
Specification and Verification of a
Dynamic Reconfiguration Protocol

for Agent-Based Applications

Manuel Aguilar Cornejo, Hubert Garavel,
Radu Mateescu, Noël de Palma

INRIA Rhône-Alpes / VASY

DAIS'2001, Krakow 2

Outline

• Introduction

• Dynamic reconfiguration protocol

• Formal specification in LOTOS

• Verification using the CADP toolbox

• Conclusion and future work

DAIS'2001, Krakow 3

Introduction
• Context of the work:

– message-oriented middlewares (MOM)
– agent-based applications

• Cooperation between INRIA and Bull:
– AAA (Agents Anytime Anywhere) middleware

dynamic reconfiguration features

– Netwall security product of Bull
multiple firewall coordination, log auditing

• Objective:
validate AAA’s dynamic reconfiguration protocol

DAIS'2001, Krakow 4

AAA distributed agent model
• Agents:

– sequential entities communicating by messages
– execution using an event-reaction model
– persistency, atomicity, configurability

• Communication:
– unidirectional point-to-point channels
– asynchrony, reliability, causality

• Application:
– set of agents executing on several sites
– communication channels between agents

DAIS'2001, Krakow 5

Dynamic reconfiguration

• Run-time modifications of the application:
– Architecture (creation/deletion of agents,

modification of communication channels)
– Migration (placement of agents on sites)
– Implementation (replacement of code)
– Interface (upgrade of services)

• Problem:
preserve the consistency of the application

after reconfiguration

DAIS'2001, Krakow 6

Inconsistency after migration

A1 A2 A3

site 1 site 2

A1 A2 A3

site 3site 1 site 2

Migration of A2 from site 2 to site 3

A1 at site 1

A2 at site 2

A2 at site 3

A3 at site 2

m1

m2

m3 m4

m5

?

DAIS'2001, Krakow 7

Avoiding inconsistencies
Three issues:
• Agent naming

references to migrating agents must be
properly updated

• Agent states
agents must resume computation from their

state prior to reconfiguration
• Communication channels

messages in transit during reconfiguration
must be preserved and properly redirected

DAIS'2001, Krakow 8

Principles of the protocol
• Use a configurator agent, which:

– keeps a view of the application configuration
placement of agents on execution sites
communication channels between agents

– handles all reconfiguration commands
ADD, DELETE, MOVE, BIND, REBIND

– updates the configuration view accordingly
• Precondition for safe reconfiguration:

all communication channels involved must be
empty before the reconfiguration can occur

DAIS'2001, Krakow 9

Abstract states of agents

• Application agents can be:
– Active (execute normally)
– Passive (react to events, but send no messages)
– Frozen (cannot receive any event)

active

frozen

passiveadd

delete

activate, rebind

passivate

ack move

DAIS'2001, Krakow 10

Overview of the protocol

Reconfiguration of an agent A:
1. Compute the change passive set of A

cps(A) = agents with channels towards A
2. Passivate all agents in cps(A);

when this is completed, A is frozen
3. Send the reconfiguration command to A;

all channels towards A are empty
4. Activate all agents in cps(A)

DAIS'2001, Krakow 11

Formal specification

• LOTOS [ISO 1988]:
formal description technique for communication

protocols and distributed systems

• Two « orthogonal » sub-languages:
Data part (abstract data types, ActOne)

sorts and operations
equations and pattern-matching

Behaviour part (process algebras, CCS and CSP)
parallel processes interacting by rendez-vous
value-passing communication on gates

DAIS'2001, Krakow 12

LOTOS – behaviour part
Behaviour operator Meaning

stop inaction
G !V ?X:S ; B action prefix
B1 [] B2 choice
[E] -> B conditional
B1 |[G1,…,Gn]| B2 parallel composition
B1 ||| B2 interleaving
exit successful termination
B1 >> B2 sequential composition
P [G1,…,Gn] (V1,…,Vm) process call

DAIS'2001, Krakow 13

Architecture of the protocol

Configurator

View

Software bus (AAA infrastructure)

SEND RECV

SENDSENDSEND

RECV RECVRECV

Agent 1 Agent 2 Agent n. . .

DAIS'2001, Krakow 14

Architecture (in LOTOS)
behaviour
(

Agent [SEND, RECV] (DEAD, a1@s1, {})
|||
. . .
|||
Agent [SEND, RECV] (DEAD, an@sn, {})
|||
Configurator [SEND, RECV] (nil, a1@s1+ … + an@sn + {})

)
|[SEND, RECV]|
Bus [SEND, RECV] (nil)

DAIS'2001, Krakow 15

Configurator agent (in LOTOS)
process Configurator [SEND,RECV] (C:Config, R:AddrSet):=

(* ADD command: add an agent to the application *)
choice A:Addr []

[(A notin C) and (A isin R)] ->
SEND !A !confaddr !ADD !dummy !dummy;

RECV !confaddr !A !ACK !dummy !dummy;
Configurator [SEND,RECV] (ins(A & {}, C), rem(A,R))

[]
(* . . . other reconfiguration commands *)

endproc

DAIS'2001, Krakow 16

Application agent (in LOTOS)
process Agent [SEND,RECV] (S:State, A:Addr, R:Addrset):=

[S eq DEAD] ->
RECV !A !confaddr !ADD !dummy !dummy;

SEND !confaddr !A !ACK !dummy ! dummy;
Agent [SEND, RECV] (ACTIVE, A, {})

[]
(* … other reconfiguration commands *)

endproc

DAIS'2001, Krakow 17

Verification by model-checking

LOTOS
program

compiler

model model-checker

property

yes/no + diagnostic

DAIS'2001, Krakow 18

Model

Labelled Transition System (S, A, T, s0):
– S is the set of states
– A is the set of actions (a = G v1 … vn)
– T ⊆ S × A × S is the transition relation
– s0 ∈ S is the initial state

Snd 1 Rcv 1τ

Ack

Timeout

τs0 s1 s2 s3

s4

DAIS'2001, Krakow 19

CADP
(http://www.inrialpes.fr/vasy/cadp)

• Caesar/Aldebaran Development Package:
a toolbox for the verification of communication

protocols and distributed systems
• Functionalities:

– compilation (Caesar.adt, Caesar)
– interactive and guided simulation (Ocis)
– bisimulation checking (Aldebaran, Bcg_min)
– temporal logic model-checking (Evaluator)
– compositional verification (Svl)
– test generation (Tgv)

DAIS'2001, Krakow 20

Interactive simulation

DAIS'2001, Krakow 21

Temporal logic

Regular alternation-free µ-calculus:
• Action formulas (ACTL):

α ::= a  ¬α  α 1 ∧ α 2

• Regular formulas (PDL):
β ::= α  β 1 . β2  β 1 | β2  β ∗

• State formulas (µ-calculus):
ϕ ::= F  T  ϕ 1 ∨ ϕ 2  ϕ 1 ∧ ϕ 2

 〈 β 〉 ϕ  [β] ϕ  Y  µ Y . ϕ  ν Y . ϕ

DAIS'2001, Krakow 22

Correctness properties
• Safety: something bad never happens

After a move command, the target agent cannot receive
any event until it completes its migration

[«Rec !A !Move». (¬«Rec !A !Ack»)*. «Rec !A !any»] false

• Liveness: something good eventually happens
Every reconfiguration command is eventually followed

by an acknowledgement

[«Snd !A !Cmd»] µX . (<true> true ∧ [¬«Rec !A !Ack»] X)

DAIS'2001, Krakow 23

Verification results

• Several experiments
– bounded number of agents
– bounded number of sites
– various subsets of reconfiguration commands

• Successful check of 10 temporal properties
• Rapid growth of model size

– exponential number of possible configurations
3 agents, Add, Bind, Rebind, Move
⇒ more than 1,000,000 states

DAIS'2001, Krakow 24

Conclusion and future work
• Formal specification and verification of AAA’s

middleware dynamic reconfiguration protocol:
– 900 lines of LOTOS specification

– 10 safety and liveness properties

– verification of several finite-state configurations

• Future work:
– implement a distributed configurator agent

– continue the validation on larger configurations

– improve the tools (massively parallel model-checking)

– automatic test generation

