLO o~ — A GET_STATUS <5
€] G7
G13 DI SPATCHER @

Figure 2: Architecture of the controller

Notice that the actuators commands could have been mod#ffedently by defining, rather than
35 gates without offer, only 13 gates (one per actuator) wittput offers, i.e., values of enumerated

types specifying the kind of movement expected (&RWARD, STOP, DOWNWARD, etc.). This solution was
discarded because the previous one was simpler.

The processes also have to synchronize together, and their interactiomdiatated by the topology
of the production cell. To achieve such synchronizatiohs,tOTOS and LNT specifications introduce
14 dedicated gates (nam@u_READY, FT, TA1_READY, TA1, A1P, PA2, etc.) that remain internal to the
controller. For instance, gara2 expresses the (instantaneous) transfer of a blank fromréss po the
second arm of the robot. Other interactions are not insta@otas, so that processes need to synchronize
at the beginning and at the end of the transfer; in such cagedglifferent gates are used. For instance,
to transfer a blank from the feed belt to the table, the motdhe feed belt must be stopped when the
blank arrives at its end (to avoid dropping the blank) uhi table is correctly positioned (rendezvous on

gateFT_READY) to receive the blank; then, the table must not move untiféleel belt has been restarted
(rendezvous on gater).

In a few cases, rendezvous on these gates involve two pescesty (e.g.P9 andp10 synchronize
on gateDC_READY) but, usually, multiway rendezvous between three, foufjvar processes is needed.
For instance, a three-party rendezvous on gatakes place when there is a blank at the end of the feed
belt and the motor of the feed belt has been stameg)(and when the table is in a positiopr(andps)

238 The Unheralded Value of the Multiway Rendezvous

where it can receive a blank from the feed belt. A four-paetydezvous on gate2 takes place when
a blank is transferred from the press to the second arm obtha and involves the process controlling
the pressK1) and three processes controlling the robot for rotatis), (extension of second army),
and magnet of second arms|. A five-party rendezvous on gate1_READY takes place when the table
is ready to deliver a blank element to the first arm of the ralmat involves the two processes controlling
the table $7 andps), the two processes controlling the first arm of the robotandpr4), and the process
controlling the rotation of the robop¢).

To interface this fully asynchronous controller with thensiator in synchronous mode, an addi-
tional DISPATCHER process was added, which acquires sensor values using emmadkt visible gate
GATE_STATUS (corresponding to thget_status protocol commandl[0]). Contrary to the commands for
actuators, which can be emitted independently in any otideisensor values must be acquired altogether
(this is required by the protocol); thus, the dispatchercess is in charge of acquiring these values, as
there is no logical criterion to select a particular proagder this task.

Then, the dispatcher process sends sensor values to eaasgroexcepted the processes, Ps,
andp11 that control the magnets) using a dedicated gatdhere are no gatest, G5, or G11, because
the magnets have no related sensors and the moments at wémgetets should be switched on or off can
be determined by multiway rendezvous. For instance, thenetagf the second arm of the robot should
be switched on when an item is delivered from the press to gnenglezvous on gar2) and switched
off when an item is delivered from arm 2 to the deposit belhdezvous on gat&op).

4.2 Sensor Values and Data Abstractions

To remain as close as possible to the notations givebdpeind [10], we keep the same names ...,S14
for the 14 sensors. The reference books is ambiguous wipleceto the meaning and role of sensoss
and14; we resolve this ambiguity by applying the corrigendum désd in AppendixB.

To manipulate sensor values, the controller requires ocagychtypesB00L, REAL, andSTRING. The
LNT language provides them as predefined types; this is a athaantage with respect to LOTOS, in
which floating-point numbers and character strings areimgsand must be defined explicitly (e.g., by
integration of external C code, as it is done in CADP). Théhaxd of the simulator mentioned that
a precision of 102 is enough when comparing real numbers; this is implememtetd approximate
equality function “” defined over real numbers (cf Appendix1).

For the internal behaviour of the controller itself, it iswenient to replace these concrete data types
by more abstract types having only a few possible values pgfeidixC.1). For instance, the Boolean
values of the three sensas, S2, ands3 describing the position of the press are mutually exclysive
because the press cannot be in top, middle, and/or bottoitignoat the same time; therefore, the
position of the press can be better described by a four-dadnemerated typeRESS_POSITION.

Similarly, real numbers can be abstracted away by retaioitg their “significant” values, i.e., the
bounds of the segments in which the controller behaves umijo For instance, to control the elevation
of the table, it is sufficient to know whether it is at the lowkevel, the highest level, or somewhere in
between: we thus abstract the real value of sesispinto a three-valued enumerated typeLE_ANGLE.

4.3 The Dispatcher Process

The dispatcher (see Appendix.4) is a cyclical process. In each reaction step, it acquireg@ua
rendezvous on the gat&T_sTATUS) the concrete values of the 14 sensors and a (possibly erligity)
of errors, converts these concrete values into abstract (@ee Sectiod.2), and dispatches the abstract

H. Garavel & W. Serwe 239

values to the processes(using a two-party rendezvous on each gateFor the sake of modularity, the
dispatcher only sends to eaehthe values that are of interest to this process; for instgoeEes®13,
which controls the motor of the deposit belt, does not rextie current angle of the rotary table.

The behaviour of the dispatcher is not necessarily unigsi¢he abstract values can be sent to the
processes; in arbitrary order. Appendix.4 provides two different versions of the dispatcher, one that
sends the abstract values in deterministic sequential ¢bgeincreasing values a@j, and another one
that sends the abstract values in parallel to all processes

4.4 The Individual Processes

Each process; (see AppendixXC.5) is specified as a parallel composition of two behaviours -wedwer,
the three magnet-related procesBesps, andP11 contain one single behaviour, whereas procass
includes a third behaviour that, initially, introduces flve metal blanks into the production cell.

The first behaviour describes the overall cyclic functigniri a given actuator. Directly derived from
the informal specification of the production cellf], this behaviour is thus an action loop, possibly
preceded by an initial sequence of actions. For instancegpep2, which controls the cyclic extension
and retraction of the first arm of the robot, starts with atiahisequence that brings the robot arm,
initially completely retracted, to its minimal value recgd to start the cycle.

The second behaviour, which is required for interfacing degnchronous controller and the syn-
chronous simulator, performs a loop that scrutates ther@adts sensor values until it is time to issue an
actuator command and move to the next state. Both behavéguhronize on the gate corresponding
to this actuator command.

5 Code Generation from the LOTOS and LNT Specifications

Following a “model-driven” approach, most of the code of tdoatroller implementation is generated
automatically from the LOTOS or LNT specification. This isndousing the compilers and the EX-
EC/CASAR software frameworB}] provided in the CADP toolbox32]. The LOTOS specification is
translated to sequential C code (about 7340 lines of C, dimfublank lines and comments) using the
C/ASAR and CASARADT compilers of the CADP toolbox. The LNTcHeation is first translated to
LOTOS and C code using the LNT2LOTOS compiler, then the gaadrLOTOS code is translated to C
using CAESAR and CAESARADT (about 8150 lines of C in total).

The generated C code is generic, so that it cannot directigext to the Tcl/Tk simulator. According
to the principles of EXEC/CASAR, two auxiliary C modules aeeded to interface both worlds.

The first module (750 lines) provides, for each externalgible LOTOS or LNT gate, a correspond-
ing C function. The skeleton of this module can be automiyicgenerated by CAESAR, so that only
the bodies of these gate functions have to be filled in mayuliis is straightforward for the functions
corresponding to actuator gates (eRRESS_UPWARD, etc.), as it is sufficient to emit the corresponding
simulator command to the standard output. The function &e@ET_STATUS is a bit more complex, as
it parses the standard input and converts character stong®TOS or LNT values; the most involved
parsing task concerns the string containing a list of erressages.

The second module (90 lines) contains the main functionchvbixplores a (possibly infinite) ex-
ecution path, following the transitions that are both fiteah the LOTOS or LNT specification and
accepted by the Tcl/Tk simulator; if several transitions possible in a current state, one of them is
selected. The CADP toolbox provides a standard versionisfsgcond module, which in most cases

240 The Unheralded Value of the Multiway Rendezvous

can be used as is. However, in the production cell exampleastnecessary to slightly adapt the code
in two ways: (i) to send aeact command to the simulator at the end of each reaction step,afidr

all actuator commands have been emitted, and (ii) to enkatdheget_status command occurs, and
only occurs after aeact command. These two constraints express tatt andget_status have
somewhat a lower priority than the commands sent to the trjdbecause LOTOS and LNT do not
provide priority between transitions, these constraimtgehbeen implemented in the main C program,
where the choice between available transitions is actuediglved.

6 Validation of the LOTOS and LNT Specifications

In this section, we discuss the level of confidence that capldmed in the LOTOS and LNT specifica-
tions of the production cell controller.

First, these specifications passed the stringent conipike-thecks performed by the LOTOS and
LNT compilers. Second, the C code generated from thesefimdicins has been connected to the
graphical simulator and intensively exercised, as the lsitaucontinuously provides plausible inputs to
the controller (i.e., sensor values respecting the phlysmastraints of the production cell) and checks
the outputs of the controller (i.e., the commands sent tatheators). Because the simulator signals any
error (such as collisions or blanks being dropped) and iniaelgt stops, such a co-simulation is akin
to run-time verification. We let the controller and the siatal run for five days without observing any
problem, which increased our confidence in the correctniebedormal specifications.

Also, the way our specifications are constructed ensurdéscértin requirements are satisfibg
construction For instance, the safety requirements stateé&n $ection 2.3.1] can be verified by direct
inspection of the source specifications: (i) the cyclic psse®; controlling the actuators clearly keep
each movement inside its permitted range, thus avoidingadasmcaused by out-of-range movements;
(ii) synchronizing these processgsby multiway rendezvous ensures a coordination of the mowsne
avoiding collisions; for instance, the robot stops its tiota until the press and the arms are in a position
that a further rotation of the robot is safe; (iii) similamgronizations also ensure that blanks are not
dropped outside safe areas; (iv) each motor is stoppeddifizrasked to reverse its direction; (iv) in
each reaction step, at most one command in each actuatqr igrssued; (v) in each reaction step, there
is exactly one commangkact and one commanget_status issued, etc.

However, beyond safety propertie§3[Section 2.3] mentions other requirements, such as ligenes
properties and efficiency, the latter dealing with quatitigatime. For such properties, a formal verifi-
cation would be desirable using, e.g., model checking oivatgnce checking, using explicit-state or
symbolic state-space exploration, possibly enhanced paithal-order or compositional reduction tech-
niques B1]. We have not done this, so we do not know at the moment whighoaigch would be the
most suitable for such a challenging task. In the remaintiéhi® section, we simply summarize a few
findings from our preliminary attempts.

A difficulty resides in the processsSPATCHER added for interfacing the asynchronous controller with
the synchronous simulator. Indeed, each rendezvowgnrsTATUS offers all possible values for its fif-
teen offers (nine Booleans, five reals, and a charactegjtitven if Boolean combinations are reduced
to the admissible ones, even if reals are abstracted to anerated type with the twelve essential values
used by the sensors (plus another generic value repregeiitireals different from these twelve ones),
and even if the character string is assumed to be constaniganced, the branching factor for each
GET_STATUS rendezvous would be more than 30,000,000. This suggestssttaat away the controller
by removing thepISPATCHER process and theET_STATUS gate. In such an entirely asynchronous model,

H. Garavel & W. Serwe 241

each process; would receive sensor values directly on its gateso that a smaller set of real values
(three or four only, see Sectigh2) could be associated to each gateEven then, the branching factor
if all gatesg; are offered simultaneously would be around 20,000.

To make state-space exploration tractable, it seems wtehlei to take into account finer constraints
on the sensor values: for instance, the real value of sess¢extension of arm 1) does not evolve
randomly, but depends on the commands sent to the corrasgoactuator (stable, increasing, or de-
creasing). This would require an accurate modelling of thatroller environment, taking inspiration
from the graphical simulator code and replicating, in therfal specification, parts of the simulator
functionality for generating plausible sensor values.

7 Conclusion

Although the production cell benchmark is now more than tyrgear old, it is still a stimulating ex-
ample for research in formal methods. This benchmark hasakeadvantages: it is properly described,
its requirements are stable and precise and, sadly enouggt afthe formal specifications produced for
this benchmark in the 90s are no longer available today, wWe@aves room for the new generation.

On this case study, we have illustrated the merits of theiwat rendezvous. In an asynchronous
concurrency setting, high-level tasks (such as moving thredd a robot from one point to another in a
space with several degrees of freedom) can be simply dec®dgdato a set of processes that execute
simultaneously, most of the time independently, only syocizing themselves when some goals of
common interest have to be reached. As there can be moreitb@uth processes, multiway rendezvous
is the paradigm of choice to specify an atomic synchroropabiarrier governing all processes. Multiwvay
rendezvous also supports data communication betweenghesesses, a possibility that was not needed
for the production cell, but can be useful to specify, e.gpaldcast or distributed consensus.

Along these lines, we have shown that multiway rendezvoiasvala formal, concise, elegant, and
modular description of a software controller for the pradccell. Each of the thirteen concurrent pro-
cesses is responsible for a single operation and can bdisgestiraightforwardly as a cyclic sequence
of actions, multiway rendezvous ensuring proper coordnabetween (subgroups of) these processes.
The controller is compositional, in the sense that it candslyeadapted if the architecture of the produc-
tion cell evolves locally, e.g., by adding new devices oroeimg existing ones — this is thigexibility
requirement mentioned i, Section 2.3.3].

The software controller was successively specified in LO®&h in LNT. The complete LNT speci-
fication, which is more readable than the LOTOS one, is peavid AppendixC. For both specifications,
the CADP toolbox generated an implementation in C that wasected, using the EXEC/CASAR in-
terface, to the Tcl/Tk simulator and used to drive the prdéidaccell.

Although the LOTOS and LNT specifications pass the compitetchecks of the CADP compiler
and the run-time checks of the Tcl/Tk simulator, they havebeen yet formally verified using, e.g.,
model checking or equivalence checking. Their verificatibns remains a challenging problem for
future work.

Acknowledgements

We are grateful to Artur Brauer, Thomas Lindner, and Clausdrentz for valuable discussions and
information about the case study and the graphical simulatal to Mark Jorgensen, who contributed to
the third version (1997) of the LOTOS specification.

242 The Unheralded Value of the Multiway Rendezvous

References

[1] Tochéou Pascalin Amagbégnon, Paul Le Guernic, Héfachand &Eric Rutten (1995):SIGNAL In
Lewerentz & Lindner $6], pp. 113-129, doi:0.1007/3-540-58867-1_51.

[2] Tochéou Pascalin Amagbégnon, Paul Le Guernic, Hataéchand &Eric Rutten (1995)The Signal Data
Flow Methodology Applied to a Production CelResearch Report 2522, INRIA. Availabletattp: //hal.
archives-ouvertes.fr/docs/00/07/41/55/PDF/RR-2522.pdf.

[3] Rusdi Md. Aminuddin, He Jifeng & Rosni Abdullah (2008pecifying Concurrent Controller of Production
Cell Using the Notation of Shared State and Events of Dunafialculus Malaysian Journal of Computer

Sciencel4(2). Available athttp://e-journal.um.edu.my/filebank/published_article/1791/
105 . pdf.

[4] Stéphane Barbey, Didier Buchs & Cécile Péraire ()988Case Study for Testing Object-Oriented Software:
A Production Cell Available athttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
46.460&rep=repl&type=pdf.

[5] Gérard Berry & Georges Gonthier (1992)The Esterel Synchronous Programming Language: De-
sign, Semantics, ImplementatiorScience of Computer Programmii8(2), pp. 87-152, dain.1016/
0167-6423(92)90005-V.

[6] Dirk Beyer (2002): Formale Verifikation von Realzeit-Systemen mittels Cetffimed Automata Ph.D.
thesis, Brandenburgische Technische Universitat CettbuAvailable athttps://opus4.kobv.de/
opus4-btu/frontdoor/index/index/docId/46.

[7] Dirk Beyer & Heinrich Rust (1998)Modeling a Production Cell as a Distributed Real-Time Systeith
Cottbus Timed Automataln Hartmut Kdnig & Peter Langendorfer, editorBormale Beschreibungstech-
niken fir verteilte Systeme, 8. GI/ITG-Fachgesprachttlites, 4. und 5. Juni 1998/erlag Shaker, pp.
148-159. Available aittp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.2100&
rep=repl&type=pdf.

[8] Egon Borger & Luca Mearelli (1997)ntegrating ASMs into the Software Development Life CydldJCS
3(5), pp. 603-665, daip .3217/jucs-003-05-0603.

[9] Artur Brauer, Claus Lewerentz & Thomas Lindner (1993lnplementing a Visualization of an Indus-
trial Production Cell Using Tcl/Tk In: Proceedings of the first Tcl/Tk Workshop (Berkeley, Catifiay
USA). Available athttps://www.researchgate.net/publication/228591433_Implementing a_
Visualization_of_an_Industrial_Production_Cell_Using_TclTk.

[10] Artur Brauer & Thomas Lindner (19958imulation In Lewerentz & Lindner $6], pp. 383—-394, doi:0.
1007/3-540-58867-1_66.

[11] S. D. Brookes, C. A. R. Hoare & A. W. Roscoe (1984) Theory of Communicating Sequential Processes
Journal of the ACMB1(3), pp. 560-599, ddi0 .1145/828.833.

[12] Reinhard Budde (1995):ESTEREL In Lewerentz & Lindner $6], pp. 75-100, doi:0.1007/
3-540-58867-1_49.

[13] Jochen Burghardt (1995Peductive Synthesidn Lewerentz & Lindner $6], pp. 295-309, doi:0.1007/
3-540-58867-1_61. Available athttp://arxiv.org/abs/1404.1198.

[14] Jochen Burghardt (1996formale Entwicklung einer Steuerurig feine Fertigungszelle mit SYSYFROS-
beitspapiere der GMD 996, GMD Berlin. Availablelattp: //arxiv.org/abs/1404.1227.

[15] Rachel Cardell-Oliver (1995HTTDs and HOL In Lewerentz & Lindner$6], pp. 261-276, doi:0.1007/
3-540-58867-1.

[16] CCITT (1988):Specification and Description Languaggecommendation Z.100, International Consultative
Committee for Telephony and Telegraphy, Geneva.

[17] David Champelovier, Xavier Clerc, Hubert Garavel, ¥véuerte, Christine McKinty, Vincent
Powazny, Frédéric Lang, Wendelin Serwe & Gideon Smedifgl§): Reference Manual of the

http://dx.doi.org/10.1007/3-540-58867-1_51
http://hal.archives-ouvertes.fr/docs/00/07/41/55/PDF/RR-2522.pdf
http://hal.archives-ouvertes.fr/docs/00/07/41/55/PDF/RR-2522.pdf
http://e-journal.um.edu.my/filebank/published_article/1791/105.pdf
http://e-journal.um.edu.my/filebank/published_article/1791/105.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.460&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.460&rep=rep1&type=pdf
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1016/0167-6423(92)90005-V
https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/46
https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/46
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.2100&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.2100&rep=rep1&type=pdf
http://dx.doi.org/10.3217/jucs-003-05-0603
https://www.researchgate.net/publication/228591433_Implementing_a_Visualization_of_an_Industrial_Production_Cell_Using_TclTk
https://www.researchgate.net/publication/228591433_Implementing_a_Visualization_of_an_Industrial_Production_Cell_Using_TclTk
http://dx.doi.org/10.1007/3-540-58867-1_66
http://dx.doi.org/10.1007/3-540-58867-1_66
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1007/3-540-58867-1_49
http://dx.doi.org/10.1007/3-540-58867-1_49
http://dx.doi.org/10.1007/3-540-58867-1_61
http://dx.doi.org/10.1007/3-540-58867-1_61
http://arxiv.org/abs/1404.1198
http://arxiv.org/abs/1404.1227
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1

H. Garavel & W. Serwe 243

LNT to LOTOS Translator (Version 6.4) Available at http://cadp.inria.fr/publications/
Champelovier-Clerc-Garavel-et-al-10.html. INRIA/VASY and INRIA/CONVECS, 130 pages.

[18] Jorge Cuéllar & Martin Huber (1995)TLT. In Lewerentz & Lindner $6], pp. 151-169, doi:0.1007/
3-540-58867-1.

[19] Werner Damm, Hardi Hungar, Peter Kelb & Rainer Schit®95): Statecharts In Lewerentz & Lindner
[56], pp. 131-149, doi:0.1007/3-540-58867-1.

[20] Dimitris Dranidis & Stefan Gastinger (19958PECTRUM In Lewerentz & Lindner §6], pp. 199-228,
doi:10.1007/3-540-58867-1.

[21] Francois Erasmy & Emil Sekerinski (1998tepwise Refinement of Control Software — A Case Study Using
RAISE In Maurice Naftalin, B. Tim Denvir & Miquel Bertran, editsr Proceedings of the 2nd Second
Symposium of Formal Methods Europe (FME'94), Barcelonaigd ecture Notes in Computer Science
873, Springer Verlag, pp. 547-566, dai: 1007/3-540-58555-9_115.

[22] Francois Erasmy & Emil Sekerinski (19959RAISE In Lewerentz & Lindner §6], pp. 277-293, doi:0.
1007/3-540-58867-1.

[23] Hugues Evrard (2016)DLC: Compiling a Concurrent System Formal Specification tDBistributed Im-
plementation In Marsha Chechik & Jean-Francois Raskin, editd?soceedings of the 22nd International
Conference on Tools and Algorithms for the Construction Andlysis of Systems (TACAS), Eindhoven,
The Netherlandd_ecture Notes in Computer Scien8636, Springer Verlag, pp. 553-559, dai: 1007/
978-3-662-49674-9_34. Available athttp://cadp.inria.fr/publications/Evrard-16.html.

[24] Hugues Evrard & Frédéric Lang (2013jormal Verification of Distributed Branching Multiway Syo-
nization Protocols In Dirk Beyer & Michele Boreale, editorsProceedings of the IFIP Joint International
Conference on Formal Techniques for Distributed Syster@FE/FMOODS’13), Florence, Itajy.ecture
Notes in Computer Sciend892, Springer Verlag, pp. 146—160, dai: 1007/978-3-642-38592-6_11.
Available athttp://cadp.inria.fr/publications/Evrard-Lang-13.html.

[25] Hugues Evrard & Frédéric Lang (2015kutomatic Distributed Code Generation from Formal Modédis o
Asynchronous Concurrent Processda Marco Aldinucci, Masoud Daneshtalab, Ville Leppanerdéhan
Lilius, editors: Proceedings of the 23rd Euromicro International Confegemiw Parallel, Distributed and
Network-based Processing — Special Session on Formal Appes to Parallel and Distributed Systems
(PDP/4PAD’15), Turku, FinlandEEE Computer Society Press, pp. 459-466. Availablecab: //cadp.
inria.fr/publications/Evrard-Lang-15.html.

[26] Formal Systems (Europe) Ltd & Oxford University ComimgtLaboratory (2010)Failures-Divergence Re-
finement — FDR2 User Manuadth edition.

[27] Martin Franzle (1996):Synthesizing controllers from Duration Calculugn Bengt Jonsson & Joachim
Parrow, editors: Proceedings of the fourth International Symposium Fornmeghhiques in Real-Time
and Fault-Tolerant Systems (FTRTFT), Uppsala, Swe&gpringer Verlag, pp. 168-187, doi:. 1007/
3-540-61648-9_40.

[28] Max Fuchs & Jan Philipps (1995)Focus In Lewerentz & Lindner $6], pp. 185-197, doi:0.1007/
3-540-58867-1.

[29] Hubert Garavel (2015)Revisiting Sequential Composition in Process Calcubiurnal of Logical and Al-
gebraic Methods in Programmi®d(6), pp. 742—762, ddio.1016/j.jlamp.2015.08.001. Available at
http://cadp.inria.fr/publications/Garavel-15-b.html.

[30] Hubert Garavel & Holger Hermanns (2002)n Combining Functional Verification and Performance Eval-
uation using CADP In Lars-Henrik Eriksson & Peter A. Lindsay, editor®roceedings of the 11th In-
ternational Symposium of Formal Methods Europe FME’'2008q€hhagen, Denmark)ecture Notes in
Computer Scienc2391, Springer Verlag, pp. 410-429, dai: 1007/3-540-45614-7_23.

[31] Hubert Garavel, Frédéric Lang & Radu Mateescu (20C®mpositional Verification of Asynchronous Con-
current Systems Using CADRActa Informaticab2(4), pp. 337-392, ddi0.1007/s00236-015-0226-1.
Available athttp://cadp.inria.fr/publications/Garavel-Lang-Mateescu-15.html.

http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58555-9_115
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/978-3-662-49674-9_34
http://dx.doi.org/10.1007/978-3-662-49674-9_34
http://cadp.inria.fr/publications/Evrard-16.html
http://dx.doi.org/10.1007/978-3-642-38592-6_11
http://cadp.inria.fr/publications/Evrard-Lang-13.html
http://cadp.inria.fr/publications/Evrard-Lang-15.html
http://cadp.inria.fr/publications/Evrard-Lang-15.html
http://dx.doi.org/10.1007/3-540-61648-9_40
http://dx.doi.org/10.1007/3-540-61648-9_40
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1016/j.jlamp.2015.08.001
http://cadp.inria.fr/publications/Garavel-15-b.html
http://dx.doi.org/10.1007/3-540-45614-7_23
http://dx.doi.org/10.1007/s00236-015-0226-1
http://cadp.inria.fr/publications/Garavel-Lang-Mateescu-15.html

244

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]
[46]

The Unheralded Value of the Multiway Rendezvous

Hubert Garavel, Frédéric Lang, Radu Mateescu & Wéndgerwe (2013):CADP 2011: A Toolbox for
the Construction and Analysis of Distributed ProcesSginger International Journal on Software Tools for
Technology Transfer (STTT5(2), pp. 89—107, dain . 1007/s10009-012-0244~z. Available athttp://
cadp.inria.fr/publications/Garavel-Lang-Mateescu-Serwe-13.html

Hubert Garavel & Joseph Sifakis (199@ompilation and Verification of LOTOS Specificatiohs L. Lo-
grippo, R. L. Probert & H. Ural, editors?roceedings of the 10th IFIP International Symposium omndea
Specification, Testing and Verification (PSTV’90), OttawanadaNorth-Holland, pp. 379-394. Available
athttp://cadp.inria.fr/publications/Garavel-Sifakis-90.html

Hubert Garavel & Mihaela Sighireanu (1999) Graphical Parallel Composition Operator for Process Alge
bras In Jianping Wu, Qiang Gao & Samuel T. Chanson, editBrsiceedings of the IFIP Joint International
Conference on Formal Description Techniques for Distebdugystems and Communication Protocols, and
Protocol Specification, Testing, and Verification (FORTEIR'99), Beijing, ChinaKluwer Academic Pub-
lishers, pp. 185-202. Available attp://cadp.inria.fr/publications/Garavel-Sighireanu-99.
html.

Hubert Garavel, César Viho & Massimo Zendri (200Bystem Design of a CC-NUMA Multiprocessor
Architecture using Formal Specification, Model-Checkiag;Simulation, and Test GeneratioSpringer In-
ternational Journal on Software Tools for Technology Tr@angéSTTT) 3(3), pp. 314-331, dain. 1007/
5100090100044. Available athttp://cadp.inria.fr/publications/Garavel-Viho-Zendri-00.
html.

Ali Gondal (2012): Case Study — Production CelMonograph, University of Southampton. Available at
http://eprints.soton.ac.uk/id/eprint/342516

Ali Gondal, Michael Poppleton & Michael Butler (2011¢:omposing Event-B Specifications — Case-Study
Experience In Sven Apel & Ethan Jackson, editor®roceedings of the 10th International Conference
on Software Composition (SC 2011), Zurich, SwitzerlaBgringer Verlag, pp. 100-115, doi:. 1007/
978-3-642-22045-6_7.

Jan Friso Groote & Mohammad Reza Mousavi (20Mydeling and Analysis of Communicating Systems
The MIT Press.

Monika Heiner & Peter Deussen (199P%etri Net Based Qualitative Analysis — a Case Stuidchnical Re-
port [-08/1995, Brandenburg University of Technology ®at, Department of Computer Science. Available
at http://www-dssz.informatik.tu-cottbus.de/publications/btu-reports/btuReport1995_
08_production_cell.pdf

Monika Heiner, Peter Deussen & Jochen Spranger (1988Jase Study in Developing Control Software
of Manufacturing Systems with Hierarchical Petri Neta: Proceedings of the 1st International Workshop
on Manufacturing and Petri Nets, held at ICATPN’96, Osalepai pp. 177-196. Available atttps://
pdfs.semanticscholar.org/102a/a35aa028e53713bf08dadb28ea039f35cafc.pdf.

Monika Heiner & Maritta Heisel (1999Modeling Safety-Critical Systems with Z and Petri N&tidMassimo
Felici & Karama Kanoun, editorsProceedings of the 18th International Conference on Coenf&dfety,
Reliability and Security (SAFECOMP’99), Toulouse, Fran@pringer Verlag, pp. 361-374, doi:. 1007/
3-540-48249-0_31.

Stefan Heinkel & Thomas Lindner (1995DL In Lewerentz & Lindner$6], pp. 171-183, doi:0.1007/
3-540-58867-1.

Rudolf Herzig & Nikolaos Vlachantonis (1995JROLL light In Lewerentz & Lindner$6], pp. 373-381,
doi:10.1007/3-540-58867- 1.

C. A. R. Hoare (1978):Communicating Sequential ProcesseSommunications of the ACM1(8), pp.
666—677,doit0.1145/359576.359585.

C. A. R. Hoare (1985)Communicating Sequential ProcessBsentice-Hall.

Leszek Holenderski (1995)LUSTRE In Lewerentz & Lindner $6], pp. 101-112, doi:0.1007/
3-540-58867-1.

http://dx.doi.org/10.1007/s10009-012-0244-z
http://cadp.inria.fr/publications/Garavel-Lang-Mateescu-Serwe-13.html
http://cadp.inria.fr/publications/Garavel-Lang-Mateescu-Serwe-13.html
http://cadp.inria.fr/publications/Garavel-Sifakis-90.html
http://cadp.inria.fr/publications/Garavel-Sighireanu-99.html
http://cadp.inria.fr/publications/Garavel-Sighireanu-99.html
http://dx.doi.org/10.1007/s100090100044
http://dx.doi.org/10.1007/s100090100044
http://cadp.inria.fr/publications/Garavel-Viho-Zendri-00.html
http://cadp.inria.fr/publications/Garavel-Viho-Zendri-00.html
http://eprints.soton.ac.uk/id/eprint/342516
http://dx.doi.org/10.1007/978-3-642-22045-6_7
http://dx.doi.org/10.1007/978-3-642-22045-6_7
http://www-dssz.informatik.tu-cottbus.de/publications/btu-reports/btuReport1995_08_production_cell.pdf
http://www-dssz.informatik.tu-cottbus.de/publications/btu-reports/btuReport1995_08_production_cell.pdf
https://pdfs.semanticscholar.org/102a/a35aa028e53713bf08da4b28ea039f35cafc.pdf
https://pdfs.semanticscholar.org/102a/a35aa028e53713bf08da4b28ea039f35cafc.pdf
http://dx.doi.org/10.1007/3-540-48249-0_31
http://dx.doi.org/10.1007/3-540-48249-0_31
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1

H. Garavel & W. Serwe 245

[47] D.R.W. Holton (1995)A PEPA Specification of an Industrial Production Cdlhe Computer JournaB(7),
pp. 542-551, doi:0.1093/comjnl/38.7.542.

[48] ISO/IEC (1988)ESTELLE — A Formal Description Technique Based on an ExtkStkte Transition Model
International Standard 9074, International Organizat@rStandardization — Information Processing Sys-
tems — Open Systems Interconnection, Geneva.

[49] ISO/IEC (1989):LOTOS — A Formal Description Technique Based on the Tem@and¢ring of Observa-
tional Behaviour International Standard 8807, International Organizefis Standardization — Information
Processing Systems — Open Systems Interconnection, Geneva

[50] ISO/IEC (2001):Enhancements to LOTOS (E-LOTOSpternational Standard 15437:2001, International
Organization for Standardization — Information Techng|dgeneva.

[51] Stefan Klingenbeck & Thomas Kaufl (1995Tatzelwurm In Lewerentz & Lindner $6], pp. 247-259,
doi:10.1007/3-540-58867-1.

[52] Franz Korf & Rainer Schldr (1995B8ymbolic Timing Diagramdn Lewerentz & Lindner}6], pp. 311-331,
doi:10.1007/3-540-58867-1_62.

[53] Claus Lewerentz & Thomas Lindne€omparative Surveyin Lewerentz & Lindner 6], pp. 1-6, doii0.
1007/3-540-58867-1_45.

[54] Claus Lewerentz & Thomas LindneComparative Surveyn Lewerentz & Lindner6], pp. 21-54, doit0.
1007/3-540-58867-1_47.

[55] Claus Lewerentz & Thomas Lindner (1998)ase Study “Production Cell”: A Comparative Study in Formal
Specification and Verificatiorin Manfred Broy & Stefan Jahnichen, editotf§ORSO: Methods, Languages,
and Tools for the Construction of Correct Softwakecture Notes in Computer Scien&809, Springer
Verlag, pp. 388-416, daio . 1007 /BFb0015473.

[56] Claus Lewerentz & Thomas Lindner, editors (1995)rmal Development of Reactive Systems — Case Study
Production Cell Lecture Notes in Computer Scier@@l, Springer Verlag, daio.1007/3-540-58867-1.

[57] Johan Lilius & Ivan Paltor (2000)The Production Cell: An Exercise in the Formal VerificatidhaoUML
Model In: Proceedings of the 33rd Annual Hawaii International Cogrfee on System Sciences (HICSS-
33), 4-7 January, 2000, Maui, Hawaii, US#0i:10.1109/HICSS.2000.926969.

[58] Thomas Lindner (1995):Task Description In Lewerentz & Lindner $6€], pp. 7-19, doit0.1007/
3-540-58867-1_46.

[59] Helmut Melcher & Klaus Winkelmann (1998Eontroller Synthesis for the “Production Cell” Case Study
In: Proceedings of the Second Workshop on Formal Methods im@&adtPractice (FMSP’98), Clearwater
Beach, Florida, USAACM, pp. 24—33, doit0.1145/298595.298601.

[60] Robin Milner (1980): A Calculus of Communicating Systemsecture Notes in Computer Sciené@,
Springer Verlag, doi:0.1007/3-540-10235-3_7.

[61] Klaus Nokel & Klaus Winkelmann (1995 SL In Lewerentz & Lindner $6], pp. 55-74, doit0.1007/
3-540-58867-1.

[62] Dumitru Potop-Butucaru, Stephen A. Edwards & Géraedrd (2007):Compiling Esterel Springer.

[63] Hans Rischel & Hongyan Sun (199Design and Prototyping of Real-Time Systems Using CSP ard CM
In: Proceedings of the 9th Euromicro Workshop on Real-TimeeBysiEEE Computer Society Press, pp.
121-127,doit0.1109/EMWRTS. 1997 .613772.

[64] A. W. Roscoe, C. A. R. Hoare & Richard Bird (1997)he Theory and Practice of Concurrencyrentice
Hall.

[65] Andreas Ruping & Emil Sekerinski (1999 odula-3 In Lewerentz & Lindner 6], pp. 357-371, doi:0.
1007/3-540-58867-1_64.

[66] Heinrich Rust (1999):Modelling a Production Cell Component as a Hybrid AutomaténCase Study
Technical Report 1-06/1999, Computer Science Departn@randenburg Technical University, Cottbus,
Germany.

http://dx.doi.org/10.1093/comjnl/38.7.542
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1_62
http://dx.doi.org/10.1007/3-540-58867-1_45
http://dx.doi.org/10.1007/3-540-58867-1_45
http://dx.doi.org/10.1007/3-540-58867-1_47
http://dx.doi.org/10.1007/3-540-58867-1_47
http://dx.doi.org/10.1007/BFb0015473
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1109/HICSS.2000.926969
http://dx.doi.org/10.1007/3-540-58867-1_46
http://dx.doi.org/10.1007/3-540-58867-1_46
http://dx.doi.org/10.1145/298595.298601
http://dx.doi.org/10.1007/3-540-10235-3_7
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1109/EMWRTS.1997.613772
http://dx.doi.org/10.1007/3-540-58867-1_64
http://dx.doi.org/10.1007/3-540-58867-1_64

246 The Unheralded Value of the Multiway Rendezvous

[67] Gerhard Schellhorn & Axel Burandt (199541V. In Lewerentz & Lindner%$€], pp. 229-245, doi:0.1007/
3-540-58867-1.

[68] C. Vissers, G. Scollo & M. van Sinderen (1988)chitecture and Specification Style in Formal Description
of Distributed Systemsin S. Aggarwal & K. Sabnani, editorsProceedings of the 8th IFIP International
Workshop on Protocol Specification, Testing and VerifiaaffBSTV'88), Atlantic City, NJ, USANorth-
Holland, pp. 189-204, dai0 .1016/0304-3975(90)90111-T.

[69] C. Vissers, G. Scollo, M. van Sinderen & E. Brinksma (1R%pecification Styles in Distributed Systems
Design and VerificationTheoretical Computer Scien88(1), pp. 179-206.

[70] Roel Wieringa (1995):LCM and MCM In Lewerentz & Lindner $6], pp. 333—-355, doi:0.1007/
3-540-58867-1.

[71] Jie Xu, Brian Randell, Alexander B. Romanovsky, RoldeiBtroud, Avelino F. Zorzo, Ercument Canver &
Friedrich W. von Henke (2002)Rigorous Development of an Embedded Fault-Tolerant SyB&sad on
Coordinated Atomic ActiondEEE Trans. Computefl(2), pp. 164-179, ddio.1109/12.980006.

[72] Avelino F. Zorzo, Alexander Romanovsky, Jiudong XuigBrRandell, R. J. Stroud & I. S. Welch (1999)s-
ing Coordinated Atomic Actions to Design Safety-Criticggt®ms: a Production Cell Case Studoftware:
Practice and Experienc9(8), pp. 677-697, daio.1002/(SICI)1097-024X(19990710)29:8<677: :
AID-SPE251>3.0.C0;2-Z.

http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1016/0304-3975(90)90111-T
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1007/3-540-58867-1
http://dx.doi.org/10.1109/12.980006
http://dx.doi.org/10.1002/(SICI)1097-024X(19990710)29:8<677::AID-SPE251>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-024X(19990710)29:8<677::AID-SPE251>3.0.CO;2-Z

H. Garavel & W. Serwe 247

A Overview of Related Work

As mentioned in Sectiof.3, there have been numerous applications of formal methdithe toroduction
cell case study — at least thirty, including our LOTOS and Lé{pEcifications.

We present them in two tables. Takildists the “descriptive” approaches, in which formal method
have been used only for specification or verification purpo3able4 gathers the approaches in which,
as reported in the corresponding published articles, aouale controller was automatically derived
from the formal specification and connected to the graplsicallator.

Each table indicates whether executable code was genexatedhatically, manually, or by refine-
ment (column 2), whether the specification was connectethgcsimulator (column 3), whether the
formal specification uses multiway rendezvous (column dd, & available, the size of the specification
(column 5).

Table 3: Descriptive approaches

language/tool code generation simulation multiway size

ASM [§] refinement yes no 9 pages (ground model)
CO-OPN H] yes no no 100 pages
Coordinated Atomic Actions/2, 71] manual yes no 4500 lines

CSP & CML [63] manual yes no

CTA[7]]66 6] no no

Duration Calculus3] [27] possible no no

Event-B 36] [37] refinement no no

Focus 8§ no no no 80 lines

HOL [15] no no no 650 lines

KIV [67] no no no 2000 lines, 611 axioms
LCM&MCM[7Q no no no 8 pages
Modula-3 pB5] yes no no 1400 lines

PEPA [47] no no no

RAISE [21] [22] no no no 676 lines

SDL [42] yes not tried no 1800 lines
Spectrum 20| no no no

Statecharts19] no no no 8.4E+19 states
SYSYPHOS |3 [14] circuit no no incomplete
Tatzelwurm p1] no no no incomplete

TLT [18§] no manual no

Troll-light [43] no no no incomplete

UML [57] no no no 52,060 states

Z & Petri Nets B9 [40] [4]] no no no 51 places, 36 transitions

B Errata in the Task Description

The reader interested in the production cell might havecadtian inconsistency between the task de-
scription B8] and the specification of the graphical simulatod]f Chapter 2 of the reference bodkq,
Section 2.1 (page 15) and Section 2.3.1 (page 18)] statesehsor 13 is associated to the deposit belt,
and sensor 14 to the feed belt, whereas Appendix A of the saile [0, Table 1, page 390] states

248

The Unheralded Value of the Multiway Rendezvous

Table 4: Executable approaches

language/tool code generation simulation multiway size
CSL[59[6] yes yes no 9 pages
Esterel L2 yes yes no 400 lines

LNT yes yes yes 804 lines
LOTOS yes yes yes 753 lines
Lustre §6] yes yes no 200 lines
Signal [1] [2] yes yes no 1700 lines
STD & ICOS? [57] yes yes no 62 timing diagrams

exactly the opposite. After discussion with the authorgpipears that Appendix A is right. Thus, the
following changes should be applied to Chapter 2 of the esfez book $8]:

e On page 15, the items 13 and 14 of the enumeration should beufea.

e Onpage 15, the second to last paragraph of Section 2.2. Rid®wmodified as followsBoth pho-
toelectric cells switch on when a plate intercepts the ligtyt Just after the plate has completely
passed through it, the light barrier switches off. At thisgise moment, the plate is in the correct
position to be picked up by the travelling crane (sensor 1thefdeposit belt), respectively it has
just left the belt to land on the elevating rotary table — jded of course that the latter machine

is correctly positioned — (sensor 13 of the feed belt)

e On page 18, the first item of the section entitled “Keep blasikficiently distant” should be
modified as follows:a new blank may only be put on the feed belt, if sensor 13 canfinat the
last one has arrived at the end of the feed belt

e On page 18, the second item of the same section should be aetbdgifollows:a new blank may
only be put on the deposit belt, if sensor 14 confirms thatdbedne has arrived at the end of the

deposit belt

H. Garavel & W. Serwe 249

C LNT Specification of the Production Cell Controller

Our LNT specification of the production cell controller iscdenposed in six modules.

C.1 Module TYPES

This module implements the data abstractions presenteédh £2. It defines: (i) the approximate
equality function *” defined over real numbers; (ii) the enumerated types thstratt sensor values;
(iii) the conversion functions to convert (tuples of) sengues into abstract values of these enumerated

types.
module TYPES with "==" is

function _~_ (X1, X2: REAL) : BOOL is
—— equality of two reals up to precision 182
return (abs (X1 - X2) < 1.0e-2)

end function

type PRESS_POSITION is
—— position of the press
PRESS_BOTTOM,
PRESS_MIDDLE,
PRESS_TOP,
OTHER

end type

type ARM1_EXTENSION is
—— extension of arm 1

ARM1_MIN, —-— 0.5208
ARM1_MAX, —— 0.6458
OTHER

end type

type ARM2_EXTENSION is
—— extension of arm 2

ARM2_MAX, ——0.7971
ARM2_MIN, —- 0.5707
OTHER

end type

type ROBOT_ANGLE is
—— angle of the robot
ROBOT_M90, —— —90

250

ROBOT_M70, —— —70
ROBOT_O,
ROBOT_15,
ROBOT_35,
ROBOT_50,
OTHER

end type

type TABLE_POSITION is
—— position of the table
TABLE_BOTTOM,
TABLE_TOP,
OTHER

end type

type TABLE_ANGLE is
—— angle of the table

ANGLE_MIN, —— 0
ANGLE_MAX, ——50
OTHER

end type

type CRANE_POSITION is
—— position of the crane
CRANE_OVER_FEED_BELT,

CRANE_OVER_DEPOSIT_BELT,

OTHER
end type

type CRANE_HEIGHT is
—— height of the crane

CRANE_HIGH, —— 0.9450
CRANE_LOW, —— 0.6593
OTHER

end type

The Unheralded Value of the Multiway Rendezvous

function CONVERT_S1_S2_S3 (S1, S2, S3: BOOL) : PRESS_POSITION is
—— this function converts signals received from the/Ticlsimulator
—— into the corresponding abstract values representing thsitjmm

—— of the press

assert not (S1 and S2) and not (S1 and S3) and not (82 and S3);

—— at most one of S1, S2, and S3 is true

H. Garavel & W. Serwe 251

if S1 then

return PRESS_BOTTOM
elsif 82 then

return PRESS_MIDDLE
elsif S3 then

return PRESS_TOP
else

return OTHER
end if

end function

function CONVERT_S4 (S4: REAL) : ARM1_EXTENSION is
—— this function converts signals received from the/Ticlsimulator
—— into the corresponding abstract values representing thieresion
——ofarm1
if 4 ~ 0.5208 then
return ARM1_MIN
elsif sS4 ~ 0.6458 then
return ARM1_MAX
else
return OTHER
end if
end function

function CONVERT_S5 (S5: REAL) : ARM2_EXTENSION is
—— this function converts signals received from the/Ticlsimulator
—— into the corresponding abstract values representing theresion
——ofarm2
if S5 ~ 0.7971 then
return ARM2_MAX
elsif S5 ~ 0.5707 then
return ARM2_MIN
else
return OTHER
end if
end function

function CONVERT_S6 (S6: REAL) : ROBOT_ANGLE is
—— this function converts signals received from the/Ticlsimulator
—— into the corresponding abstract values representing thightef
—— the robot’s angle
if 86 ~ -90.0 then
return ROBOT_M90
elsif S6 ~ -70.0 then
return ROBOT_M70
elsif S6 ~ 0.0 then

252 The Unheralded Value of the Multiway Rendezvous

return ROBOT_O
elsif 6 ~ 15.0 then
return ROBOT_15
elsif S6 ~ 35.0 then
return ROBOT_35
elsif 6 ~ 50.0 then
return ROBOT_50
else
return OTHER
end if
end function

function CONVERT_S7_S8 (87, S8: BOOL) : TABLE_POSITION is
—— this function converts signals received from the/Ticlsimulator
—— into the corresponding abstract values representing thstjmm
—— of the table
assert not (S7 and $S8); —— atmostone of S7 and S8 is true
if S7 then
return TABLE_BOTTOM
elsif 88 then
return TABLE_TOP
else
return OTHER
end if
end function

function CONVERT_S9 (S9: REAL) : TABLE_ANGLE is
—— this function converts signals received from the/Ticlsimulator
—— into the corresponding abstract values representing thgieanof
—— the table
if S9 ~ 0.0 then
return ANGLE_MIN
elsif S9 ~ 50.0 then
return ANGLE_MAX
else
return OTHER
end if
end function

function CONVERT_S10_S11 (S10, S11: BOOL) : CRANE_POSITION is
—— this function converts signals received from the/Ticlsimulator
—— into the corresponding abstract values representing thetjmms
—— of the crane
assert not (810 and S11); —— atmost one of S10 and S11 is true
if S10 then
return CRANE_OVER_DEPOSIT_BELT

H. Garavel & W. Serwe 253

elsif s11 then
return CRANE_OVER_FEED_BELT
else
return OTHER
end if
end function

function CONVERT_S12 (S12: REAL) : CRANE_HEIGHT is
—— this function converts signals received from the/Ticlsimulator
—— into the corresponding abstract values representing thightef
—— the crane
if S12 ~ 0.9450 then
return CRANE_HIGH
elsif S12 ~ 0.6593 then
return CRANE_LOW
else
return OTHER
end if
end function

end module

C.2 Module STATES

This module defines: (i) three enumerated types that entmdgtdtes of cyclic behaviours of individual
processes; (ii) three next-state functieusc for these types; (iii) eight functionsIMIT_xxxthat express
when an device of the production cell has reached a pointeniharust proceed to its next state.

module STATES (TYPES) with "==" is

type TWO_STATE is
—— this type is used in processes P2, P3, P7, P8, P9, and P10
1, 2

end type

function SUCC (S: TWO_STATE) : TWO_STATE is
cases in
1 -> return 2
| 2 -> return 1
end case
end function

type THREE_STATE is
—— this type is used in process P1
1, 2, 3

end type

254

The Unheralded Value of the Multiway Rendezvous

function SUCC (S: THREE_STATE) : THREE_STATE is

cases in

1 -> return 2

| 2 -> return 3

| 3 -> return 1
end case
end function

type ELEVEN_STATE is
—— this type is used in process P6

i1, i2, i3, i4, 1, 2, 3, 4, 5, 6, 7

end type

function SUCC (S: ELEVEN_STATE) : ELEVEN_STATE is

cases in
il -> return i2
i2 -> return i3
i3 -> return i4
i4 -> return 1
-> return
-> return
-> return
return
-> return
-> return
return
end case

oG W N e
I
Vv

mNoO O WN

~
|
\%

—— functions that return "true” when a particular engine hasaehed
—— a specified limit of movement, so that a state change is reduir

function LIMIT_PRESS_POSITION (STATE: THREE_STATE, VALUE: PRESS_POSITION) : BOOL is

return ((STATE == 1) and (VALUE
((STATE == 2) and (VALUE
((STATE == 3) and (VALUE

end function

PRESS_BOTTOM)) or
PRESS_MIDDLE)) or
PRESS_TOP))

function LIMIT_ARM1_EXTENSION (STATE: TWO_STATE, VALUE: ARM1_EXTENSION) : BOOL is

return ((STATE == 1) and (VALUE
((STATE == 2) and (VALUE
end function

ARM1_MIN)) or
ARM1_MAX))

H. Garavel & W. Serwe 255

function LIMIT_ARM2_EXTENSION (STATE: TWO_STATE, VALUE: ARM2_EXTENSION) : BOOL is
return ((STATE == 1) and (VALUE == ARM2_MAX)) or
((STATE == 2) and (VALUE == ARM2_MIN))
end function

function LIMIT_ROBOT_ANGLE (STATE: ELEVEN_STATE, VALUE: ROBOT_ANGLE) : BOOL is
return ((STATE == i1) and (VALUE == ROBOT_15)) or

((STATE == i2) and (VALUE == ROBOT_50)) or
((STATE == i3) and (VALUE == ROBOT_15)) or
((STATE == i4) and (VALUE == ROBOT_M70)) or
((STATE == 1) and (VALUE == ROBOT_M90)) or
((STATE == 2) and (VALUE == ROBOT_M70)) or
((STATE == 3) and (VALUE == ROBOT_15)) or
((STATE == 4) and (VALUE == ROBOT_50)) or
((STATE == 5) and (VALUE == ROBOT_35)) or
((STATE == 6) and (VALUE == ROBOT_15)) or
((STATE == 7) and (VALUE == ROBOT_M70))

end function

function LIMIT_TABLE_POSITION (STATE: TWO_STATE, VALUE: TABLE_POSITION) : BOOL is
return ((STATE == 1) and (VALUE == TABLE_BOTTOM)) or
((STATE == 2) and (VALUE == TABLE_TOP))
end function

function LIMIT_TABLE_ANGLE (STATE: TWO_STATE, VALUE: TABLE_ANGLE) : BOOL is
return ((STATE == 1) and (VALUE == ANGLE_MIN)) or
((STATE == 2) and (VALUE == ANGLE_MAX))
end function

function LIMIT_CRANE_POSITION (STATE: TWO_STATE, VALUE: CRANE_POSITION) : BOOL is
return ((STATE == 1) and (VALUE == CRANE_OVER_DEPOSIT_BELT)) or
((STATE == 2) and (VALUE == CRANE_OVER_FEED_BELT))
end function

function LIMIT_CRANE_HEIGHT (STATE: TWO_STATE, VALUE: CRANE_HEIGHT) : BOOL is
return ((STATE == 1) and (VALUE == CRANE_HIGH)) or
((STATE == 2) and (VALUE == CRANE_LOW))
end function

end module

256 The Unheralded Value of the Multiway Rendezvous

C.3 Module CHANNELS

This module defines the channel types for the gate STATUS, which transports concrete sensor values,
and for the gates;, which transport abstract sensor values.

module CHANNELS (TYPES) is

—— definition of the channel types, many of them are overloadidtie
—— name of the corresponding type

channel STATUS is
—— simulation status: values of all sensors

(BOOL, —— S1: press in bottom position
BOOL, —— S2:press in middle position
BOOL, —— S3: press intop position
REAL, —— S4: extension of the robot's arm 1
REAL, —— Sb5: extension of the robot’'s arm 2
REAL, —— S6: angle of rotation of the robot
BOOL, —— S7:elevating rotary table in bottom position
BOOL, —— S8: elevating rotary table in top position
REAL, —— S9: angle of rotation of the table
BOOL, —— S10: crane over the deposit belt
BOOL, —— S11:crane over the feed belt
REAL, —— S12: height of the crane’s magnet
BOOL, —— S13: blank inside the feed belt photoelectric barrier
BOOL, —— S14: blank inside the deposit belt photoelectric barrier
STRING —— E: errors that occurred since the last reaction cycle
)
end channel

channel BOOL is
(BOOL)
end channel

channel PRESS_POSITION is
(PRESS_POSITION)
end channel

channel ARM1_EXTENSION is
(ARM1_EXTENSION)
end channel

channel ARM2_EXTENSION is
(ARM2_EXTENSION)
end channel

channel ROBOT_ANGLE is
(ROBOT_ANGLE)
end channel

channel TABLE_ANGLE is
(TABLE_ANGLE)

H. Garavel & W. Serwe 257

end channel

channel TABLE_POSITION is
(TABLE_POSITION)
end channel

channel CRANE_POSITION is
(CRANE_POSITION)
end channel

channel CRANE_HEIGHT is
(CRANE_HEIGHT)
end channel

end module

C.4 Module DISPATCHER

This module defines theISPATCHER process described in Seet.3. Depending on the value of the
Boolean paramete&yEQUENTIAL, abstract values will be sent sequentially or concurretatihe gates;.

module DISPATCHER (TYPES, CHANNELS) is

process DISPATCHER [GET_STATUS: STATUS,
G1: PRESS_POSITION,
G2: ARM1_EXTENSION,
G3: ARM2_EXTENSION,
G6: ROBOT_ANGLE,
G7: TABLE_POSITION,
G8: TABLE_ANGLE,
G9: CRANE_POSITION,
G10: CRANE_HEIGHT,
G12, G13: BOOL]
(SEQUENTIAL: BOOL) is
—— this process receives inputs from the/T&lsimulator and dispatches
—— them to the corresponding components of the controllergssc
var
S1, 82, S3, S7, S8, S10, S11, S13, S14: BOOL,
sS4, Sb, S6, S9, S12: REAL
in
loop
GET_STATUS (?sS1, ?S2, 783, 754, 7?85, 7386, 787, 758, 7?89, ?S10, ?S11,
?S12, 7813, ?S14, ?any STRING);
if SEQUENTIAL then
—— inputs are dispatched to controller gates in sequentiabord
—— which reduces the amount of nondeterminism, possibly gaka
—— specification easier to analyze

G1 (CONVERT_S1_S2_S3 (S1, S2, S3)); —— press position
G2 (CONVERT_S4 (S4)); —— arml extension
G3 (CONVERT_S5 (85)); —— arm2 extension

G6 (CONVERT_S6 (S86)); —— robotangle

258 The Unheralded Value of the Multiway Rendezvous

G7 (CONVERT_S7_S8 (S7, S8)); —— table position
G8 (CONVERT_S9 (S9)); —— table angle
G9 (CONVERT_S10_S11 (S10, S11)); —— crane position
G10 (CONVERT_S12 (812)); —— crane height
G12 (S13); —— sensor feed belt
G13 (814) —— sensor deposit belt
else
—— inputs are dispatched to controller gates in any order
par
G1 (CONVERT_S1_82_S3 (S1, S2, S3)) —— press position
|| G2 (CONVERT_S4 (S4)) —— arml extension
|| G3 (CONVERT_S5 (S5)) —— arm2 extension
|| G6 (CONVERT_S6 (S6)) —— robotangle
|| G7 (CONVERT_S7_S8 (87, S8)) —— table position
|| G8 (CONVERT_S9 (89)) —— table angle
|
|
|

G9 (CONVERT_S10_S11 (810, S11)) —— crane position
G10 (CONVERT_S12 (S12)) —— crane height
G12 (813) —— sensor feed belt
|| G13 (S14) —— sensor deposit belt
end par
end if
end loop

end var
end process

end module

C.5 Module CONTROLLER

This module defines a process namemTROLLER that achieves the parallel composition of the individual
processes described in Sett, and then these thirteen individual processes.. P13 themselves. The
controller process handles three sets of gates: (i) thes gatd# the processeg;; (ii) the external gates
(PRESS_UPWARD, ...) used to send actuator commands to the graphical dionuknd (iii) the internal
gates ¥T_READY, ...) used to synchronize three processes using binary or multiway rendezvous. Notice
that the “graphical’n-ary parallel composition of LNTJ4] allows to represent the controller process
concisely, rather than breaking it into many binary patalperators with involved synchronization sets.

module CONTROLLER (TYPES, CHANNELS, STATES) is

process CONTROLLER [G1: PRESS_POSITION,
G2: ARM1_EXTENSION,
G3: ARM2_EXTENSION,
G6: ROBOT_ANGLE,
G7: TABLE_POSITION,
G8: TABLE_ANGLE,
G9: CRANE_POSITION,
G10: CRANE_HEIGHT,
G12, G13: BOOL,
PRESS_UPWARD, PRESS_STOP, PRESS_DOWNWARD,
ARM1_FORWARD, ARM1_STOP, ARM1_BACKWARD,
ARM2_FORWARD, ARM2_STOP, ARM2_BACKWARD,

H. Garavel & W. Serwe

ARM1_MAG_ON, ARM1_MAG_OFF,

ARM2_MAG_ON, ARM2_MAG_OFF,

ROBOT_LEFT, ROBOT_STOP, ROBOT_RIGHT,
TABLE_LEFT, TABLE_STOP_H, TABLE_RIGHT,
TABLE_UPWARD, TABLE_STOP_V, TABLE_DOWNWARD,
CRANE_TO_BELT2, CRANE_STOP_H, CRANE_TO_BELT1,
CRANE_LIFT, CRANE_STOP_V, CRANE_LOWER,
CRANE_MAG_ON, CRANE_MAG_OFF,

BELT1_START, BELT1_STOP,

BELT2_START, BELT2_STOP,

BLANK_ADD: NONE] is

—— the controller consists in 13 concurrent processes PIR13, each
—— supervising a particular engine of the production cell, ogigen
—— degree of freedom of a particular engine

hide
—— each gate is noted [3], [4], or [5] if it is used in threeparty,

—— four—party, or five-party rendezvous, respectivebbsence of such
—— indication means that the gate is used in twaarty rendezvous
FT_READY, —— beltl ready to deliver a blank element to the table [3]
FT, —— beltl delivers a blank element to the table [3]

TA1_READY, —— table ready to deliver a blank element to arm1 [5]

TA1,
A1P,
PA2,
A2D,

—— arml took a blank element from the table [3]
——arml ready to deliver a blank element to the press [4]
—— press delivers an element to arm2 [4]

—— arm2 puts a pressed element on belt2 [4]

DC_READY, —— crane arrived over belt2

DC, —— crane gets a pressed element from belt2 [4]

CF, —— crane puts a blank element on beltl [4]

UP_M70, —— robot angle is or will soon be greater than70 degr.

UP_15, —— robot angle is or will soon be greater than 15 degr.
DOWN_15, —— robot angle is or will soon be smaller than 15 degr.
DOWN_M70: NONE —— robot angle is or will soon be smaller than70 degr.

par

A1P, PA2, UP_M70, UP_15, DOWN_15, DOWN_M70 —>

P1 [G1, PRESS_UPWARD, PRESS_STOP, PRESS_DOWNWARD,
A1P, PA2, UP_M70, UP_15, DOWN_15, DOWN_M70]

TA1_READY, A1P ->

P2 [G2, ARM1_FORWARD, ARM1_STOP, ARM1_BACKWARD, TA1_READY, A1P]

PA2, A2D ->

P3 [G3, ARM2_FORWARD, ARM2_STOP, ARM2_BACKWARD, PA2, A2D]

TA1_READY, A1P, TAl1 ->

P4 [ARM1_MAG_ON, ARM1_MAG_OFF, TA1_READY, A1P, TA1]

PA2, A2D ->

P5 [ARM2_MAG_ON, ARM2_MAG_OFF, PA2, A2D]

259

260 The Unheralded Value of the Multiway Rendezvous

TA1_READY, A1P, PA2, A2D, UP_M70, UP_15, DOWN_15, DOWN_M70 —>
P6 [G6, ROBOT_LEFT, ROBOT_STOP, ROBOT_RIGHT,
TA1_READY, A1P, PA2, A2D, UP_M70, UP_15, DOWN_15, DOWN_M70]
|
FT_READY, FT, TA1_READY, TA1l —>
P7 [G7, TABLE_UPWARD, TABLE_STOP_V, TABLE_DOWNWARD,
FT_READY, FT, TA1_READY, TA1]
I
FT_READY, FT, TA1_READY, TA1l ->
P8 [G8, TABLE_LEFT, TABLE_STOP_H, TABLE_RIGHT,
FT_READY, FT, TA1_READY, TA1]
I
DC_READY, DC, CF ->
P9 [G9, CRANE_TO_BELT2, CRANE_STOP_H, CRANE_TO_BELT1,
DC_READY, DC, CF]
I
DC_READY, DC, CF ->
P10 [G10, CRANE_LIFT, CRANE_STOP_V, CRANE_LOWER, DC_READY, DC, CF]
I

DC, CF ->
P11 [CRANE_MAG_ON, CRANE_MAG_OFF, DC, CF]
|

FT_READY, FT, CF ->
P12 [G12, BELT1_START, BELT1_STOP, BLANK_ADD, FT_READY, FT, CF]
I

A2D, DC ->
P13 [G13, BELT2_START, BELT2_STOP, A2D, DC]
end par
end hide

end process

—— each process Pi is split into two (but sometimes one, or Sorastthree)

—— concurrent processeghe former process describes the overall functioning
—— cycle of the engine, while the latter process scrutatesrtpats and

—— decides when a transition to a next state is required

processP1 [G1: PRESS_POSITION,
PRESS_UPWARD, PRESS_STOP, PRESS_DOWNWARD,
A1P, PA2, UP_M70, UP_15, DOWN_15, DOWN_M70: NONE] is
—— this process controls the press
—— initially, the press is in middle position
par PRESS_STOP in
—— the actions before the loop are the same as the actions itis&le
—— loop starting from state 1, but without the rendezvous oe §42
—— indeed, initially, there is no item in the press that could be
—— delivered to arm 2
PRESS_DOWNWARD;
PRESS_STOP; —— bottom position-> state 2

H. Garavel & W. Serwe 261

UP_15;
loop
DOWN_15;
PRESS_UPWARD;
PRESS_STOP; —— middle position—> state 3
DOWN_M70;
A1P;
UP_M70;
PRESS_UPWARD;
PRESS_STOP; —— top position—> state 1
PRESS_DOWNWARD;
PRESS_STOP; —— bottom position-> state 2
UP_15;
PA2
end loop
|
var
STATE: THREE_STATE,
VALUE: PRESS_POSITION
in
STATE := 1;
loop
G1 (?VALUE);
if LIMIT_PRESS_POSITION (STATE, VALUE) then
PRESS_STQOP;
STATE := SUCC (STATE)
end if
end loop
end var
end par
end process

processP2 [G2: ARM1_EXTENSION,
ARM1_FORWARD, ARM1_STOP, ARM1_BACKWARD, TA1_READY, A1P: NONE] is
—— this process controls the extension of arm 1
—— initially, arm 1 is completely retracted
par ARM1_STOP in
——arm 1 is initially out of its range of operation (it is too shjr
—— thus, it must first be extended to the lower limit of its ranfje o
—— operation
ARM1_FORWARD;
loop
ARM1_STOP; —— 0.5208
TA1_READY;
ARM1_FORWARD;
ARM1_STOP; —— 0.6458
A1P;
ARM1_BACKWARD
end loop

262 The Unheralded Value of the Multiway Rendezvous

var STATE: TWO_STATE,
VALUE: ARM1_EXTENSION
in
STATE := 1;
loop
G2 (?VALUE);
if LIMIT_ARM1_EXTENSION (STATE, VALUE) then
ARM1_STOP;
STATE := SUCC (STATE)
end if
end loop
end var
end par
end process

processP3 [G3: ARM2_EXTENSION,
ARM2_FORWARD, ARM2_STOP, ARM2_BACKWARD, PA2, A2D: NONE] is
—— this process controls the extension of arm 2
—— initially, arm 2 is completely retracted
par ARM2_STOP in
loop
ARM2_FORWARD;
ARM2_STOP; —— 0.7971
PA2;
ARM2_BACKWARD;
ARM2_STOP; —— 0.5707
A2D
end loop
|
var STATE: TWO_STATE,
VALUE: ARM2_EXTENSION
in
STATE := 1;
loop
G3 (?VALUE);
if LIMIT_ARM2_EXTENSION (STATE, VALUE) then
ARM2_STOP;
STATE := SUCC (STATE)
end if
end loop
end var
end par
end process

processP4 [ARM1_MAG_ON, ARM1_MAG_OFF, TA1_READY, A1P, TA1: NONE] is
—— this process controls the magnet of arm 1
—— initially, the magnet of arm 1 is off
loop

H. Garavel & W. Serwe 263

TA1_READY;
ARM1_MAG_ON;
TA1,
A1P;
ARM1_MAG_QOFF
end loop
end process

processP5 [ARM2_MAG_ON, ARM2_MAG_OFF, PA2, A2D: NONE] is
—— this process controls the magnet of arm 2
—— initially, the magnet of arm 2 is off
loop
PA2;
ARM2_MAG_ON;
A2D;
ARM2_MAG_OFF
end loop
end process

processP6 [G6: ROBOT_ANGLE,
ROBOT_LEFT, ROBOT_STOP, ROBOT_RIGHT,
TA1_READY, A1P, PA2, A2D,
UP_M70, UP_15, DOWN_15, DOWN_M70: NONE] is
—— this process controls the angle of the robot
—— initially, the angle of the robot is 0 degrees
par ROBOT_STOP in
—— the actions before the loop are the same as the actions itis&le
—— loop starting from state 4, but without the stop at 35 degrees
—— the rendezvous on PA2, and the restart of the movement tefthe |
—— indeed, initially there is no item in the press that could be
—— delivered to arm 2
ROBOT_RIGHT,
ROBOT_STOP; —— 15 degrees-> state i2
UP_15;
ROBOT_RIGHT;
ROBOT_STOP; —— 50 degrees-> state i3
TA1_READY;,
ROBOT_LEFT,
ROBOT_STOP; —— 15 degrees-> state i4
DOWN_15;
ROBOT_LEFT,
ROBOT_STOP; —— —70 degrees-> state 1
DOWN_M70;
loop
ROBOT_LEFT;
ROBOT_STOP; —— —90 degrees-> state 2
A1P;
ROBOT_RIGHT;,

264 The Unheralded Value of the Multiway Rendezvous

ROBOT_STOP; —— —70 degrees-> state 3
UP_M70;
ROBOT_RIGHT
ROBOT_STOP; —— 15 degrees-> state 4
UP_15;
ROBOT_RIGHT;
ROBOT_STOP; —— 50 degrees-> state 5
TA1_READY
ROBOT_LEFT
ROBOT_STOP; —— 35 degrees-> state 6
PA2;
ROBOT_LEFT;
ROBOT_STOP; —— 15 degrees-> state 7
DOWN_15;
ROBOT_LEFT
ROBOT_STOP; —— —70 degrees-> state 1
DOWN_M70;
A2D
end loop
|
var STATE: ELEVEN_STATE,
VALUE: ROBOT_ANGLE
in
STATE := i1,
loop
G6 (?VALUE);
if LIMIT_ROBOT_ANGLE (STATE, VALUE) then
ROBOT_STOP;
STATE := SUCC (STATE)
end if
end loop
end var
end par
end process

processP7 [G7: TABLE_POSITION,
TABLE_UPWARD, TABLE_STOP_V, TABLE_DOWNWARD,
FT_READY, FT, TA1_READY, TA1l: NONE] is
—— this process controls the height of the table
—— initially, the table is in bottom position
par TABLE_STOP_V in
TABLE_STOP_V; —— initialisation is mandatory
loop
FT_READY;
FT,
TABLE_UPWARD;
TABLE_STOP_V;
TA1_READY;
TA1;
TABLE_DOWNWARD;

H. Garavel & W. Serwe 265

TABLE_STOP_V
end loop
|
var STATE: TWO_STATE,
VALUE: TABLE_POSITION —— initial value is TABLEBOTTOM
in
STATE := 1;
loop
G7 (?VALUE);
if LIMIT_TABLE_POSITION (STATE, VALUE) then
TABLE_STOP_V;
STATE := SUCC (STATE)
end if
end loop
end var
end par
end process

processP8 [G8: TABLE_ANGLE,
TABLE_LEFT, TABLE_STOP_H, TABLE_RIGHT,
FT_READY, FT, TA1_READY, TA1l: NONE] is
—— this process controls the angle of the table
—— initially, the angle of the table is 0 degrees
par TABLE_STOP_H in
TABLE_STOP_H; —— initialisation is mandatory
loop
FT_READY;
FT;
TABLE_RIGHT
TABLE_STOP_H;
TA1_READY;
TA1Q;
TABLE_LEFT
TABLE_STOP_H
end loop
|
var STATE: TWO_STATE,
VALUE: TABLE_ANGLE
in
STATE := 1;
loop
G8 (?VALUE); —— initial value is ANGLEMIN
if LIMIT_TABLE_ANGLE (STATE, VALUE) then
TABLE_STOP_H,
STATE := SUCC (STATE)
end if
end loop
end var
end par
end process

266 The Unheralded Value of the Multiway Rendezvous

processP9 [G9: CRANE_POSITION,
CRANE_TO_BELT2, CRANE_STOP_H, CRANE_TO_BELT1,
DC_READY, DC, CF: NONE] is
—— this process controls the position of the crane
—— initial position is OTHER
par CRANE_STOP_H in
loop
CRANE_TO_BELT2;
CRANE_STOP_H;
DC_READY;
DC;
CRANE_TO_BELTI,;
CRANE_STOP_H;
CF
end loop
|
var STATE: TWO_STATE,
VALUE: CRANE_POSITION
in

STATE := 1;
loop
G9 (?VALUE); —— initial value is OTHER

if LIMIT_CRANE_POSITION (STATE, VALUE) then
CRANE_STOP_H;
STATE := SUCC (STATE)
end if
end loop
end var
end par
end process

processP10 [G10: CRANE_HEIGHT,
CRANE_LIFT, CRANE_STOP_V, CRANE_LOWER, DC_READY, DC, CF: NONE] is
—— this process controls the height of the crane
—— initial height is OTHER
par CRANE_STOP_V in
loop
DC_READY;
CRANE_LOWER,
CRANE_STOP_V
DC;
CRANE_LIFT
CRANE_STOP_V.
CF
end loop

var STATE: TWO_STATE,

H. Garavel & W. Serwe 267

VALUE: CRANE_HEIGHT

in
STATE := 1;
loop
G10 (?VALUE); —— initial value is OTHER
if LIMIT_CRANE_HEIGHT (STATE, VALUE) then
CRANE_STOP_V;
STATE := SUCC (STATE)
end if
end loop
end var
end par

end process

processP11 [CRANE_MAG_ON, CRANE_MAG_OFF, DC, CF: NONE] is
—— this process controls the magnet of the crane
loop
DC;
CRANE_MAG_ON;
CF;
CRANE_MAG_OFF
end loop
end process

processP12 [G12: BOOL,
BELT1_START, BELT1_STOP, BLANK_ADD, FT_READY, FT, CF: NONE] is
—— this process controls belt 1 (feed belt)
par
BLANK_ADD ->
BLANK_ADD;
BLANK_ADD;
BLANK_ADD;
BLANK_ADD;
BLANK_ADD;
stop
|
BLANK_ADD, BELT1_STOP, FT ->
—— before the loop, a few actions are required because, ihjtial
—— there is no blank in the production cell, so that a blank has
—— first to be added and the feed belt has to be started to move
—— this blank towards the elevating rotary table
BLANK_ADD;
BELT1_START,
loop
BELT1_STOP;
FT_READY;
BELT1_START,
FT,

268 The Unheralded Value of the Multiway Rendezvous

select
CF
1
BLANK_ADD
end select
end loop
I
BELT1_STOP, FT ->
var S13, PREVIOUS_S13: BOOL in
PREVIOUS_S13 := false;
loop
G12 (?3813);
if PREVIOUS_S13 != S13 then
if S13 then
BELT1_STOP
else
FT
end if;
PREVIOUS_S13 := S13
end if
end loop
end var
end par
end process

processP13 [G13: BOOL,
BELT2_START, BELT2_STOP, A2D, DC: NONE] is
—— this process controls belt 2 (deposit belt)
par BELT2_STOP in
—— before the loop, a few actions are required because, ihjtial
—— there is no item on the deposit belt, so that action DC would be
—— impossible the deposit belt has thus to wait for arm 2 to deliver
——an item (i.e., action A2D)
A2D;
loop
BELT2_START;
BELT2_STOP;
par
DC
|
A2D
end par
end loop
|
var S14, PREVIOUS_S14: BOOL in
PREVIOUS_S14 := false;
loop
G13 (7514);
if PREVIOUS_S14 and not (S14) then
BELT2_STOP

H. Garavel & W. Serwe 269

end if;
PREVIOUS_S14 := S14
end loop
end var
end par
end process

end module

C.6 Principal Module CELL

This module defines the production cell controller as thalfgrcomposition of th€oNTROLLER and the
(concurrent version of th@ISPATCHER.

module CELL (TYPES, CHANNELS, CONTROLLER, DISPATCHER) is

processMAIN [GET_STATUS: STATUS,
BLANK_ADD,
PRESS_UPWARD, PRESS_STOP, PRESS_DOWNWARD,
ARM1_FORWARD, ARM1_STOP, ARM1_BACKWARD,
ARM2_FORWARD, ARM2_STOP, ARM2_BACKWARD,
ARM1_MAG_ON, ARM1_MAG_OFF,
ARM2_MAG_ON, ARM2_MAG_OFF,
ROBOT_LEFT, ROBOT_STOP, ROBOT_RIGHT,
TABLE_LEFT, TABLE_STOP_H, TABLE_RIGHT,
TABLE_UPWARD, TABLE_STOP_V, TABLE_DOWNWARD,
CRANE_TO_BELT2, CRANE_STOP_H, CRANE_TO_BELT1,
CRANE_LIFT, CRANE_STOP_V, CRANE_LOWER,
CRANE_MAG_ON, CRANE_MAG_OFF,
BELT1_START, BELT1_STOP,
BELT2_START, BELT2_STOP: NONE] is
hide

G1: PRESS_POSITION,

G2: ARM1_EXTENSION,

G3: ARM2_EXTENSION,

G6: ROBOT_ANGLE,

G7: TABLE_POSITION,

G8: TABLE_ANGLE,

G9: CRANE_POSITION,

G10: CRANE_HEIGHT,

G12, G13: BOOL

par Gi, G2, G3, G6, G7, G8, G9, G10, G12, G13 in
DISPATCHER [GET_STATUS, Gi, G2, G3, G6, G7, G8, G9, G10, G12, G13]
(false) —— or true to sequentialize events
|

CONTROLLER [G1, G2, G3, G6, G7, G8, G9, G10, G12, G13,
PRESS_UPWARD, PRESS_STOP, PRESS_DOWNWARD,
ARM1_FORWARD, ARM1_STOP, ARM1_BACKWARD,
ARM2_FORWARD, ARM2_STOP, ARM2_BACKWARD,
ARM1_MAG_ON, ARM1_MAG_OFF,

270 The Unheralded Value of the Multiway Rendezvous

ARM2_MAG_ON, ARM2_MAG_OFF,
ROBOT_LEFT, ROBOT_STOP, ROBOT_RIGHT,
TABLE_LEFT, TABLE_STOP_H, TABLE_RIGHT,
TABLE_UPWARD, TABLE_STOP_V, TABLE_DOWNWARD,
CRANE_TO_BELT2, CRANE_STOP_H, CRANE_TO_BELT1,
CRANE_LIFT, CRANE_STOP_V, CRANE_LOWER,
CRANE_MAG_ON, CRANE_MAG_OFF,
BELT1_START, BELT1_STOP,
BELT2_START, BELT2_STOP,
BLANK_ADD]
end par
end hide
end process

end module

	Introduction
	The Multiway Rendezvous
	The Production Cell Case Study
	Overview of the Production Cell
	The Graphical Simulator of the Production Cell
	Prior Work on the Production Cell

	The LOTOS and LNT Specifications of the Production Cell Controller
	Architectural Decomposition of the Controller
	Sensor Values and Data Abstractions
	The Dispatcher Process
	The Individual Processes

	Code Generation from the LOTOS and LNT Specifications
	Validation of the LOTOS and LNT Specifications
	Conclusion
	Overview of Related Work
	Errata in the Task Description
	LNT Specification of the Production Cell Controller
	Module TYPES
	Module STATES
	Module CHANNELS
	Module DISPATCHER
	Module CONTROLLER
	Principal Module CELL

