Compositional Verification in Action

Frédéric Lang

Inria Grenoble — LIG
Université Grenoble Alpes
http://convecs.inria.fr

joint work with
Hubert Garavel and Laurent Mounier

http://convecs.inria.fr/

Introduction

m Goal: Formal verification of concurrent systems
» Action based models
» Asynchronous concurrency: interleaving & Hoare’s rendezvous
» Enumerative techniques: model checking, equivalence checking

m Generate a low-level model from a high-level description
m Compositional verification: “divide and conquer”
approach to fight state explosion

» Exploit the decomposition of the system into local processes

m This talk: » Basic compositional verification
» Refined approach of Graf & Steffen (and Luttgen)
» Applications in the CADP toolbox

r

informatics g mathematics ‘
6Z%‘ LI G 2

Six ingredients to verify a system (1-3)

1) Low-level model M

» State-transition formalism encoding the system’s behaviour
» Examples: labelled transition system, interactive Markov chain

2) Parallel composition operator | |
» Returns the composition M” = M,||...| M, of n components
» Complexity of M’ = product of the complexities of M, ..., M

n

3) Equivalence relation~ M x M
» Congruence for | |: M. =M = M,||..| M, =M/||..| M/

» Examples: strong bisimulation, branching bisimulation, ...

Six ingredients to verify a system (4-6)

4) Minimisation function min: M — M
» Maps each model to an element of its equivalence class in M/~
» Minimizes some complexity criterion (e.g., state space size)
» M ||...]| M, =min(M,)|]...] [min(M,)
5) High-level language L
» Realistic systems cannot be described directly in M
» [also has concepts of components C and parallel composition | |

6) Translation function [[.]]: L > M
» Maps a system S into a low level model [[S]]
» Morphism for | [: [[C,|[...[[C]l = [[CI]][...] [[[C,]]

Basic compositional verification

m Problem: generate a low level model for S=C,||...| |C,
where:
» [[S]] is excessively large (state explosion)
» But [[C,]], ..., [[C,]] are small enough to be generated

m Solution:
Compute min([[C,]])| |...| [min([[C,]]) instead of [[S]]

m Advocated in many research papers since end of the 80’s
» Functional verification setting: labelled transition systems
» Performance evaluation setting: interactive Markov chains

m Efficiency is inversely proportional to the size of the
largest intermediate model that is generated

r

Z«W 1 1 G 5

This is more complex in practice...

m Problem: Some [[C;]] may be much larger than [[S]]

» Cause: components are tightly synchronised and C.’s behaviour
is constrained by other components

» Examples: shared memories, hardware links, buses, ...

m Solution: If S has a hierarchical structure, try different
strategies

» Compose / minimize different subsets of components

informatics g mathematics ‘
6Z%‘ LI G 6

Compositional verification strategies

m Static strategies
» min is applied to leaf components only, or
» min is applied to every intermediate level in the hierarchy
m Dynamic strategies
» Decide at each step which components to compose / minimize
» Use heuristics (finding an optimal strategy is too complex)
m Example: smart reduction (Crouzen & Lang, 2011)
based on metrics considering both:
» The amount of synchronisations between components
» The % of transitions that can be hidden after composition

r

Z«W 1 1 G 7

The CADP verification toolboXx (cadp.inria.fr)

m Continuously developed & maintained since the late 80’s
m Provides all ingredients for compositional verification

Tool Description

M | BCG Compact format for LTS and IMC
| | EXP.OPEN Labelled transition systems synchronised using the parallel
composition operators of various process calculi
& BCG_CMP Comparison wrt. various equivalence relations
min | BCG_MIN Minimisation wrt. various equivalence relations
L LOTOS ISO/IEC standard 8807 (historic)
LNT Modern specification language combining features from
process calculi, and imperative / functional languages
[[.]] | CAESAR.ADT Compiler for the data part of LOTOS
CAESAR Compiler for the behaviour part of LOTOS
LNT2LOTOS Translator from LNT to LOTOS

r

The SVL language and compiler

m A unique feature of CADP (Garavel & Lang, 2001)
m Makes compositional verification easily accessible

m Can be seen as a process calculus extended with
operations on low level models
» Comparison and minimisation
» Hiding and renaming of transition labels
» Detection of deadlocks and livelocks
» Static and dynamic strategies (including smart reduction)

m Automated translation to shell scripts
cadp.inria.fr/man/svl.html

cadp.inria.fr/man/svil-lang.html

informatics g mathematics ‘
6Z7«W‘ LI G 9

http://cadp.inria.fr/man/manl/svl-lang.html
http://cadp.inria.fr/man/manl/svl-lang.html
http://cadp.inria.fr/man/manl/svl-lang.html
http://cadp.inria.fr/man/manl/svl-lang.html
http://cadp.inria.fr/man/manl/svl-lang.html

Example of SVL script

% DEFAULT _PROCESS_FILE=“SCENARIO.Int”

“SCENARIO.bcg” = smart branching reduction of
hide “GET_[AB]”, “PUT_[AB]” in

par
SND_A,RCV_A — TFTP_A [PUT_A, GET_A, RCV_A, SND_A]
| | SND_B,RCV_B — TFTP_B [PUT_B, GET_B, RCV_B, SND_B]
| | SND_A, RCV_B — MEDIUM [SND_A, RCV_B]
| | SND_B, RCV_A — MEDIUM [SND_B, RCV_A]
end par
end hide;

“diagnostic.bcg” = deadlock of “SCENARIO.bcg”

::::::::::: s #F mathematics '
6ZW LI G 10

Applications using CADP

m 11 CADP demos cadp.inria.fr/demos

» 4 demos (5 to 20 components)
direct generation fails but compositional verification succeeds

» 7 demos (4 to 11 components)
largest model is 1.7 to 24 x smaller than using direct generation

m 25 case-studies (out of 189) since 1991 [30 publications]
including 3 in perf. evaluation cadp.inria.fr/case-studies

» avionics/transport: 3 » graphical user interfaces: 1

» bioinformatics: 1 » hardware design: 5

» communication protocols: 9 w» service-oriented computing: 2
» distributed systems: 4

informatics gFmathematics ‘
6Z7«W‘ LI G 11

http://cadp.inria.fr/case-studies
http://cadp.inria.fr/case-studies
http://cadp.inria.fr/case-studies

The Graf & Steffen approach

m CAV’90 [154 citations], FACJ 1996 (with Luttgen) [126
citations] + research reports

m Problem: Some [[C;]] may be much larger than [[S]]

» But only a fraction of [[C]]] is actually permitted by its
environment C,||...||C.;| |Ci,;| |...]|C,

m Solution: Express constraints on C; as an interface

m In G&S’s work, | | is CSP parallel composition with forced
synchronisation on common actions

informatics g mathematics ‘
6ZW LI G 12

Graf & Steffen interfaces

m Set containing all traces allowed by the environment of
some component C,

m Concretely: the traces of a labelled transition system /
m The interface /| may be provided by the user

» |t is not necessarily exact

» If it has less traces than allowed by the environment, then / is
incorrect

» If it has more traces than allowed by the environment, then /
might not express enough constraints = performance problem
m Constraints represented by the interface are applied to C.
using a reduction operator (later called semi-composition)

r

informatics gFmathematics ‘
6 Z?A‘W‘ LI G 13

Graf & Steffen semi-composition

m Operator I, (C,) defined as the projection of C. | | / onto C,
» state (x, y) of C; | | /'is mapped to x

» transition (x, y) —a—> (x’, y’) of C; | | I'is
mapped to x —a—> x” if a is an action of C,
ignored otherwise

m Semi-composition has nice properties
» I1,(C) is behaviourally included in and smaller than [[C/]]

» [can be reduced wrt. any relation that preserves language
equivalence without modifying the final model

» If /is correct then [[C,| |...| |C,]I = [[C,| |...| |[TT,(C)||...] | C,]]
i.e., [[C]] can be replaced by I1,(C))

r

&zua,- L1 G 14

Detection of incorrect interfaces

m A key feature of the Graf & Steffen approach
m Fully automated mechanism

m Undefinedness predicates are put in I1,(C,) to indicate
which transitions have been cut off by /

m When recombining I, (C,) with its environment,
predicates corresponding to impossible synchronisations
are discharged

m /is correct if and only if all predicates are discharged in
the result [[C,||...| |IL(C)|]...]|C,]]

rd
: informatics gFmathematics ‘
%‘ LI G 1 5

PUT GET
®
PUT GET PUT e
v o
PUT GET RUN GET< >FWD PUT
PUT GET pur | PUT
PUT GET
[[C]] | | [[C,]] | | [[C]] Interface / (for C,)
o
PUT
PUT /\GET
® PUT GET
GET " PUT | put GET
GET {PUT}
® #on GET FWD
(A nE | e e le=tecicl v

Related approaches

m Following G&S, Cheung & Kramer (1993) and Valmari
(2000) proposed alternative approaches, where C; is
replaced by [[C; | | /]] instead of I'],(C))

m But interfaces can be counter-productive in these
approches:
» [[C. || /]] can be much larger than [[C]]

» Determinisation of the interface is (most often) necessary
(potential blow up)

rd
: informatics gFmathematics ‘
%‘ LI G 1 7

The Krimm & Mounier approach (1/2)

m Krimm & Mounier, TACAS 97
m 1st complete implementation of the G&S approach
m Generalisation to LOTOS hiding and parallel composition

» operator |[g,, ..., g,]| (forced synchronisation on gates g, ..., g,)

» Enables common yet non-synchronised actions
e.g., C,|[1|C, where C, and C, propose the same action

» Enables nondeterministic synchronisation
e.g., (C,|[]l C,) |[g]| C;where g proposed by C,, C,, and C;

» Non-associative: (C;|[g]|C,)|[g']1C5# C,|[g]|(C,|[g7]1C5) if g # g’

%‘ LI G 18

The Krimm & Mounier approach (2/2)

m [],(C)is generalised to an operator with four arguments
» A component C
» An interface/
» Alist of gates g,, ..., g, on which C; and | must synchronise
» A Boolean stating whether the interface is surely correct or not

m Useful properties of I1,(C)) still hold

m Undefinedness predicates are encoded as fail transitions:
s —fail(a)— s if the interface has cut offain s

m Parallel composition is modified to handle fail transitions

informatics gFmathematics ‘
6 Z?A‘W‘ LI G 19

CADP tools for G&S interfaces

m PROJECTOR: On-the-fly semi-composition
» Generalisation to LOTOS parallel composition and hiding
» Initially a prototype developed by Krimm & Mounier
» Entirely rewritten and integrated in CADP (now in version 3.1)
» /is a labelled transition system in the BCG format (explicit)

» C, may be expressed in any language connected to the
Open/Caesar API: BCG, LOTOS, LNT, EXP, etc.

m EXP.OPEN: Parallel compo. with undefinedness predicates
m SVL (abstraction operator)

» Example:
user abstraction “itf.bcg” sync SND A, RCV_A of TFTP_A

r

informatics gFmathematics ‘
6Z7«W‘ LI G 20

Interface Synthesis (1/2)

mInS=C,||...||C, how can an interface be computed
automatically for some [[C]] too large to be generated?

m Practical considerations must be taken into account

» Used operators are more general than CSP | |
» Computing the exact interface may be intractable

m Krimm & Mounier, TACAS'97

» Automatic interface computation for a given component, given
a (flat or hierarchical) component of its environment

» Based on algebraic rules defined in the framework of LOTOS

informatics gFmathematics ‘
6 Z?A‘W‘ LI G 21

Interface Synthesis (2/2)

m Lang, FORTE'06: generalisation of K&V to networks of
communicating automata

» Compute a correct interface from a (user-given) subset of
context components by analysing synchronisations

» Components are not necessarily connected in a PA expression
» Applicable to other languages than LOTOS

» Less permissive interfaces are generated when components
synchronise nondeterministically

» Implementation in EXP.OPEN and SVL

Applications using CADP

m 4 CADP demos cadp.inria.fr/demos

» From 3 to 60 components

» Direct generation and compositional verification without
interfaces fail

» With semi-composition, largest intermediate model has up to
700,000 states

m 8 case-studies [8 publications]

mostly industrial examples: Bull, HP, Tiempo, Scalagent

» avionics/transport: 1 » communication protocols: 2
» cloud computing: 1 » hardware design: 4

r

informatics gFmathematics ‘
6Z7«W‘ LI G 23

http://cadp.inria.fr/demos/demo_XX

Conclusion

m Compositional verification is effective vs. state explosion
(many case studies since 30 years)

m Major breakthrough in the 90’s: Graf & Steffen

» Interfaces inspired other (inferior) approaches
» Semi-composition is not well understood: cited, rarely explained

m CADP exploits the G&S approach

» Generalisation to LOTOS and LNT, full implementation

» Application to several case-studies, with impressive results:
Asynchronous circuit (660 concurrent processes) verified in a
few hours by a novice industry engineer

informatics g mathematics ‘
é Z?«W‘ LI G 24

