
1

NTIF
A General Symbolic Model for Communicating

Sequential Processes with Data

Hubert Garavel, Frédéric Lang

INRIA Rhône-Alpes / VASY
655, avenue de l’Europe

F-38330 Montbonnot Saint Martin

2

Introduction

3

Intermediate Models

High-level languages
Lotos (ISO 8807:1988)
E-Lotos (ISO 15437:2001)
…

Low-level models
Transition Systems
Kripke structures
…

Intermediate models
Petri nets with Data
NTIF
…

Validation
Verification
Code generation
Simulation
Test generation

Optimization
Control flow analysis
Data flow analysis

4

An Early Example of
Intermediate Model

• Interpreted Petri nets with data (Garavel &
Sifakis, 1990)
– Global state variables
– Net transitions labeled with communication events
– Net transitions labeled with actions (guards, variable

assignments, variable resets, etc.)

• Benefits
– Separate language-dependent and independent aspects
– Improve the efficiency of verification algorithms by

operating on a simplified semantic model
– Can be used for several high-level languages

5

Choosing an Intermediate Model

Two conflicting requirements:

• Generality and expressiveness

– The model should be useable for several languages

– The model should preserve language semantics

• Simplicity

– The model should not contain unnecessary details

– The model should not complicate analysis

6

Existing Formalisms Based on
Condition/Action

7

Condition/Action Based Models

• Many models based on condition/action
Input/Output Automata, Linear Process Operators (muCRL),
Symbolic Transition Systems (CCS), IF (SDL), Communicating State
Machines (Basic LOTOS), etc.

• Condition/action: Transitions s s’ where
– s, s’ are states
– E is a boolean condition for firing the transition
– A (action) is a sequence of variable assignments
– C is a communication event

Input: G ?V (gate G, variable V)
Output: G !E (gate G, expression E)
Silent event: τ

E ⇒ A / C

8

Limitations of
Condition/Action Models

4 main limitations (developed in next slides)
• Transition firing is determined by a unique

condition

• Conditions and actions can not be intertwined

• The language of actions is too simple to
preserve big-step semantics

• Boolean conditions present in the high-level
language are duplicated

9

1. Unique Firing Condition (1/2)

• Depending on the formalism, the condition E is
evaluated:
– Either "before" communication

Example V > 2 ⇒ null / G ?V
means "if V > 2 then read on gate G a new value for V"

– Or "during" communication

Same example means "fire transition only if it is
possible to read on gate G a value for V greater than 2"

10

Unique Firing Condition (2/2)

• Both cases are possible at language level

Example if V > 2 then G ?V where V < 5

– Not implementable if evaluation "before"

– Two transitions necessary if evaluation "during"
V > 2 ⇒ null/τ V < 5 ⇒ null/G ?Vs1 s2 s3

• Both types of conditions must be provided
to avoid additional transitions

11

2. No Intertwining of
Condition and Action

• In all models condition is evaluated before action

• In practice actions (assignments) preceding
condition would be useful
Example if F(F’(V)) then G !V; V := F'(V)
should be writeable as

W := F’(V); if F(W) then G !V; V := W
without adding extra transitions in the model

• More generally: Intertwining conditions and
actions is necessary

12

3. Semantics (1/3)

• Two kinds of concurrent language semantics exist
– Small-step: one transition per assignment

Example V1 := 0; V2 := 0; V3 := 0
3 transitions by default in PROMELA

possible to aggregate explicitly: dstep

– Big-step: transitions induced by communication

Example V1 := 0; V2 := 0; V3 := 0; G !V1

1 transition in E-LOTOS

Variables are not shared between processes

No transitions associated to pure sequences of assignments

13

Semantics (2/3)

• Semantics of condition/action models

– If action contains at most one assignment then the
semantics is purely small-step

– If action enables sequential composition of assignments
then the semantics is a combination of small-step and
big-step

• In both cases the language of actions is
inappropriate for real big-step semantics

14

Semantics (3/3)

• Example Loops and big step semantics
– V[1] := 0; V[2] := 0; V[3] := 0 can be translated into

– But for i in 1..3 do V[i] := 0 must be translated into

• The language of actions must be extended to
preserve big-step semantics

s0 s1 s2
i := 1/τ

i ≤ 3 ⇒ i := i+1; V[i] := 0/τ

i > 3 ⇒ null/τ

s0 s1
V[1] := 0; V[2] := 0; V[3] := 0/τ

15

4. Condition Duplications (1/2)

• Translation of conditionals (if-else, case) leads to
condition duplications
Example if E1 then C1 elsif E2 then C2 … else Cn
translates into

i.e., n (n+1) / 2 conditions to evaluate instead of n

s

s

s

s

…

s’

s’

s’

s’

E1 ⇒ C1

not(E1) and E2 ⇒ C2

not(E1) and not(E2) and … and not(En-1) and En ⇒ Cn-1

not(E1) and not(E2) and … and not(En-1) and not(En) ⇒ Cn

16

Condition Duplications (2/2)

• Condition duplications penalize user-friendliness
– Models are laborious to write by hand

– Models are hard to read and debug

• Condition duplications penalize analysis efficiency
– Both condition and its negation must be evaluated

during model checking or simulation

– Properties that are obvious from the high-level standing
point become hard to prove at the intermediate level
Example Checking that at most one (or exactly one)
transition can be fired from a given state

17

Conclusion on Condition/Action

• Although often used in the litterature
condition/action models are not good:

– Neither for hand writing

– Neither for reading and debugging

– Nor for automatic processing

• A better formalism is needed: NTIF (created in
April 2001)

18

NTIF: The New Technology
Intermediate Form

19

NTIF Program

• An NTIF program is a collection of communicating
sequential processes with data
– Parallelism is left for further work

• An NTIF process is made of
– States s, s', …

– Typed parameters with condition of validity

– Typed (local) state variables

– Multi-branching transitions between states of the form
"from s A" where A is an action containing control
structures and jumps to next state

20

NTIF Actions

• Actions are built upon the following
syntactic elements
– Types written T

– Variables V

– Gates G

– Expressions E

– Patterns P

– Offers O ::= !E | ?P where E

21

Syntax of Actions
• A ::= null Inaction

| V0, …, Vn := E0, …, En Assignment

| V0, …, Vn := any T0, …, Tn Nondeterministic assignment

| reset V0, …, Vn Variable deactivation

| G O1 … On Communication (rendezvous)

| to s Jump to state

| A1; A2 Sequential composition

| select A1 [] … [] An end select Nondeterministic choice

| case E is
P1 → A1 | … | Pn → An

end case Deterministic choice

| while E do A0 end while While loop

22

Derived NTIF Constructs

• for derived from while

• if-then and if-then-else derived from case
if E then A1 else A2 end if =

case E is true → A1 | false → A2 end case

if E then A1 end if = if E then A1 else null end if

• stop derived from select
stop = select end select

23

NTIF Static Semantics
• Ensures program well-formedness

• Several checks
– Patterns and assignments bind variables without

ambiguity

– Variables are defined before used

– At most one communication occurs on each transition
execution path (e.g., no comm. in while loops)

– No blocking between a communication and jump to
next state

– Some "case" statements cover all possible values of a
given type

24

NTIF Dynamic Semantics

• Formal and intuitive semantics

• Expressed in SOS form (Structured Operational Semantics)

– Associates a (timed) LTS to each instance of a process

– [A], ρ ⇒l s’, ρ’ means that in store ρ:

A runs without deadlock

Processes action l

Jumps to state s’ with store ρ’

– "from s A" and « [A], ρ ⇒l s’, ρ’ »
implies a transition <s, ρ> →l <s’, ρ’>

25

NTIF Solves the Limitations of
Condition/Action

• Conditions can occur before and during
communications thanks to if actions and
conditional patterns
Example if V > 2 then G ?V where V < 5 end if

• Conditions and actions can be freely intertwined

• Big-step semantics are preserved thanks to
while loops

• Conditions are not duplicated thanks to the
multi-branching structure of transitions

26

NTIF Example: if-else-elsif

from Cep_Test_NT
if Deactivated then

Init_Load_Resp.Status := x9106;
Cep_Reply !Init_Load_Resp;
to Cep_Init

elsif Locked then
Init_Load_Resp.Status := x9110;
Cep_Reply !Init_Load_Resp;
to Cep_Init

elsif NT >= NT_Limit then
Init_Load_Resp.Status := x9102;
Cep_Reply !Init_Load_Resp;
to Cep_Init

else
Load_Amount := Inquiry.Load_Amt;
Slot_Index := 0;
Currency_Sought := Inquiry.Currency;
Slots_Available := 0;
Last_Avail_Slot := SlotCount;
to Cep_IFL_Locate_Slot

end if

27

Same Example in IF
(Condition/Action)

from Cep_Test_NT
if not Deactivated and

not Locked and (NT >= NT_Limit)
sync tau
do { Init_Load_Resp.Status := x9102 }

to S_00019 ;

from S_00019
if Reply_Type_Value_0 = Init_Load_Resp
sync Cep_Reply!(ReplyType_Value_0)

to Cep_Init ;

from Cep_Test_NT
if not Deactivated and not Locked and

not (NT >= NT_Limit)
sync tau
do {

Load_Amount := Inquiry.Load_Amt,
Slot_Index := 0,
Currency_Sought := Inquiry.Currency,
Slots_Available := 0 ,
Last_Avail_Slot := Slot_Count

}
to Cep_IFL_Locate_Slot ;

from Cep_Test_NT
if Deactivated
sync tau
do {Init_Load_Resp.Status := x9106}

to S_00017 ;

from S_00017
if Reply_Type_Value_0 = Init_Load_Resp
sync Cep_Reply!(Reply_Type_Value_0)

to Cep_Init ;

from Cep_Test_NT
if not Deactivated and Locked
sync tau
do {Init_Load_Resp.Status := x9110}

to S_00018 ;

from S_00018
if Reply_Type_Value_0 = Init_Load_Resp
sync Cep_Reply!(Reply_Type_Value_0)

to Cep_Init ;

28

NTIF Example: case
from Cep_Command_Case

Cep_Command ?Inquiry;
case Inquiry.Command is

ALLSLOTS00 ->
Slots_Reported := 0;
Slot_Index := 0;
to Cep_Slot_Inquiry_Sequence

| ALLSLOTS01 ->
to Cep_SIQ_Reply

| any ->
to Cep_Command_Out_Of_Sequence

end case

29

Same Example in IF
from Cep_Command_Case

sync Cep_Command ?Command_Type_Value_0
do {Inquiry := Command_Type_Value_0}

to S_00023

from S_00023
if Inquiry.Command = ALLSLOTS00
sync tau
do { Slots_Reported := 0, Slot_Index := 0 }

to Cep_Slot_Inquiry_Sequence ;

from S_00023
if (Inquiry.Command <> ALLSLOTS00) and (Inquiry.Command = ALLSLOTS01)
sync tau

to Cep_SIQ_Reply ;

from S_00023
if (Inquiry.Command <> ALLSLOTS00) and (Inquiry.Command <> ALLSLOTS01)
sync tau

to Cep_Command_Out_Of_Sequence ;

30

NTIF Example: while
from Cep_Slot_Inquiry_Sequence

while (Slot_Index < Slot_Count) do
if (Slots[Slot_Index].In_Use) then

Slots[Slot_Index].Reported := false;
Slot_Index := Slot_Index + 1

else
Slots[Slot_Index].Reported := true;
Slot_Index := Slot_Index + 1;
Slots_Reported := Slots_Reported + 1

end if
end while;
Cep_Reply !Slot_Info;
to Cep_SIQ_Reply

31

Same Example in IF
from Cep_Slot_Inquiry_Sequence

sync tau
to S_00009 ;

from S_00009
if (Slot_Index < Slot_Count) and

Slots[Slot_Index].In_Use
sync tau
do {

Slots[Slot_Index].Reported := false,
Slot_Index := Slot_Index + 1

}
to S_00009 ;

from S_00009
if (Slot_Index < Slot_Count) and

not Slots[Slot_Index].In_Use
sync tau
do {

Slots[Slot_Index].Reported := true,
Slot_Index := Slot_Index + 1,
Slots_Reported := Slots_Reported + 1

}
to S_00009 ;

from S_00009
if not (SlotIndex < SlotCount) and

(Reply_Type_Value_0 = Slot_Info)
sync Cep_Reply !Reply_Type_Value_0

to Cep_SIQ_Reply ;

32

Tools for NTIF

33

The NTIF Tool

NTIF
Tool

NTIF
Model

IF
Model

IF
Model

DOT
Graph

STG
Test Generation

TReX
Symbolic Verification

GraphViz
Graphical Visualization

Three options:
-stg
-trex
-dot

34

The NTIF Tool

• Symbolic unfolding of NTIF transitions into two
dialects of IF 1.0

– IF for STG (INRIA, Rennes)
used for symbolic test generation

– IF for TReX (LIAFA, Paris)
used for symbolic reachability analysis

• Graphical visualization of NTIF descriptions using
the DOT format of the GraphViz Package (AT&T)

35

Development of the NTIF Tool

• Started in April 2001

• Use of the SYNTAX + TRAIAN compiler
construction technology
http://www.inrialpes.fr/vasy/Publications/Garavel-Lang-Mateescu-02.html

• 12 000 lines of code
– 2 200 lines of SYNTAX code

– 8 300 lines of LOTOS NT code

– 1 500 lines of C code

• Versions for Solaris, Linux, and Windows

36

Case Studies

37

Electronic Purse

• Specification of a multi-currency electronic purse
(CEPS standard) starting from an existing IF 1.0
description (Feb. 2001)

• Numerous bugs found in the IF code due to:
– Condition duplications: non-exclusive conditions, non-

covered cases
– Use of undefined variables

• Translation into IF using NTIF and symbolic test
generation with STG

• Currently : symbolic verification with TReX

38

Operating System for Smart Card

• Administrative commands of an OS for smart card
dedicated to 3GPP mobile telephony (F.-X.
Ponscarme, INRIA, Rennes, July 2001)

• Case study performed in industrial context
(provided by Schlumberger)

• Translation into IF with NTIF and symbolic test
generation with STG

39

Statistics NTIF vs IF

• NTIF leads to more concise descriptions,
containing less states and transitions than IF

CEPS OS 3GPP
IF NTIF % ↓ IF NTIF % ↓

lines 598 418 30 % 697 498 28 %
transitions 63 23 63 % 78 22 71 %
states 31 21 32 % 34 20 41 %
Branching 1 2.21 1 2.77

40

Graphical Visualization

• NTIF leads to better structured descriptions as
can be seen using DOT

Graphical visualization of the CEPS encoded in IF
(Produced with STG)

41

Graphical
Visualization

Graphical visualization
of the CEPS
encoded in NTIF
(NTIF tool)

42

Zoom on
a State

CEPS state
encoded in NTIF

43

Conclusion

44

Conclusion

• Condition/action models are ill-adapted for
system description and analysis (symbolic or
exhaustive)

• Created in April 2001, NTIF is a structured
intermediate model that solves the problems

• Tools exist and have been applied to several case-
studies

45

Ongoing Work

• Implementation of the full language of data
(records, arrays, lists, trees, constructor-based types)

• NTIF extension with time constructs (delays,

urgency, etc.)

• Verification of time constraints

– Extension of the connection to TReX

– Connection to UppAal

46

Future Work

• Compiling LOTOS and E-LOTOS via NTIF, which
requires extensions to support
– Parallelism

– Exceptions

• Connection to CADP for enumerative verification,
simulation, and test

47

More Information…

Conference paper published at FORTE 2002
http://www.inrialpes.fr/vasy/Publications/Garavel-Lang-02.html

