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Introduction

= Asynchronous computing becomes widely used:
- Increased computing performances
- Increased flexibility and scalability
- Energy consumption optimization

« Asynchronous computing is found at many levels:
Grids, clusters

Multiprocessor architectures

Multicore processors

Asynchronous logic
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Introduction

Challenges in distributed system design:

= Break with the synchronous design approach

« High functional complexity « High degree of concurrency
—  functional verification — communication latencies
more difficult may appear
—  no industrial methodology —  but time constraints have to
be respected

—

Performance
evaluation

Qualitative aspec's Quantitative aspects

Functional
verification
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MINALOGIC / MULTIVAL

http://www.inrialpes.fr/vasy/multival/
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CADP toolbox

http://www.inrialpes.fr/vasy/cadp/

= Formal modeling of asynchronous systems

- Formal models of the architecture behaviors
- High-level languages translated into LOTOS (ISO 8807)

= CADP tools helping hardware conception :

- Compilers, translators and model generators

- Functional verification :
Model checking, equivalence checking
Co-simulation (RTL — LOTOS)

- Performance evaluation :
Functional models enriched with time information. Performance evaluation based on IMC theory.
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From LOTOS to Markov chains
- Interactive Markov Chain (IMC) formalism [Hermanns] -

The behavior of a physical system can often be represented by :
« All the states the system may occupy

action based
» How the system moves from one state to another <

time based

Timed behavior:
Continuous Time Markov Chain (CTMC)

Functional behavior:
Labeled Transition System (LTS)

PUSH

POP rate A

rate p

PUSH rate A

POP

rate g

PUSH —» — > POP
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From LOTOS to Markov chains
- Interactive Markov Chain (IMC) formalism [Hermanns] -

The behavior of a physical system can often be represented by :
« All the states the system may occupy

action based
» How the system moves from one state to another <

time based

Timed behavior:
Continuous Time Markov Chain (CTMC)

Functional behavior:
Labeled Transition System (LTS)

- Composition
- Concurrency
- Synchronization

Vil

Description of large
systems &
formal verification

- Performance measures
- No composition
- No synchronization

Vil

Performance evaluation
of complex systems
reserved to specialists
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From LOTOS to Markov chains
- Interactive Markov Chain (IMC) formalism [Hermanns] -

one model

- Markovian transitions
* Represent delays

- Interactive transitions
« Synchronization
« Composition

Functional
verification

Performance
evaluation

Hiding of Markovian
transitions and
minimization

Hiding of interactive
transitions and
minimization

LTS CTMC
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From LOTOS to Markov chains

Time
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Example: a simplified xSTream queue

PRODUCER QUEUE
SYSTEM PUSH POP
— —
L OTO S rate a PUSH_RQ Q U E U E PO P_RQ rate 3
MODEL PUSH_RSP MODEL POP_RSP
PUSH RSP PUSH_RQ POP_RSP  POP_RQ
Time between 2 PUSH Time needed to process a
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D E— —»
PUSH_RQ | PUSH_RQ PUSH_RQ I PUSH_RQ
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Time needed to
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Example: a simplified xSTream queue

SYSTEM

LOTOS
MODEL

Time needed to
process a PUSH
and
Time needed to
process a POP

PRODUCER QUEUE
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—-
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—
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Conclusion

Several early results...

=  Functional verification

- Two functional issues highlighted in xSTream
- Formal verification of the FAUST NoC router
- Theoretical results on isochronous forks in asynchronous circuits

= Performance evaluation

- Prediction of latencies of an MPI benchmark on the FAMEZ2 architecture for
different topologies, different software implementations of the MPI primitives
and different cache coherency protocols.

- Possibility to predict latencies, throughputs and queue occupancy in the
xSTream architecture.
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Conclusion

... but nothing can be taken for granted.

= Functional verification
- 2 different approaches (top-down and bottom-up)

- But we are never sheltered from state explosion — expertise is needed !

= Performance evaluation

Trade-off between good phase-type approximation and state explosion
No knowledge of the accuracy gain due to a better phase-type approximation
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