Distributed On-the-Fly Verification of Large State Spaces

Christophe Joubert

INRIA Rhône-Alpes / VASY
http://www.inrialpes.fr/vasy

December 12th, 2005

Joint work with Radu Mateescu and Hubert Garavel

Formal Verification

- Goal : to produce reliable softwares
- Technique: using formal models and computation capacities of computers to analyze their behaviour
- Targets: critical computer systems, implying high human or financial costs
- Example : lost of Cryosat satellite 08/10/05 software error on Rockot Launcher - 136 M €

Formal Model: Labeled Transition System (LTS)

 Simplified behaviour of a data exchange protocol between 2 computers:

 Real size LTS (10⁵ states, 10⁵ transitions) extracted from the VLTS benchmark:

- Software support (CADP) for LTS representation :
 - explicit (predecessor/successor function) Bcg (Binary Coded Graph)
 - implicit (successor function) OPEN/CÆSAR [Garavel-98]

Enumerative Verification

true/false + diagnostic (example, counterexample, test)

Global verification

 LTs constructed before verification

On-the-fly verification

- LTS constructed during verification
- Possibility of partial exploration of LTs to obtain a result

 Problem of state space explosion

Distributed Verification

- To use the computation power and memory space of interconnected machines to solve complex problems
- ICLUSTER (INRIA/ID)
 216 PIII 733 MHz 256 Mb

IDPOT
 48 Bi-Xeon 2.5 GHz 1.5 Gb

Four large problems treated in this research work

Enumerative Verification

- On-the-fly equivalence checking
- On-the-fly minimization (τ-confluence)
- On-the-fly model-checking of temporal logic formulae

Test generation

On-the-fly generation of conformance test cases

Generic approach to the four large problems

⇒ Resolution of boolean equation systems (BES) with diagnostic

Enumerative Verification

- Equivalence relations[Andersen-Vergauwen-95], [Mateescu-03]
- τ-confluence [Pace-Lang-Mateescu-03]
- μ-calculus formulae [Andersen-94],[Mateescu-Sighireanu-02]

Test generation

Conformance test cases

Outline

- Boolean Equation Systems
- Distributed On-the-Fly Resolution of BES
- Three Applications in Enumerative Verification
- Application to Test Generation
- Conclusion and Future Work

Outline

- Boolean Equation Systems
- Distributed On-the-Fly Resolution of BES
- 3 Three Applications in Enumerative Verification
- Application to Test Generation
- Conclusion and Future Work

Monoblock and multiblock BES

- Set of fixed point boolean equations $(M_i = \{x_{ii} \stackrel{\sigma_i}{=} op_{ii}X_{ii}\}_{1 \le i \le m_i, 1 \le i \le n})$
- Pure disjonctive or conjonctive formulae (simple BES)
- n blocks M_i ($i \in [1..n]$) with acyclic interblock dependencies

Boolean graph and BES resolution

o : true

: false

: explored portion during an

on-the-fly DFS resolution

: diagnostic

- Boolean graph G = (V, E, L) associated to a BES (of sign ν)
 - V = variables set
 - E = edges set
 - $L = \text{variables sign } (\lor, \land)$
- Local sequential resolution [Mateescu-03]
 - Truth value of main variable
 - Diagnostic generation (boolean subgraph)

Distribution of BES Resolution

- Goal: to spread memory cost over several machines (current limit 10⁷ variables) and to decrease resolution time (with respect to BES size)
- Method: natural and balanced distribution of BES resolution problem by variable assignment on different processes

Outline

- Boolean Equation Systems
- Distributed On-the-Fly Resolution of BES
 - Resolution of Monoblock BES
 - Resolution of Multiblock BES
 - Generic Library CAESAR_SOLVE_2
- 3 Three Applications in Enumerative Verification
- Application to Test Generation
- Conclusion and Future Work

Resolution of Monoblock BES

Computation model

- Distributed memory architecture (message passing): cluster of Pcs
- P SPMD processes and 1 supervisor process
- Each process solves a subgraph of boolean variables (static hash function)

Distributed Algorithm: DSOLVE

- Forward exploration of boolean graph (V, E, L) starting from main variable $x \in V$
- Backward propagation of stable variables
- Distribution of variables through remote dependencies
- Termination detection: x stable or completely solved boolean graph

DSOLVE Execution

- Initialization (main variable x₁)
- Local expansion and remote expansion (EXP message)
- Conjonctive variable without successor (i.e., false constant)
- Backward local and remote (EVL message) propagation of stablized (i.e., computed) variables
- If main variable stabilizes, then resolution terminates

Distributed Termination Detection Algorithm (DTD)

 Two waves of global inactivity detection between supervisor process and resolution processes

Complexity results

For a boolean graph (V, E, L) and P resolution processes :

- Time complexity in the worst case = O(|V| + |E|)
 - two intertwined graph traversals (forward and backward)
- Memory complexity in the worst case = O(|V| + |E|)
 - dependencies stored during graph exploration
- Complexity in number of messages = O(|E|)
 - two messages (expansion and stabilization) at most exchanged per transition
- Distributed termination detection = O(|E|)
 - two waves with at most 3P messages exchanged per transition

Resolution of Multiblock BES

- Sequential approach [Mateescu-03]:
 - recursive resolution calls per block
 - call stack bounded by the number of blocks
- Naive distributed approach (DSolve) :
 - a single resolution for the entire BES
 - termination detection of the entirely solved BES
- ightarrow incompatible or inefficient with distributed resolution of multiblock BES
 - Adopted solution :
 - distinction between variables of different blocks
 - distributed termination detection per block
 - two traversals (forward and backward) per block

Distributed Resolution of Multiblock BES

Conservative extension of DSolve algorithm ⇒ identical computation model

Distributed algorithm MB-DSOLVE

- Choice of block number among those waiting to be explored or stabilized
- Priority to stabilization of blocks with highest level in the dependency graph between blocks
- Limitation of exploration requests : only one block portion explored at a time, and priority to blocks with lowest level
- Management of interblock unstabilized transitions : residual propagations
- Distributed detection of solved block portion

Example of Distributed On-the-Fly Resolution of Multiblock BES

bloc 1
$$\begin{cases} x_1 \stackrel{\nu}{=} x_2 \wedge y_1 \\ x_2 \stackrel{\nu}{=} x_3 \wedge z_1 \\ x_3 \stackrel{\nu}{=} x_3 \vee z_1 \end{cases}$$
bloc 2
$$\begin{cases} y_1 \stackrel{\mu}{=} x_2 \vee z_1 \vee y_2 \\ y_2 \stackrel{\mu}{=} y_1 \end{cases}$$
bloc 3
$$\begin{cases} z_1 \stackrel{\nu}{=} \mathsf{F} \end{cases}$$

 Fixed point can be different between blocks Interblock transition need to be stabilized

Generic Library CAESAR_SOLVE_2

- Distributed on-the-fly resolution of alternation free BES and distributed on-the-fly generation of diagnostics (boolean subgraph)
 - Monoblock BES DSOLVE (10 000 lines of C code)
 - Multiblock BES MB-DSOLVE (7 000 complementary lines of C code)
- Tested with a parameterized generator (1000 lines of C code) of random BES
- Connected to a generic and prototype communication library using Tcp/IP sockets
- Generic and independent boolean resolution API, given by the library CÆSAR_SOLVE_1 [Mateescu-03]

Outline

- Boolean Equation Systems
- Distributed On-the-Fly Resolution of BES
- Three Applications in Enumerative Verification
 - BISIMULATOR : On-the-Fly Equivalence Checker
 - TAU_CONFLUENCE : On-the-Fly Tau-confluence Reductor
 - EVALUATOR 3.5 : On-the-Fly Model-Checker of Logic Formulae
- Application to Test Generation
- Conclusion and Future Work

Distributed vs. Sequential BISIMULATOR

- Strong equivalence: best behaviour among all equivalences (very few time spent in the computation of successors)
- Linear speedups
- vasy_6120_11031 (VLTS):
 - 169.47 s. in sequential
 - 11.69 s. with 15 processes, speedup of 14.5

- Constant memory overhead (4 times sequential)
 - for all number of computation nodes
 - for a fixed problem size

Distributed vs. Sequential TAU_CONFLUENCE

- Speedup close to linear in the number of nodes
- Reduction between one and four orders (similarly in sequential)
- Limitation in few cases :
 - BFS traversal with resolution call for each τ-transition
 - DTD that forces nodes to synchronize often
 - Alternative solution : call over a set of τ -transitions
- Constant memory overhead (3 times sequential)
 - for all number of computation nodes
 - with few dependency to the problem size

Distributed vs. Sequential EVALUATOR 3.5 (time)

- Speedup close to linear
- Comparable in time and memory to UppDMC (distributed model-checker)
- Significative gain in time for the example vasy_12323_27667 (VLTS) and livelock detection:
 - > 2 days in optimised DFs sequential
 - < 3h in distributed over 20 nodes, speedup of 19.7
- Immediate detection of diagnostics

Distributed vs. sequential EVALUATOR 3.5 (memory)

- Constant memory overhead (4 times) the one in sequential):
 - for all number of computation nodes
 - for a formula and its truth value (detection of counterexample or not)
- Distributed model-checker for other temporal logics:
 - ACTL, by encoding in alternation free μ -calculus

[Fantechi-Gnesi-Ristori-92

Outline

- Boolean Equation Systems
- 2 Distributed On-the-Fly Resolution of BES
- 3 Three Applications in Enumerative Verification
- Application to Test Generation
 - TGV : On-the-Fly Test Case Generator
 - EXTRACTOR: On-the-Fly Test Case Generator
- Conclusion and Future Work

TGV: On-the-Fly Test Case Generator

[Fernandez-Jard-Jeron-Viho-96], [Jard-Jeron-05]

Encoding of Test Cases in terms of BES

- Test generation =
 - particular case of diagnostic generation for an alternation free μ-calculus formula
 - particular case of diagnostic generation for a multiblock BES
- Definition of corresponding multiblock BES :

$$\begin{array}{ll} \{ \mathbf{X_S} & =_{\nu} & \mathbf{Y_S} \wedge \bigwedge_{\mathbf{S} \rightarrow \mathbf{S'}} (\mathbf{Z_{S'}} \vee \mathbf{X_{S'}}) \} \\ \{ \mathbf{Y_S} & =_{\mu} & \bigvee_{\mathbf{S} \stackrel{\mathrm{acc}}{\rightarrow} \mathbf{S'}} \mathbf{T} \vee \bigvee_{\mathbf{S} \rightarrow \mathbf{S'}} \mathbf{Y_{S'}} \} \\ \{ \mathbf{Z_S} & =_{\nu} & \bigwedge_{\mathbf{S} \stackrel{\mathrm{acc}}{\rightarrow} \mathbf{S'}} \mathbf{F} \wedge \bigwedge_{\mathbf{S} \rightarrow \mathbf{S'}} \mathbf{Z_{S'}} \} \end{array}$$

- Advantages :
 - generic solution
 - direct creation of a distributed on-the-fly generator of test cases

EXTRACTOR: On-the-Fly Test Case Generator

EXTRACTOR vs. TGV

Speedup :

$$\frac{\sum_{\text{LTSs}} \textit{time}(\text{TGV})}{\left(\sum_{\text{LTSs}} \textit{time}(\text{EXTRACTOR}) + \sum_{\text{CTGs}} \textit{interm. time}(\text{DETERMINATOR})\right)} = 1.82$$

Memory consumption :

$$\frac{\sum_{\text{LTSS}} \textit{memory}(\text{TGV})}{\left(\sum_{\text{LTSS}} \textit{memory}(\text{EXTRACTOR}) + \sum_{\text{CTGS}} \textit{interm. memory}(\text{DETERMINATOR})\right)} = 1.05$$

Size of CTGs:

$$\frac{\sum_{\mathsf{LTSS}} \mathsf{stateNumber}(\mathsf{TGV})}{\sum_{\mathsf{CTGS}} \mathsf{interm.}} = 0.71}$$

$$\frac{\sum_{\mathsf{STES}} \mathsf{transNumber}(\mathsf{TGV})}{\sum_{\mathsf{CTGS}} \mathsf{interm.}} = 0.53$$

Treated examples on which TGV fails:

EXAMPLE	10 ³ states	10 ³ trans.	EXTRACTOR + DETERMINATOR
cwi_214_684	214	684	8 s., 19 Mb, no test case
cwi_566_3984	566	3 984	1195 s., 145 Mb, (32 states, 49 trans.)

Outline

- Boolean Equation Systems
- 2 Distributed On-the-Fly Resolution of BES
- 3 Three Applications in Enumerative Verification
- Application to Test Generation
- Conclusion and Future Work
 - Summary
 - Future Work

Summary

- Generic engine for distributed on-the-fly verification :
 - Resolution of monoblock BES (DSOLVE)
 - Resolution of multiblock BES (MB-DSOLVE)
- Connection to real tools for formal verification :
 - On-the-fly equivalence checking (BISIMULATOR)
 - On-the-fly partial-order reduction (TAU_CONFLUENCE)
 - On-the-fly model-checking of temporal logic formulae (EVALUATOR)
- Application to test generation :
 - Encoding of on-the-fly conformance test case generation in terms of BES (EXTRACTOR)
- Massive tool experimentation on industrial study-cases and real parallel machines

Future Work

- Completing existing applications :
 - Encoding of other equivalences: Markovian bisimulation [Hermanns-Siegle-99], abstract relation [Holzmann-Joshi-04]
 - Encoding of other reductions: tau-inertness [Groote-Sellink-90], weak tau-confluence [Groote-vandePol-00]
- Developing other applications over DSolve and MB-DSolve :
 - Horn clauses resolution [Liu-Smolka-98]
 - Workflow analysis and abstract interpretation [Fecht-Seidl-96]
- Study other strategies of BES resolution
- Generalizing the approach to heterogeneous architectures, such as Nows, and computation grids

Bibliography

H. Garavel, M. Mateescu, I. Smarandache, A. Curic, D. Bergamini, N. Descoubes, C. Joubert and G. Stragier.

DISTRIBUTOR and BCG_MERGE: Tools for Distributed Explicit State Space Generation. *TACAS* '2006, To appear.

C. Joubert and R. Mateescu. Distributed On-the-Fly Model Checking and Test Case Generation. SPIN'2006. LNCS 3925:126–145.

D. Bergamini, N. Descoubes, C. Joubert and R. Mateescu. BISIMULATOR: A Modular Tool for On-the-Fly Equivalence Checking. TACAS'2005, LNCS 3440:581–585.

C. Joubert and R. Mateescu. Distributed Local Resolution of Boolean Equation Systems. PDP'2005. IEEE 264–271.

C. Joubert and R. Mateescu. Distributed On-the-Fly Equivalence Checking. PDMC'2004, ENTCS 128(3).

Christophe Joubert.
Distributed Model-Checking: From Abstract Algorithms to Concrete Implementations.
PDMC'2003, ENTCS 89(1).

