
1FMOODS, Paris – November 19-21, 2003

Compositional Verification using CADP of
the ScalAgent Deployment Protocol for

Software Components

Frédéric Tronel, Frédéric Lang, Hubert Garavel

INRIA Rhône-Alpes / VASY
655, avenue de l’Europe

F-38330 Montbonnot Saint Martin

1

2FMOODS, Paris – November 19-21, 2003

Outline

Compositional verification with CADP

The ScalAgent deployment protocol

Automated modeling in LOTOS

Verification of the protocol using CADP

Conclusions

3FMOODS, Paris – November 19-21, 2003

The CADP Toolbox

CAESAR/ALDEBARAN Development Package
A tool set for protocol engineering

Developed since 1985

Main features:
• process algebra (LOTOS)
• equivalence checking (bisimulations)

• model-checking (modal µ-calculus)
• code generation / rapid prototyping
• simulation
• test generation

4FMOODS, Paris – November 19-21, 2003

LOTOS

Formal Description Technique

Standardized at ISO (1989)

System defined in two parts

•Data part: abstract data types (ACT One)

•Control part: process algebra (CCS, CSP)

Asynchronous parallelism

Message passing synchronization on gates

5FMOODS, Paris – November 19-21, 2003

Verification of LOTOS Models

Check properties on an LTS (Labeled Transition
System) generated from the LOTOS model

Two representations of LTSs
• Explicit representation (BCG):

states and transitions enumerated and stored in a file

• Implicit representation (OPEN/CAESAR):
initial state + successor function computed on the fly

Two ways to generate LTSs
• Directly from the LOTOS model (CAESAR, CAESAR.ADT)

• Using compositional methods

6FMOODS, Paris – November 19-21, 2003

Compositional Verification in CADP

Assume system modeled as set of parallel LOTOS processes

Generate the explicit LTS of each process separately
(CAESAR, CAESAR.ADT), possibly using restriction
interfaces (PROJECTOR)

Apply abstractions preserving the properties to be
checked (label hiding, minimization modulo bisimulation)

Re-compose the parallel processes’ LTSs to get the LTS
of the whole system (EXP.OPEN)

SVL allows to specify compositional verification scenarios
in script files

7FMOODS, Paris – November 19-21, 2003

SVL (Scripted Verification Language)
"res.bcg" =

root leaf branching reduction of
hide G in

(
"spec.lotos":P1 [A, B, G]
|[G]|
"spec.lotos":P2 [C, G]
) ;

SVL program

SVL compiler

xxxxxxxxxxxxxx
xxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxx
xxxxxxxxxxxxxx
xxxxxx
xxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxx
xxxxxxx
xxxxxxx

Bourne shell-script

CAESAR, CAESAR.ADT
ALDEBARAN

BCG_MIN, BCG_LABELS
EXP.OPEN

PROJECTOR

CADP

8FMOODS, Paris – November 19-21, 2003

The ScalAgent Deployment Protocol

Commercialized by the ScalAgent company

Software deployment on heterogeneous devices
• Deployed components written in any language
• Deployment controlled by architecture specification

(XML configuration file)

9FMOODS, Paris – November 19-21, 2003

The ScalAgent Deployment Protocol

Based on Java
• Agents executing on geographically distributed JVMs
• Local communication via method calls
• Remote communication via the ScalAgent software bus

Application to remote
management of UPSs

10FMOODS, Paris – November 19-21, 2003

A Tree Hierarchy of Java Agents

Hierarchy defined by 2 types of agents
Container agents
•Leaves of the tree hierarchy
•Encapsulate the software components

Controller agents
•Higher nodes of the tree hierarchy
•Manage the deployment

11FMOODS, Paris – November 19-21, 2003

Definition of Agents

Each agent runs a workflow (tree) of activities
A Java class hierarchy of activities

• Sequential activities run sub-activities sequentially
• Parallel activities run sub-activities in parallel
• Only parent-child intra-agent communication

activity

sequentialparallel elementary

deployment … ……

Inherits
Abstract class
Concrete class

12FMOODS, Paris – November 19-21, 2003

A Configuration
Unfolding of
activities in the
tree of agents

Agent controller

13FMOODS, Paris – November 19-21, 2003

Activity Behaviour Definition

Behaviour defined as event/reaction automaton
• Event = message receipt

• Reaction = message emissions and state change

• Reaction depends on current state and message info:
sender, type (start activity, end activity, …), etc.

Behaviours are refined by inheritance
Sub-class adds reactions to activity

14FMOODS, Paris – November 19-21, 2003

Automated Modeling of Configurations

Implementation of an automated translator
(11,000 lines of Ocaml)

The activity class hierarchy is reflected in the
translator
• For a given configuration, inheritance is resolved

automatically by the translator

• No inheritance resolution required in the LOTOS model

XML
configuration Translator

LOTOS model

SVL script

15FMOODS, Paris – November 19-21, 2003

Generated LOTOS Model

One LOTOS process for each activity

•Gates SEND/RECV implement message exchanges

•Also an ERROR gate to handle unspecified events

4 agents: 34 activities / 7,200 lines of LOTOS

Model of communication (asynchronous)

specified in the SVL script

16FMOODS, Paris – November 19-21, 2003

Modeling Communications

Communications can be modeled by finite process
• Finite number of different messages

• Bounded number of messages simultaneously in transit

Centralized communication medium
• One process managing all messages between activities

• Not suitable to compositional verification (too large LTS)

Distributed communication media
• One process for each pair of communicating activities

• Easy to generate in isolation (small LTS)

17FMOODS, Paris – November 19-21, 2003

Compositional Verification
using Distributed Media

Incremental generation
• Starting at the leaves: compose 2 LTSs of

communicating activities with their medium

• Hide communications local to these activities

• Apply minimization wrt branching bisimulation

• Repeat towards the root

This allows to handle LTSs of tractable size
• Always < 106 states in our experiments

• Whereas potential global LTS of the order 1068 states

18FMOODS, Paris – November 19-21, 2003

Communication Media Generation

Media sizes are not given in the specification

Too small media may lead to deadlocks

Generate media by successive tries:
• Choose an arbitrary size for the medium and generate

(using the BCG_GRAPH new tool)

• Compose it with the corresponding activities

• Check in composition whether overflow occurred;
If yes, medium is enlarged and tried again

19FMOODS, Paris – November 19-21, 2003

Excerpt of Generated SVL Script
% N=3
% while true; do

"MEDIUM_19_18.bcg" = bag "$N" with "LABELS_19_18.txt" ;

"TMP.bcg" = branching reduction of
gate hide all but RECV_19_18, SEND_19_18, RECV_18_19, SEND_18_19 in

generation of
("CLUSTER_19_13.bcg" |[RECV_18_19, SEND_19_18]|

("MEDIUM_19_18.bcg" |[RECV_19_18, SEND_18_19]| "ACTIVITY_18.bcg")) ;

"SUB_MEDIUM.bcg" = abstraction "TMP.bcg" of "MEDIUM_19_18.bcg " ;

% RES=`bcg_open SUB_MEDIUM.bcg evaluator CHECK_$N.mcl | grep '\<TRUE\>'`
% if ["$RES" = ""]; then
% break
% else
% N=`expr $N + 1`
% fi
% done

20FMOODS, Paris – November 19-21, 2003

Verification Results

Successful verification of large configurations
• Up to 70 concurrent processes (activities + media)

• Verified in less than 20 minutes

Several impreciseness found in informal specification

Absence of ERROR messages

Size of distributed media is usually small (<10)

Service provided by main controller is that expected

21FMOODS, Paris – November 19-21, 2003

Service provided by the main controller
(as generated from the LOTOS model)

22FMOODS, Paris – November 19-21, 2003

Verification Data

12 min 1019 min 439 min 524 min 09Verification time

7,208
1,635
519

6,391
1,409
503

4,494
1,013
316

2,597
617
221

Size of generated LOTOS file (lines)
Size of generated SVL file (lines)
Number of intermediate files

70
9.1068

76,399

71
4.1068

410,025

51
3.1041

48,819

31
2.1024

1,824

Number of concurrent processes
Size of potential state space (states)
Size of largest generated LTS (states)

36
2
58
111

42
2
61
111

30
2
60
111

18
2
57
111

Number of media
Minimal size of media (states)
Mean size of media (states)
Maximal size of media (states)

34
7
68
195

29
7
82
481

21
7
57
225

13
7
42
104

Number of activities
Minimal size of activities (states)
Mean size of activities (states)
Maximal size of activities (states)

2
2
4

1
3
4

1
2
3

1
1
2

Number of controllers
Number of containers
Total number of agents

23FMOODS, Paris – November 19-21, 2003

Conclusion
Compositional verification is practical
• Particularly adapted for systems with many components

• Scale up better than non-compositional methods

CADP compositional verification tools perform
significantly better than direct methods
• Abstraction by hiding and bisimulations

SVL is a key ingredient of the success
• No need to care about low-level details

• Transparent management of hundreds of files (>500)

24FMOODS, Paris – November 19-21, 2003

More on CADP

http://www.inrialpes.fr/vasy/cadp

