An Account of the LNT Project
(1998-2024)

Hubert Garavel
joint work with F. Lang, W. Serwe and many others

INRIA Grenoble — LIG — Université Grenoble Alpes
http://convecs.inria.fr

Technical University of Eindhoven — September 30, 2024

http://convecs.inria.fr/

What is LNT?

m LNT: acronym for "LOTOS New Technology"
m A formal method designed to replace LOTOS
m Developed at INRIA Grenoble since 1998

m On-line resources about LNT:
https://cadp.inria.fr/tutorial (see LNT section)

rd
informatics #Fmathematics '
&L%&L—— L1 G 2

https://cadp.inria.fr/tutorial

1. Design principles of LNT

rd
informatics #Fmathematics
&L’Z&d——— G

Goals

m LNT is intended to describe critical systems
» strong, nominal typing (no type inference)
» static analysis (control-flow and data-flow analyses)
» strictness (many compiler checks and warnings)
—> catch many errors early, before exploring state spaces

m LNT is desighed to be used by industry engineers
» stay aligned with mainstream languages
» ease of reading > ease of writing

» simplicity: avoid esoteric symbols (CSP), omnipresent
brackets (LOTOS), overloaded parentheses (uUCRL), etc.

r d

informatics #Fmathematics '
&L’Z&a_——
: 4

Synchretism and unification

m LNT combines ingredients from diverse sources:
» functional programming languages
» imperative programming languages
» process calculi
—> engineers and students already know 80% of LNT

m LNT provides sequential and parallel constructs
» one can use the sequential part alone

» the sequential part is a subset of the parallel part
(contrary to LOTQOS, SDL, FDR, uCRL, etc., which have
two different languages for data and behaviour)

informatics #Fmathematics '
&L’Z&a-—— .
L G 5

About minimality

m LNT is not "minimal” in the sense of the A-calculus:
» it provides if-then-else, case, and alt conditionals
» it provides while-loops, for-loops, loops with break

» it provides functions as a restricted form of processes

= minimizing the number of LNT constructs is not a goal
m Alternative goals to be minimized:

» differences between LNT and mainstream languages

» time needed by "ordinary" engineers to learn LNT
» time needed to write and read LNT models

» size (number of lines) of LNT models

informatics #Fmathematics '
&L’Z&a-—— .
L G 6

Concurrency

m Concurrent processes as first-class citizen

m Primitive concepts borrowed from process calculi
» no shared memory between parallel processes
» nondeterministic choice (on control branches and data)
» multiway synchronous communication (rendezvous)

m Non-primitive concepts:
» state machines (do not scale up to complex systems)
» shared variables (too many possible semantics)
» FIFO queues of messages
= all these concepts can be derived from primitive ones

r d

informatics gFmathematics '
6Z26a——— LI G 7

Process calculi: a complicated story

Bristol Oxford Edinburgh 1ISO Grenoble Amsterdam

track track track track track track
1 1

E/CSPE(1978) \:
I |

| 1 - 1 1
occam1!(1983) :/CCS:(981)

! TCSP1(1984) \i\>\4 |

occam2 (1988
j(1988) CCS1(1989) | LOTOS! (1989) PSF! (1989)
i |

\\A'\) HCRL] (1995)

VPL (1997) ! _JLOTOS NTI (1997)

I
—> ACP (1984)
I

|
|
occam3 1(1992)

m-calculus

CSPm (1997)

| |
E-LOTOS ! (2001) | mCRL2}(2006)
|

\ LNT 1.0}(2006)
|

|
LNT 7.31(2024)
v

bigraphs

*---—----------

‘—--—--—--—--—-
‘--—----—--

*---—-
*----

\

i‘
[n]
00

Main sources of inspiration for LNT (1)

m GCL (Guarded Command Language) — E. Dijkstra (1975)
» nondeterministic choice
m CSP (Communicating Sequential Processes) — T. Hoare (1978)
» concurrent processes without shared memory
» atomic synchronous communication (rendezvous)
m CCS (calculus of Communicating Systems) — R. Milner (1980)
» semantics: LTS, t-transitions, SOS rules, bisimulations...
m SMIL (Standard Meta Language) — R. Milner (1983)
» constructor types, pattern-matching "case”

r d

informatics #Fmathematics '
&L%&L—— L1 G 9

Main sources of inspiration for LNT (2)
m occam —D. May @ INMOS (1983)

» proof that CSP can evolve into an industrial language

m Ada —J. Ichbiah et al. @ Honeywell Bull (1983)

» clever syntax for structured programming constructs

m NIL / Hermes — R. Strom et al. @ IBM (1984)
» static detection of uninitialized variables ("typestate")

m LOTOS —ISO standard 8807 (1989)

» processes parameterized by gates, disable operator

m E-LOTOS — ISO standard 15437 (2001)

» functional data types instead of ADTs, imperative style

rd
informatics #Fmathematics '
&L%&L—— L1 G 10

Functional or imperative style?

m Situation:
» abstract data types in LOTOS / SDL / uCRL are rejected
» functional programming is not widely adopted
» E-LOTOS' functional/imperative mix is unsatisfactory

—> LNT adopts a "truly imperative" style

m But "mutable” variables may raise semantic issues:
» side effects in expressions, especially Boolean guards
» write-write or read-write conflicts on shared variables
» variables used but not assigned before

r d

informatics ##mathematics '
6Z2&a——— LI G 11

Static analysis

m To avoid semantic issues with the imperative style:
static analysis (aka control and data-flow analyses)

m Two main roles:
» preserve semantics (e.g., forbid uninitialized variables)
» emit pertinent warnings about dubious parts of code

m Practical issues:
» static analysis algorithms are involved and error-prone
» they address undecidable questions (~halting problem)
» they are pessimistic (may reject correct LNT programs)

r d

informatics #Fmathematics '
&L’Z&a-—— :
- ‘ 12

Example 1

var X, Y: nat in
INPUT (?X);
if X <100 then
Y: =1
end if;
if sgrt (X) < 10 then
Y:=Y+1 --isYproperlyinitialized here?
end if
end var

The exact frontier between correct and incorrect
LNT models depends on compiler's cleverness

r d

informatics ##mathematics '
6Z2&a——— LI G 13

Example 2
par
X:=0
|

while false loop

X:=1
end loop
end par

-- should the compiler report a write-write conflict
-- on variable X in the parallel composition?

The frontier between correct and incorrect models
is also a matter of personal taste

r d

informatics ##mathematics '
&L%a-—— LI G 14

2. Development tools for LNT

rd
informatics #Fmathematics
&L’Z&d——— G

15

Executability

m Specifications vs programs:
» specifications are declarative, programs are imperative
» such a difference is advocated by Z, TLA+, etc.
» but engineers dislike doing the work twice

m LNT (as CSP, LOTOS, etc.) makes no such difference:
» Traditional concept of executable formal method
» LNT is detailed enough to express algorithms

» LNT models are meant to be executable
(at least with simulation or rapid prototyping)

» Yet, LNT has nondetermism, pre-/post- conditions...

r d

informatics ##mathematics '
6Z2&a——— LI G 16

Implementing LNT

m For a new language such as LNT, one needs
compilers/translators

m INRIA Grenoble has been developing tools
for LNT since 1998

m Four successive (yet overlapping) phases

r d
informatics g#Fmathematics
V2% e 17

1998-2018: TRAIAN 1 & 2

m PhD thesis of Mihaela Sighireanu (1999)
contributions to E-LOTOS ("LOTOS NT" dialect)

m TRAIAN: a compiler (or "transpiler") for LOTOS NT

» only handles LOTOS NT types and functions

» generates C code (no need for LNT-specific byte code)
» written using attribute grammars (SYNTAX + FNC2)

» 11 releases of TRAIAN: v1.0 (1998) — v2.9 (2019)

m TRAIAN is heavily used for compiler construction
» 13 compilers written using SYNTAX + TRAIAN
» most of their code (63-91%) is written in LNT itself

informatics #Fmathematics '
&L’Z&a_——
. 18

Compilers/translators built using TRAIAN

compiler LNT lines|C lines|SX lines||LNT ratio
P1c2LNT 3712 430 1711 63.4%
NTIF 7046 1273 1387 72.6%
AAL 7849 934 1591 73.1%
SVL 9089 476 3025 72.2%
CTRL2BLK 9871 466 580 90.4%
Cur2LoTOS 10,323 | 1871 | 1570 75.0%
Expr.OPEN 11,569 | 3458 | 1536 69.8%
ATLANTIF 13,738 | 393 1433 88.3%
Fsp2LoOTOS 20,449 | 2639 | 4163 75.0%
TRAIAN 3.8 33,076 | 5564 | 3700 78.1%
GRL2LNT 37,738 | 1851 | 1759 91.3%
LNT2LOTOS 38,610 | 2836 | 4390 84.2%
McLEXPAND 43,337 | 6641 | 4364 79.7%

r 4
informatics gFmathematics '
4 Zua—‘- LI G

19

2006-2020: LNT2LOTOS

m LNT2LOTOS: a translator from LNT to LOTOS
» developed at Bull's request (to get rid of LOTOS ADTs)
» enables reuse for LNT of the existing CADP tools
» started with LNT types and functions
» progressively expanded to handle LNT processes
» "lightweight" translation: no type checking, etc.
most checks deferred to the target LOTOS compiler

m Since 2010: LOTOS abandoned at INRIA Grenoble
» replacement of LOTOS by LNT
» LNT successfully used in 30+ cases studies

r d

informatics #Fmathematics '
&L’Z&a_——
. 20

2016-2020: TRAIAN 3.0

m Practical issues with TRAIAN 2:

» FNC2 attribute grammars were verbose and tedious
» FNC2 was no longer maintained (and no source code)
» FNC2 executables were 32-bit, hitting 3-4 GB limit

—> maintenance and evolution of TRAIAN 2 was difficult

m 2016-2020: complete rewrite of TRAIAN
» SYNTAX+FNC2 replaced by SYNTAX+LNT technology

» TRAIAN 3.0: entirely different from TRAIAN 2.9, yet
producing exactly the same C code (modulo renaming)

» TRAIAN 3.0 bootstrapped using TRAIAN 2.9

r d

informatics #Fmathematics '
&L’?&a_——
- 21

2020-now: The Great Convergence

m 2020: Two different LNT languages and compilers
» TRAIAN 3.0: produces C code for LNT types/functions
» LNT2LOTOS: produces LOTOS code (handles processes)
m Practical issues:
» both compilers were incompatible in many details
» we could not maintain two different LNT dialects
m We progressively evolved both compilers:
» discussion and selection of the "best"” features for LNT

» unification of syntax, semantics, libraries, tests, docs
» TRAIAN is now the front-end called before LNT2LOTOS

eiia¥ - 22

Great Convergence steps

1998 2006 Mar. 2020—2023 Oct. 2023 Jan. 2024 — now

T7)

informatics #Fmathematics '
&LZ&&L—— L1 G 23

The LNT team(s)

Mihaela Sighireanu

. TRAIAN 1.0to 2.9
Guillaume Schaeffer

Lian Apostol David Champelovier
Alban Catry Hubert Garavel
o _ Frédéric Lang Xavier Clerc
Sai-Srikar Kasi Wendelin Serwe
Jan Stoecker TRAIAN 3.0to0 3.15 Yves Guerte

Christine McKinty
LNT2LOTOS 1.0to 7.1 Vincent Powazny

”
informatics g#mathematics '
LR

24

3. Conclusion

4
informatics gFmathematics
63’2‘&——— LI G

25

Summary

LNT: a computer language combining two different
models of computation:
m Sequential computation (types and functions)
» application domain: compiler construction
» so far: 13 compilers/translators written in LNT
m Parallel computation (processes and events)
» application domain: hardware/software/telco systems
» so far: 30+ case studies done with LNT
» 15 translators "X — LNT" developed

r d

informatics g#mathematics '
6Z26a-—— LI G 26

Current status

m LNT exists and is operational:
» since 2010, LNT fully replaces LOTOS in Grenoble
» using LNT does not increase the size of state spaces
» LNT used by several companies
» LNT used to teach concurrency in universities

m Robust compilers for LNT are available:
» TRAIAN (58,000 lines of code): 4 releases / year
» LNT2LOTOS (45,000 lines of code): 12 releases / year
» LNT test suites totalling 15+ million lines of code

r d

eiia¥ - 27

Next steps

m The LNT language is (slightly) evolving:
» based on case studies and "X — LNT" translators
» feedback/suggestions welcome

m The LNT tools are evolving fast:
» better error MesSages for novice users

» more precise static analyses

» separation of roles between TRAIAN and LNT2LOTOS
(LNT2LOTOS — LOTOS code generator)

r d

informatics gFmathematics '
6Z26a——— LI G 28

Possible collaborations

®

m Upgrade old formal models to LNT:
» can LNT replace prior formal methods?

» feedback welcome to enhance LNT
» papers for MARS@ETAPS workshops

=

XML
m Create back-ends for LNT: JSON

B

» TRAIAN could export a decorated
abstract tree (XML or JSON)

» new translators "LNT — X" could be
developed (in addition to LNT2LOTOS)

LOTOS 277

r d

informatics ##mathematics '
6Z26a-—— LI G 29

