
From LOTOS to LNT

Hubert Garavel
Frédéric Lang Wendelin Serwe

INRIA Grenoble – LIG
Université Grenoble Alpes
http://convecs.inria.fr

http://convecs.inria.fr/

 Scope of this talk

 Three lines of work in Ed Brinksma's publications:
 between 1984 and 1995
specification of communication protocols and
distributed systems — the LOTOS language
 starting from 1991
 conformance testing for protocols
 starting from 1995
 real time and performance evaluation

2 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

LOTOS (1984-1989)
ISO/IEC standard 8807:1989

3 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

LOTOS
LOTOS: a language for concurrent systems

 data structures: abstract data types (ACT-ONE)
 concurrent processes: process calculi (CCS, CSP, Circal)
 original operators: ">>" (enable), "[>" (disable)

Ed Brinskma's key contributions:
 ISO/IEC standard 8807:1989, edited by Ed Brinksma
 LOTOS tutorial [Bolognesi-Brinksma-88]
 constraint-oriented style [Brinksma-89]
"parallel composition = conjunction of constraints"

4 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Assessment of LOTOS
On the positive side:

 working compromise between diverse concepts
 high abstraction level and formal semantics
 application to complex systems: OSI and ISDN protocols,
hardware systems, etc.
 many projects and tools: SEDOS, LOTOSphere, SPECS,
EUCALYPTUS-1 and -2, etc

On the negative side:
 LOTOS did not unite the process-algebra community
 (existing calculi remained, and new calculi arose)
 LOTOS did not gain wide industrial acceptance
 (mostly due to its "steep learning curve")

Ed Brinksma also proposed enhancements to LOTOS
5 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Extended LOTOS (1988)

6 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Extended LOTOS
Extended LOTOS was the subject of Ed Brinksma's
PhD thesis (1988)
Proposed enhancements to LOTOS, with a focus on
the behavioural part:

 introduction of SCCS-like action product
 attempt to unify both LOTOS operators for sequential
composition (";" and ">>")
 OCCAM-like n-ary operators with a fully bracketed syntax

 sel B1 [] B2 [] ... [] Bn endsel
 par B1 || B2 || ... || Bn endpar

 par operator ranging over a finite domain of values
 better support for modules

7 MARS 2017

Modular LOTOS (1992-1995)

8 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Modular LOTOS
Modular LOTOS was defined in a LOTOSphere
deliverable edited by Ed Brinksma
Proposed enhancements to the data part of LOTOS:

 distinction between constructors and functions
 introduction of partial functions
 built-in types: natural numbers, integer numbers, strings
 generic data structures: lists, sets, arrays, etc.
 module interfaces (called descriptions) for hiding details
 renaming to avoid name clashes between modules
 generic modules parameterized by descriptions

9 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

E[nhanced]-LOTOS (1993-2001)
ISO/IEC standard 15437:2001

10 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

E-LOTOS (Enhanced LOTOS)
An impressive effort to address LOTOS shortcomings:

 abstract data types replaced with functional data types
 imperative style: variable assignment, output parameters
 language unification: functions being a subset of processes
 a single sequential composition operator
 "graphical" parallel composition operator
 typed communication gates
 exception handling (e.g., partial functions)
 quantitative time (delays, timeouts, urgency)
 new operators: gate renaming, suspend-resume
 modules, interfaces, combinators, genericity

11 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Assessment of E-LOTOS
On the positive side:

 an ambitious evolution of LOTOS and process calculi
 many inspiring ideas and new language features

On the negative side:
 a complex language, with many semantic rules
• LOTOS standard: 70 pages (+ 70 pages of annexes)
• E-LOTOS standard: 120 pages (+ 80 pages of annexes)

 the "steep learning curve" problem remains
 few case studies done with E-LOTOS
 no software implementation available

12 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

LOTOS NT (1997-now)

13 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

LOTOS NT ("New Technology")
A fallback approach designed at INRIA Grenoble
to avoid the ever-growing complexity of E-LOTOS
LOTOS NT: a simplified version of E-LOTOS

no type synonyms
no ML-like anonymous tuples
no extensible records
no structure equivalence for types (name equivalence instead)
no subtyping relation based on record subtyping
no support for quantitative time
no suspend-resume operator

LOTOS NT influenced the latest evolutions of E-LOTOS

 14 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Implementation of LOTOS NT
TRAIAN: a LOTOS NT → C compiler

 developed at INRIA Grenoble (10 releases since 1998)
 55,000 lines of code (using the SYNTAX/FNC2 compiler
generation system based on attribute grammars)
 translates LOTOS NT types and functions to C ones
 incomplete: does not handle LOTOS NT processes
(since the maintenance of FNC2 stopped in 1999)

Useful applications for compiler construction
 idea: SYNTAX + LOTOS NT + very little C code
 12 compilers (including CADP tools) written this way

15 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

LNT (2005-now)

16 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

A brief history of LNT (1/2)
2005: request from Bull to replace LOTOS data types

 mix LOTOS processes with LOTOS NT types/functions
 design of a translator: LOTOS NT data types → LOTOS (+C)

The translator was progressively extended to handle
LOTOS NT processes as well

 no need to write processes in LOTOS any more
At present, a suite of three tools:

 LPP (LOTOS Pre-Processor): 2000 lines of code (C + Lex)
 LNT2LOTOS: 42,200 lines (SYNTAX + LOTOS NT + C)
 LNT.OPEN: 400 lines (Bourne shell)

 see Section 7.2 of the paper for details about the translation

17 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

A brief history of LNT (2/2)
2009: the translator being complete and robust enough,
INRIA Grenoble shifted from LOTOS to LOTOS NT

 no more LOTOS code manually written since then
 more than 15,000 LOTOS NT specifications so far

2010: the translator became part of the CADP toolbox
2014: "LOTOS NT" was renamed to "LNT" to avoid
ambiguities with the language supported by TRAIAN
2015: LNT used for teaching concurrency at University
Grenoble Alpes and ENSIMAG engineering school

18 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Two main design challenges
Combine two programming paradigms in one

 sequential programming: functional/imperative traits
 concurrent programming: process calculi

 Most formal languages have stumbled on this difficulty
LOTOS, Estelle, SDL, etc.: no unification — just two
heterogeneous languages put together
Design a language for engineers, not for theoreticians

 reuse existing concepts as much as possible
 standard notions should be handled in the usual way
 cf. the idea of "disappearing formal methods"

19 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Overview of LNT constructs
LNT specification = set of modules
Each module may contain:

 types:
• predefined: bool, nat, int, real, char, string
• free constructors, including enumerations, records, unions
• combinators: ranges, arrays, lists, sorted lists, sets,

sorted sets, predicate subtypes
 functions: either mathematical or procedural
• predefined: arithmetical, logical, relational operators
• generated automatically for user-defined types
• handwritten by the user

 channels: gate types, including none and any
 processes: concurrent agents communicating using gates

20 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Expressions, instructions, behaviours

Semantics expressions instructions behaviours

Can assign variables? no yes yes

Can send/receive messages? no no yes

Can execute nondeterministically? no no yes

Can execute non-atomically? no no yes

Can never terminate? no no yes

21 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

Constructors, functions, processes

Semantics constructor mathematical
function

procedural
function process

Can have "in" parameters?
(i.e., call by value) yes yes yes yes

Can raise exceptions?
(i.e., partial definition) no yes yes yes

Can have "out" parameters?
(i.e., call by result) no no yes yes

Can have "in out" parameters?
(i.e., call by value-result) no no yes yes

Can return no result?
(i.e., have a "void" result) no no yes yes

22 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

BEHAVIOURS
stop
communication action
nondeterministic assignment
nondeterministic choice
loop without break
parallel composition
gate hiding
disruption
process call

A unifying view of LNT

23 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

mathematical-function call

EXPRESSIONS

INSTRUCTIONS null
local variable declaration
assignment
exception raise
assert
sequential composition
if-then-else
pattern-matching case
loop with break
for and while loops
procedural-function call
return

constant variable
PATTERNS

constructor call

Impact of LNT so far
 17 case studies done with LNT [21 publications]

 avionics: 2
 cloud computing: 3
 distributed algorithms: 4

9 translators to LNT [11 publications]

 AADL: 1 Toulouse-Sfax
 applied π-calculus: 1 Grenoble
 BPEL-WSDL: 2 MIT-Tsinghua, Bucharest-Grenoble
 BPMN: 2 Nantes, Paris
 DFT: 1 Twente
 EB3: 1 Paris-Grenoble
 GRL: 1 Grenoble

24 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

 hardware design: 4
 human/computer interfaces: 2
 other industrial systems: 2

Conclusion

25 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

A long-term story…

Ed Brinksma has set a promising research agenda
that has been pursued by others
After many attempts, there is now a proper
replacement language for LOTOS: LNT
On-going research directions:

 Extend the LNT language
 Design a native LNT→C compiler

26 Festschrift symposium in honor of Ed Brinksma — Oct. 18, 2017

	From LOTOS to LNT
	 Scope of this talk
	LOTOS (1984-1989)�ISO/IEC standard 8807:1989
	LOTOS
	Assessment of LOTOS
	Extended LOTOS (1988)
	Extended LOTOS
	Modular LOTOS (1992-1995)
	Modular LOTOS
	E[nhanced]-LOTOS (1993-2001)�ISO/IEC standard 15437:2001
	E-LOTOS (Enhanced LOTOS)
	Assessment of E-LOTOS
	LOTOS NT (1997-now)�
	LOTOS NT ("New Technology")
	Implementation of LOTOS NT
	LNT (2005-now)�
	A brief history of LNT (1/2)
	A brief history of LNT (2/2)
	Two main design challenges
	Overview of LNT constructs
	Expressions, instructions, behaviours
	Constructors, functions, processes
	A unifying view of LNT
	Impact of LNT so far
	Conclusion�
	A long-term story…

