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Introduction
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Intermediate Models

High-level languages
Lotos (ISO 8807:1988)
E-Lotos (ISO 15437:2001)
…

Low-level models
Transition Systems
Kripke structures
…

Intermediate models
Petri nets with Data
NTIF
…

Validation
Verification
Code generation
Simulation
Test generation

Optimization
Control flow analysis
Data flow analysis
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An Early Example of
Intermediate Model

• Interpreted Petri nets with data (Garavel & 
Sifakis, 1990)
– Global state variables
– Net transitions labeled with communication events
– Net transitions labeled with actions (guards, variable 

assignments, variable resets, etc.)

• Benefits
– Separate language-dependent and independent aspects
– Improve the efficiency of verification algorithms by 

operating on a simplified semantic model
– Can be used for several high-level languages
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Choosing an Intermediate Model

Two conflicting requirements:

• Generality and expressiveness

– The model should be useable for several languages

– The model should preserve language semantics

• Simplicity

– The model should not contain unnecessary details

– The model should not complicate analysis



6

Existing Formalisms Based on 
Condition/Action
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Condition/Action Based Models

• Many models based on condition/action
Input/Output Automata, Linear Process Operators (muCRL), 
Symbolic Transition Systems (CCS), IF (SDL), Communicating State 
Machines (Basic LOTOS), etc.

• Condition/action: Transitions s               s’ where
– s, s’ are states
– E is a boolean condition for firing the transition
– A (action) is a sequence of variable assignments
– C is a communication event

Input: G ?V (gate G, variable V)
Output: G !E (gate G, expression E)
Silent event: τ

E ⇒ A / C
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Limitations of
Condition/Action Models

4 main limitations (developed in next slides)
• Transition firing is determined by a  unique 

condition

• Conditions and actions can not be intertwined

• The language of actions is too simple to 
preserve big-step semantics

• Boolean conditions present in the high-level
language are duplicated
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1. Unique Firing Condition (1/2)

• Depending on the formalism, the condition E is
evaluated: 
– Either "before" communication

Example V > 2 ⇒ null / G ?V
means "if V > 2 then read on gate G a new value for V"

– Or "during" communication

Same example means "fire transition only if it is
possible to read on gate G a value for V greater than 2" 
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Unique Firing Condition (2/2)

• Both cases are possible at language level

Example if V > 2 then G ?V where V < 5

– Not implementable if evaluation "before"

– Two transitions necessary if evaluation "during"
V > 2 ⇒ null/τ V < 5 ⇒ null/G ?Vs1                             s2                               s3

• Both types of conditions must be provided
to avoid additional transitions
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2. No Intertwining of
Condition and Action

• In all models condition is evaluated before action

• In practice actions (assignments) preceding
condition would be useful
Example if F(F’(V)) then G !V; V := F'(V)
should be writeable as 

W := F’(V); if F(W) then G !V; V := W
without adding extra transitions in the model

• More generally: Intertwining conditions and
actions is necessary
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3. Semantics (1/3)

• Two kinds of concurrent language semantics exist
– Small-step: one transition per assignment

Example V1 := 0; V2 := 0; V3 := 0
3 transitions by default in PROMELA

possible to aggregate explicitly: dstep

– Big-step: transitions induced by communication

Example V1 := 0; V2 := 0; V3 := 0; G !V1

1 transition in E-LOTOS

Variables are not shared between processes

No transitions associated to pure sequences of assignments
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Semantics (2/3)

• Semantics of condition/action models

– If action contains at most one assignment then the
semantics is purely small-step

– If action enables sequential composition of assignments
then the semantics is a combination of small-step and
big-step

• In both cases the language of actions is
inappropriate for real big-step semantics
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Semantics (3/3)

• Example Loops and big step semantics
– V[1] := 0; V[2] := 0; V[3] := 0 can be translated into

– But for i in 1..3 do V[i] := 0 must be translated into

• The language of actions must be extended to 
preserve big-step semantics

s0 s1 s2
i := 1/τ

i ≤ 3 ⇒ i := i+1; V[i] := 0/τ

i > 3 ⇒ null/τ

s0 s1
V[1] := 0; V[2] := 0; V[3] := 0/τ
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4. Condition Duplications (1/2)

• Translation of conditionals (if-else, case) leads to 
condition duplications
Example if E1 then C1 elsif E2 then C2 … else Cn
translates into

i.e., n (n+1) / 2 conditions to evaluate instead of n

s

s

s

s

…

s’

s’

s’

s’

E1 ⇒ C1

not(E1) and E2 ⇒ C2

not(E1) and not(E2) and … and not(En-1) and En ⇒ Cn-1

not(E1) and not(E2) and … and not(En-1) and not(En) ⇒ Cn
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Condition Duplications (2/2)

• Condition duplications penalize user-friendliness
– Models are laborious to write by hand

– Models are hard to read and debug

• Condition duplications penalize analysis efficiency
– Both condition and its negation must be evaluated

during model checking or simulation

– Properties that are obvious from the high-level standing 
point become hard to prove at the intermediate level
Example Checking that at most one (or exactly one) 
transition can be fired from a given state
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Conclusion on Condition/Action

• Although often used in the litterature
condition/action models are not good:

– Neither for hand writing

– Neither for reading and debugging

– Nor for automatic processing

• A better formalism is needed: NTIF (created in 
April 2001)
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NTIF: The New Technology
Intermediate Form
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NTIF Program

• An NTIF program is a collection of communicating
sequential processes with data
– Parallelism is left for further work

• An NTIF process is made of
– States s, s', …

– Typed parameters with condition of validity

– Typed (local) state variables

– Multi-branching transitions between states of the form
"from s A" where A is an action containing control 
structures and jumps to next state
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NTIF Actions

• Actions are built upon the following
syntactic elements
– Types written T

– Variables V

– Gates G

– Expressions E

– Patterns P

– Offers O ::= !E | ?P where E
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Syntax of Actions
• A ::= null Inaction

|  V0, …, Vn := E0, …, En Assignment

|  V0, …, Vn := any T0, …, Tn Nondeterministic assignment

|  reset V0, …, Vn Variable deactivation

|  G O1 … On Communication (rendezvous)

|  to s Jump to state

|  A1; A2 Sequential composition

|  select A1 [] … [] An end select Nondeterministic choice

|  case E is
P1 → A1 | … | Pn → An

end case Deterministic choice

|  while E do A0 end while While loop
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Derived NTIF Constructs

• for derived from while

• if-then and if-then-else derived from case
if E then A1 else A2 end if =

case E is true → A1 | false → A2 end case

if E then A1 end if = if E then A1 else null end if

• stop derived from select
stop = select end select
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NTIF Static Semantics
• Ensures program well-formedness

• Several checks
– Patterns and assignments bind variables without

ambiguity

– Variables are defined before used

– At most one communication occurs on each transition 
execution path (e.g., no comm. in while loops)

– No blocking between a communication and jump to 
next state

– Some "case" statements cover all possible values of a 
given type
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NTIF Dynamic Semantics

• Formal and intuitive semantics

• Expressed in SOS form (Structured Operational Semantics)

– Associates a (timed) LTS to each instance of a process

– [A], ρ ⇒l s’, ρ’ means that in store ρ: 

A runs without deadlock

Processes action l

Jumps to state s’ with store ρ’

– "from s A" and « [A], ρ ⇒l s’, ρ’ »
implies a transition <s, ρ> →l <s’, ρ’>
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NTIF Solves the Limitations of
Condition/Action

• Conditions can occur before and during
communications thanks to if actions and
conditional patterns
Example if V > 2 then G ?V where V < 5 end if

• Conditions and actions can be freely intertwined

• Big-step semantics are preserved thanks to 
while loops

• Conditions are not duplicated thanks to the
multi-branching structure of transitions
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NTIF Example: if-else-elsif

from Cep_Test_NT
if Deactivated then

Init_Load_Resp.Status := x9106;
Cep_Reply !Init_Load_Resp;
to Cep_Init

elsif Locked then
Init_Load_Resp.Status := x9110;
Cep_Reply !Init_Load_Resp; 
to Cep_Init

elsif NT >= NT_Limit then
Init_Load_Resp.Status := x9102;
Cep_Reply !Init_Load_Resp; 
to Cep_Init

else
Load_Amount := Inquiry.Load_Amt;
Slot_Index := 0;
Currency_Sought := Inquiry.Currency;
Slots_Available := 0;
Last_Avail_Slot := SlotCount;
to Cep_IFL_Locate_Slot

end if
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Same Example in IF 
(Condition/Action)

from Cep_Test_NT
if not Deactivated and

not Locked and (NT >= NT_Limit)
sync tau
do { Init_Load_Resp.Status := x9102 }

to S_00019 ;

from S_00019
if Reply_Type_Value_0 = Init_Load_Resp
sync Cep_Reply!(ReplyType_Value_0)

to Cep_Init ;

from Cep_Test_NT
if not Deactivated and not Locked and

not (NT >= NT_Limit)
sync tau
do {

Load_Amount := Inquiry.Load_Amt,
Slot_Index := 0, 
Currency_Sought := Inquiry.Currency,
Slots_Available := 0 ,
Last_Avail_Slot := Slot_Count

}
to Cep_IFL_Locate_Slot ;

from Cep_Test_NT
if Deactivated
sync tau
do {Init_Load_Resp.Status := x9106}

to S_00017 ;

from S_00017
if Reply_Type_Value_0 = Init_Load_Resp
sync Cep_Reply!(Reply_Type_Value_0)

to Cep_Init ;

from Cep_Test_NT
if not Deactivated and Locked
sync tau
do {Init_Load_Resp.Status := x9110}

to S_00018 ;

from S_00018
if Reply_Type_Value_0 = Init_Load_Resp
sync Cep_Reply!(Reply_Type_Value_0)

to Cep_Init ;
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NTIF Example: case
from Cep_Command_Case

Cep_Command ?Inquiry;
case Inquiry.Command is

ALLSLOTS00 ->
Slots_Reported := 0;
Slot_Index := 0;
to Cep_Slot_Inquiry_Sequence

| ALLSLOTS01 ->
to Cep_SIQ_Reply

| any -> 
to Cep_Command_Out_Of_Sequence

end case
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Same Example in IF
from Cep_Command_Case

sync Cep_Command ?Command_Type_Value_0
do {Inquiry := Command_Type_Value_0}

to S_00023

from S_00023
if Inquiry.Command = ALLSLOTS00
sync tau
do { Slots_Reported := 0, Slot_Index := 0 }

to Cep_Slot_Inquiry_Sequence ;

from S_00023
if (Inquiry.Command <> ALLSLOTS00) and (Inquiry.Command = ALLSLOTS01)
sync tau

to Cep_SIQ_Reply ;

from S_00023
if (Inquiry.Command <> ALLSLOTS00) and (Inquiry.Command <> ALLSLOTS01)
sync tau

to Cep_Command_Out_Of_Sequence ;
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NTIF Example: while
from Cep_Slot_Inquiry_Sequence

while (Slot_Index < Slot_Count) do
if (Slots[Slot_Index].In_Use) then

Slots[Slot_Index].Reported := false;
Slot_Index := Slot_Index + 1

else
Slots[Slot_Index].Reported := true;
Slot_Index := Slot_Index + 1;
Slots_Reported := Slots_Reported + 1

end if
end while;
Cep_Reply !Slot_Info;
to Cep_SIQ_Reply



31

Same Example in IF
from Cep_Slot_Inquiry_Sequence

sync tau
to S_00009 ;

from S_00009
if (Slot_Index < Slot_Count) and

Slots[Slot_Index].In_Use
sync tau
do {

Slots[Slot_Index].Reported := false,
Slot_Index := Slot_Index + 1

}
to S_00009 ;

from S_00009
if (Slot_Index < Slot_Count) and

not Slots[Slot_Index].In_Use
sync tau
do {

Slots[Slot_Index].Reported := true,
Slot_Index := Slot_Index + 1,
Slots_Reported := Slots_Reported + 1

}
to S_00009 ;

from S_00009
if not (SlotIndex < SlotCount) and

(Reply_Type_Value_0 = Slot_Info)
sync Cep_Reply !Reply_Type_Value_0

to Cep_SIQ_Reply ;
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Tools for NTIF
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The NTIF Tool

NTIF
Tool

NTIF
Model

IF
Model

IF
Model

DOT
Graph

STG
Test Generation

TReX
Symbolic Verification

GraphViz
Graphical Visualization

Three options:
-stg
-trex
-dot
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The NTIF Tool

• Symbolic unfolding of NTIF transitions into two
dialects of IF 1.0

– IF for STG (INRIA, Rennes) 
used for symbolic test generation

– IF for TReX (LIAFA, Paris)
used for symbolic reachability analysis

• Graphical visualization of NTIF descriptions using
the DOT format of the GraphViz Package (AT&T)
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Development of the NTIF Tool

• Started in April 2001

• Use of the SYNTAX + TRAIAN compiler 
construction technology
http://www.inrialpes.fr/vasy/Publications/Garavel-Lang-Mateescu-02.html

• 12 000 lines of code
– 2 200 lines of SYNTAX code

– 8 300 lines of LOTOS NT code

– 1 500 lines of C code

• Versions for Solaris, Linux, and Windows
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Case Studies
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Electronic Purse

• Specification of a multi-currency electronic purse
(CEPS standard) starting from an existing IF 1.0 
description (Feb. 2001)

• Numerous bugs found in the IF code due to:
– Condition duplications: non-exclusive conditions, non-

covered cases
– Use of undefined variables

• Translation into IF using NTIF and symbolic test 
generation with STG

• Currently : symbolic verification with TReX
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Operating System for Smart Card

• Administrative commands of an OS for smart card
dedicated to 3GPP mobile telephony (F.-X. 
Ponscarme, INRIA, Rennes, July 2001)

• Case study performed in industrial context
(provided by Schlumberger)

• Translation into IF with NTIF and symbolic test 
generation with STG
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Statistics NTIF vs IF

• NTIF leads to more concise descriptions, 
containing less states and transitions than IF

CEPS OS 3GPP
IF NTIF % ↓ IF NTIF % ↓

# lines 598     418     30 %      697     498     28 %
# transitions 63       23     63 %       78       22     71 %
# states 31       21     32 %       34       20     41 %
Branching 1    2.21                    1    2.77
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Graphical Visualization

• NTIF leads to better structured descriptions as 
can be seen using DOT

Graphical visualization of the CEPS encoded in IF
(Produced with STG)
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Graphical
Visualization

Graphical visualization
of the CEPS 
encoded in NTIF
(NTIF tool)
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Zoom on 
a State

CEPS state 
encoded in NTIF
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Conclusion
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Conclusion

• Condition/action models are ill-adapted for 
system description and analysis (symbolic or 
exhaustive) 

• Created in April 2001, NTIF is a structured
intermediate model that solves the problems

• Tools exist and have been applied to several case-
studies
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Ongoing Work

• Implementation of the full language of data  
(records, arrays, lists, trees, constructor-based types)

• NTIF extension with time constructs (delays, 

urgency, etc.)

• Verification of time constraints

– Extension of the connection to TReX

– Connection to UppAal
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Future Work

• Compiling LOTOS and E-LOTOS via NTIF, which
requires extensions to support
– Parallelism

– Exceptions

• Connection to CADP for enumerative verification, 
simulation, and test
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More Information…

Conference paper published at FORTE 2002
http://www.inrialpes.fr/vasy/Publications/Garavel-Lang-02.html


