
1

SVL: A Scripting Language for 
Compositional Verification

Hubert Garavel, Frédéric Lang
INRIA Rhône-Alpes / VASY
655, avenue de l’Europe

F-38330 Montbonnot Saint Martin
France



2

CADP (CAESAR/ALDEBARAN) Tools
• A toolbox for protocol engineering
• Various input languages:

– LOTOS
– networks of communicating automata

• Various intermediate models:
– explicit LTSs (BCG)
– implicit LTSs (Open/Caesar)

• Bisimulation (Aldébaran, Bcg_Min, Fc2Tools)
• Model-checkers (XTL, Evaluator 3.0)
• Simulation, rapid prototyping, test generation…



3

Interface: Graphics vs Scripts

CADP code libraries and APIs

CADP command-line tools

graphical user-interface
EUCALYPTUS

scripting language
SVL



4

Why Scripting ?
• Verification scenarios can be complex
• They can be repetitive
• Many objects/formats to handle:

– High-level process descriptions (e.g., LOTOS)
– Networks of communicating LTSs
– Explicit and implicit LTSs

• Many operations to perform:
– LTS generation of a LOTOS program, a network of LTSs
– Label hiding, label renaming
– LTS minimization/comparison modulo equivalences
– Verification (deadlock, livelock, temporal logic formula)

• Various verification techniques:
– enumerative, on-the-fly, compositional, etc.



5

What is SVL?

•An acronym: Script Verification Language

•A language for describing
(compositional) verification scenarios

•A compiler (SVL 2.0) for executing
scenarios writen in this language

•A software component of CADP 2001



6

Outline

• The SVL Language

• Compositional Verification in SVL

• The SVL Compiler



7

SVL Components

Two types of components can be mixed

• SVL verification statements (written S)
– Compute and store an LTS or network of LTSs in a file

– Verify temporal properties

– Compare LTSs, etc.

• Bourne shell constructs (lines starting with %)
– Variables, functions, conditionals, loops, …

– All Unix commands



8

SVL Behaviours

• Algebraic expressions used in statements

• Several operators
– Parallel composition

– LTS generation and minimization

– Label hiding and renaming, etc.

• Several types of behaviours
– LTSs (four formats)

– Networks of communicating LTSs (two formats)

– LOTOS descriptions

– Particular processes in LOTOS descriptions



9

Abstract Syntax of Behaviours
B ::= "F.bcg" | "F.aut" | "F.fc2" | "F.seq" 

|   "F.lotos" | "F.lotos" : P [ G1, …, Gn ]
|   "F.exp"
|   B1 |[G1, …, Gn]| B2   |   B1 ||| B2 

|   generation of B0

| R reduction [using M] [with T] of B0

| [S] hide [all but] L1, …, Ln in B0

| [S] rename L1 → L1’, …, Ln → Ln’ in B0

| [user] abstraction B1 [sync G1, …, Gn] of B2 



10

Explicit LTSs

• States and transitions listed exhaustively
• LTSs in several formats

B ::= "F.bcg" Binary Coded Graphs

| "F.aut" Aldébaran ASCII format

| "F.fc2" Meije’s FC2 format

| "F.seq" Set of traces

• Format conversions are fully automatic



11

CADP Tools for Explicit LTSs

• A set of tools to process BCG graphs
– BCG_IO: Conversions from/to many other graph formats

– BCG_MIN: Minimization for strong/branching bisimulation

– BCG_LABELS: Label hiding and renaming

– BCG_INFO: Display information about a graph

– BCG_DRAW, BCG_EDIT: Draw/edit a BCG graph

• Aldebaran and the FC2 Tools
– LTS minimizations/comparisons for several bisimulations



12

Implicit LTSs
• States and transitions given in comprehension

– Initial state and transition relation
– States generated on-the-fly

• Several types of implicit LTSs
– LOTOS descriptions ("F.lotos")
– Particular LOTOS processes ("F.lotos" : P [G1, …, Gn])
– Networks of communicating automata ("F.exp")

LTSs combined with parallel and hiding, e.g.,
hide G1 in ("spec1.bcg" |[ G1, G2 ]| "spec2.aut")

– Parallel FC2 is also partly supported



13

CADP Tools for Implicit LTSs
• Special case: communicating LTSs

– Aldebaran and Exp.Open handle EXP files using
on the fly and BDD methods

– Fc2 Tools handle parallel FC2 files using BDD
methods

• General case: OPEN/CAESAR
– Primitives to compute initial state and

successors
– Modular separation between language-

dependent compilers and language-
independent tools



14

OPEN/CAESAR

Open/Caesar API implicit LTS

BCG_OPEN EXP.OPEN …

LTS generation
interactive simulation
random execution
on the fly verification
partial verification
test generation

Open/Caesar
librairies

FC2_OPEN

LOTOS BCG EXP FC2

CAESAR.OPEN



15

Explicit vs Implicit LTSs

SVL principles: 

• Keep LTSs implicit as long as possible

– Explicit LTS generation is expensive (state explosion)

– Not all properties necessitate to explore the whole LTS

• Explicit LTS generation is done only if required
explicitly by the user



16

LTS Generation
Conversion from an implicit LTS to an explicit LTS

B ::= generation of B0

Examples
– generation of "spec.lotos"

Use CAESAR.ADT and CAESAR
– generation of "spec.lotos" : P [G]

Use CAESAR.ADT and CAESAR (option –root)
– generation of "spec.exp"

Use EXP.OPEN and Generator
– generation of

(("spec1.bcg" |[G1]| "spec2.aut") ||| "spec3.bcg")
Use EXP.OPEN and Generator



17

Parallel Composition

B  ::= B1 |[G1, …, Gn]|  B2 

| B1 |||  B2 

| B1 || B2 

• Synchronization on G1, …, Gn (LOTOS semantics)

• B1 and B2 can be LTSs, but also any SVL behaviour
• Generation of intermediate EXP files



18

Label Hiding
B ::= [S] hide L1, …, Ln in B0

|  [S] hide all but L1, …, Ln in B0

• An extension of LOTOS hiding, where
L is either
– a gate name
– a label string (e.g. "G !3.14 !TRUE") 
– a regular expression (e.g. "G !.* !TRUE")

S ::= gate | total | partial is a matching semantics for 
regular expressions
all but means complementation of the set of labels

• Tools used: BCG_LABELS or EXP.OPEN



19

Label Hiding: Examples
[gate] hide G, H  in "test.bcg"

invokes BCG_LABELS (-hide) and returns an LTS in 
which labels whose gate is G or H are hidden

total hide "G ![AB].*"  in "test.bcg"
invokes BCG_LABELS and returns an LTS in
which labels matching "G ![AB].*" are hidden

partial hide G in "test.bcg"
invokes BCG_LABELS and returns an LTS in
which labels containing G are hidden



20

Label Renaming
B ::= [S] rename L1 → L1’, …, Ln → Ln’ in B0

where
– each L → L’ is a Unix-like substitution containing

regular expressions
– S is a matching semantics

S ::= gate | total | single | multiple

• Tool used: BCG_LABELS



21

Label Renaming: Examples
[gate] rename G -> H, H -> G in "test.bcg"

invokes BCG_LABELS (-rename) and returns LTS 
in which gate G is renamed into H and H into G 

total rename "G !A !TRUE" -> "A_TRUE" in "test.bcg"
invokes BCG_LABELS and returns an LTS in which
label "G !A !TRUE" is renamed into A_TRUE

total rename "G !\(.*\) !\(.*\)" -> "G \2 \1" in 
"test.bcg"

invokes BCG_LABELS and returns an LTS in which
offers of labels whose gate is G are swapped



22

Reduction (also Minimization)

LTS Minimization modulo an equivalence relation
B ::= R reduction [using M] [with T] of B0

• Several relations R
strong, branching, observational, safety,
tau*.a, etc.

• Several tools T
aldebaran, bcg_min, fc2tools

• Several methods M
std, bdd, fly

• Tools used: Aldebaran, BCG_MIN, Fc2



23

Reduction: Examples
strong reduction of "test.bcg" [with bcg_min]

invokes BCG_MIN and returns an LTS
minimized for strong bisimulation

branching reduction of "test.bcg" with aldebaran
invokes Aldebaran and returns an LTS
minimized for branching bisimulation

observational reduction of "test.bcg" with Fc2tools 
using bdd

invokes Fc2Min using BDD and returns an LTS
minimized for observational equivalence



24

Abstraction
• LTS generation of B2 abstracted w.r.t. interface B1

B ::= abstraction B1 of B2

|  user abstraction B1 of B2

• Equivalent syntax
B ::= B2 -|| B1

|  B2 -||? B1

where ? has the same meaning as user
• Detailed in Section on Compositional Verification



25

Abstract Syntax of Statements

S ::=  "F.E" = B0

|    "F.E" = R comparison [using M] 
[with T] B1 == B2

|    "F.E" = deadlock [with T]  of B0

|    "F.E" = livelock [with T]  of B0

|    ["F1.E" =] verify "F2.mcl" in B0



26

Assignment Statement
S ::= "F.E" = B0

• Computes B0 and stores it in file "F.E" 
• Extension E tells the format for "F.E"

(aut, bcg, exp, fc2, or seq, but not lotos)
• Principles:

– Format conversions are implicit (BCG_IO)
e.g. "spec.bcg" = "spec.fc2" is permitted

– No implicit LTS generation
If E is an explicit LTS format (i.e. all but exp)
then B0 must not denote an implicit LTS
⇒ generation must be used explicitly



27

Comparison of Behaviours
S ::= "F.E" = R comparison [using M] [with T] B1 == B2

|   "F.E" = R comparison [using M] [with T] B1 <= B2

|   "F.E" = R comparison [using M] [with T] B1 >= B2

• Compares B1 and B2 and stores the distinguishing
path(s) (if any) in "F.E"

• Equivalence or preorders
• Several relations R and several methods M
• Several tools T (aldebaran or fc2tools)



28

Deadlock and Livelock Checking

S ::= "F.E" = deadlock [with T] of B0

|    "F.E" = livelock [with T] of B0

• Detects deadlocks or livelocks using tool T
(aldebaran, exhibitor, evaluator, or fc2tools)

• Results in a (set of) paths leading to deadlock or 
livelock states and stored in "F.E"

• Verification may be on-the-fly
(Exhibitor or Evaluator with OPEN/CAESAR)



29

Temporal Property Verification

S ::= ["F1.E" =] verify "F2.mcl" in B0

• Checks whether B0 satisfies the temporal logic
property contained in "F2.mcl" (µ-calculus)

• May generate a diagnostic and store it in "F1.E" 
(example or counter-example which explains the resulting
truth value)

• Verification may be on-the-fly
(OPEN/CAESAR and Evaluator)



30

Shell Constructs in SVL Scripts

Shell commands can be inserted (%)
– Direct call to Unix commands (“echo”...)
– Setting of SVL shell variables

% DEFAULT_COMPARISON_METHOD=fly
% CAESAR_OPTIONS=-gc

– Enables the use of all shell control structures
"if-then-else" conditional
"for" loop
function definitions
etc.



31

A Simple Example
"bitalt.bcg" = strong reduction of

generation of "bitalt.lotos";

"obs.seq" = observational comparison
"bitalt.bcg" == (generation of "simple.lotos");

"dead.seq" = deadlock of "bitalt.bcg";

% for N in 1 2 3 4
% do

verify "prop_$N.mcl" in "bitalt.bcg"
% done



32

Outline

• The SVL Language
• Compositional Verification in SVL
• The SVL Compiler



33

SVL Key Features
for Compositional Verification

• Support for Basic Compositional Verification

Example: The Alternating Bit Protocol

• Script Simplification using Meta-Operations

• Support for Refined Compositional verification

Example: The rel/REL Protocol

• Compositional Performance Evaluation

Example: The SCSI-2 Protocol



34

Basic Compositional Verification
using CADP

How to avoid state explosion?

• Compositional generation: "divide and conquer"
– Partition the system into subsystems

– Minimize each subsystem modulo a strong or weak
bisimulation preserving the properties to verify

– Recombine the subsystems to get a system equivalent
to the initial one

• CADP tools support this approach
– Handle networks of minimized processes

– On the fly or exhaustively



35

Basic Compositional Verification
Illustrated

S1

…

S

…

Reduced
network of S
Reduced state 

space of S1

State space
of Sn

Reduced state
space of Sn

Reduced state 
space of S

Composition

State space
of S1

Generation

Sn
Generation Reduction

Reduction



36

Example
The Alternating Bit Protocol (ABP)

Protocol architecture



37

Compositional Generation of the ABP 
using SVL

"bitalt.bcg" = strong reduction of
hide SDT0, SDT1, RDT0, RDT1, RDTe, RACK0, RACK1, SACK0, SACK, SACKe in
(

(
(strong reduction of "bitalt.lotos" : TRANSMITTER)
|||
(strong reduction of "bitalt.lotos" : RECEIVER)

)
|[SDT0, SDT1, RDT0, RDT1, RDTe, RACK0, RACK1, SACK0, SACK1, SACKe]|
(

(strong reduction of "bitalt.lotos" : MEDIUM1)
|||
(strong reduction of "bitalt.lotos" : MEDIUM2)

)
) ;



38

Simplified ABP Script using the
DEFAULT_LOTOS_FILE variable

% DEFAULT_LOTOS_FILE="bitalt.lotos"
"bitalt.bcg" = strong reduction of

hide SDT0, SDT1, RDT0, RDT1, RDTe, RACK0, RACK1, SACK0, SACK1, SACKe in
(

(
(strong reduction of TRANSMITTER)
|||
(strong reduction of RECEIVER)

)
|[SDT0, SDT1, RDT0, RDT1, RDTe, RACK0, RACK1, SACK0, SACK1, SACKe]|
(

(strong reduction of MEDIUM1)
|||
(strong reduction of MEDIUM2)

)
) ;



39

Meta-operations
B ::= leaf R reduction [using M][with T] of B0

| root leaf R reduction [using M][with T] of B0

| node R reduction [using M][with T] of B0

• Three compositional verification strategies:
– Reduction of LTSs at the leaves of parallel

compositions in B0

– Reduction of LTSs at the leaves of parallel composition 
in B0 and then reduction of the whole behaviour

– Reduction at every node of B0

• Meta-operations expand to basic SVL behaviours



40

Simplified ABP Script using the
"root leaf reduction" Meta-operation

% DEFAULT_LOTOS_FILE="bitalt.lotos"
"bitalt.bcg" = root leaf strong reduction of

hide SDT0, SDT1, RDT0, RDT1, RDTe, RACK0, RACK1, SACK0, SACK1, SACKe in
(

(
TRANSMITTER
|||
RECEIVER

)
|[SDT0, SDT1, RDT0, RDT1, RDTe, RACK0, RACK1, SACK0, SACK1, SACKe]|
(

MEDIUM1
|||
MEDIUM2

)
) ;



41

Refined Compositional Verification

• Compositional verification may fail
– Concurrent processes constrain each other
– Separating tightly-coupled processes -> explosion

• Solution: use interfaces
– [Graf-Steffen-91], [Krimm-Mounier-97]
– Use interfaces to model the environment
– CADP supports this approach

Projector tool (Krimm and Mounier)

Des2Aut tool: replaced by SVL



42

The Abstraction Behaviour
• The LTS of a behaviour B may be larger than the

LTS of a behaviour containing B because of
context constraints

• Example
("User1.bcg" ||| "User2.bcg") |[G]| "Medium.bcg"
"Medium.bcg" may constrain the interleaving

• An SVL behaviour can be restricted w.r.t. an 
(exact or user-given) interface

B ::= [user] abstraction B1 of B2

| B2 -||[?] B1



43

Use of Interfaces for Abstraction

• Interface = LTS understood as a set of traces

• Abstraction eliminates states and transitions of a 
process never reached while following all traces 
of its interface

• User-given interfaces involve predicate
generation to check their correctness



44

SVL Example
The Rel/REL Protocol

% DEFAULT_LOTOS_FILE="rel_rel.lotos"
"crash_trans.bcg" = strong reduction of CRASH_TRANSMITTER;
"rel_rel.bcg" = strong reduction of generation of

leaf strong reduction of
hide R_T1, R_T2, R12, R21  in

(
(

abstraction (hide R_T1, R_T2 in "crash_trans.bcg") of
(

(user abstraction "r1_interface.lotos" of RECEIVER_NODE_1) 
|[R12, R21]|
(user abstraction "r2_interface.lotos" of RECEIVER_NODE_2) 

) 
) 
|[R_T1, R_T2, R_T3]| 
"crash_trans.bcg"

);



45

Compositional Performance Evaluation

• SVL can also be used for compositional
performance evaluation

• See FME 2002 paper by Garavel & Hermanns

http://www.inrialpes.fr/vasy/Publications/Garavel-Hermanns-02.html



46

Outline

• The SVL Language
• Compositional Verification in SVL
• The SVL Compiler



47

The SVL 2.0 Compiler
leaf branching reduction of

hide G in
(
"spec.lotos":P1 [A, B, G]
|[G]| 
"spec.lotos":P2 [C, G]
)

SVL script

SVL compiler
(TRAIAN + SYNTAX)

xxxxxxxxxxxxxx
xxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxx
xxxxxxxxxxxxxx
xxxxxx
xxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxx
xxxxxxx
xxxxxxx

Bourne shell script

Caesar, Caesar.adt
Aldebaran

Bcg_min, Bcg_labels
Fc2tools

Exp.Open
Projector



48

The SVL 2.0 Compiler Detailed

Output
files

Code
generator

Bourne
shell script

Input
files

Shell
interpreter

Interm.
files

SVL
script

Truth values

Invokes CADP 
and FC2 tools



49

The SVL 2.0 Compiler

•7 000 lines of code 
(SYNTAX + LOTOS NT + C + Bourne Shell)

•Important design effort
– Concise messages + log of execution
– Erase intermediate files as soon as possible
– Several modes to debug SVL descriptions
– Implements «expert» knowledge

(e.g., alternative reduction strategies)



50

Conclusion
• SVL is a new language and a new tool
• Fully integrated in CADP 2001 
• Originally designed for compositional verification
• But now used for most CADP demos (27 over 31)
• Advantages

– Avoids knowledge of each tool options/syntax
– Avoids Makefiles, script-shells, intermediate files
– Improves readability of verification scripts
– A 5 page Makefile -> (much clearer) 2 page SVL script

• Extensible to support new tools
• Positive feedback from several users
• Compositional Verification becomes practical



51

More Information

• FORTE 2001 paper
http://www.inrialpes.fr/vasy/Publications/Garavel-Lang-01.html

• TACAS 2002 tool paper
http://www.inrialpes.fr/vasy/Publications/Lang-02.html

• SVL manual page
http://www.inrialpes.fr/vasy/cadp/man/svl.html

• CADP and demo examples
http://www.inrialpes.fr/vasy/cadp


