Specification and Verification of a
Dynamic Reconfiguration Protocol
for Agent-Based Applications

Manuel Aguilar Cornejo, Hubert Garavel,
Radu Mateescu, Noel de Palma

INRIA Rhone-Alpes / VASY




Outline

e Introduction

e Dynamic reconfiguration protocol

e Formal specification in LOTOS

e Verification using the CADP toolbox

e Conclusion and future work

—_— %l
DAIS'2001, Krakow ‘



Introduction

« Context of the work:
- message-oriented middlewares (MOM)
- agent-based applications

» Cooperation between INRIA and Bull:

- AAA (Agents Anytime Anywhere) middleware
= dynamic reconfiguration features

- Netwall security product of Bull
= multiple firewall coordination, log auditing

e Objective:
validate AAA’s dynamic reconfiguration protocol

DAIS'2001, Krakow ;‘I




AAA distributed agent model

e Agents:
- sequential entities communicating by messages
- execution using an event-reaction model
- persistency, atomicity, configurability
« Communication:
- unidirectional point-to-point channels
- asynchrony, reliability, causality
« Application:
- set of agents executing on several sites
- communication channels between agents

DAIS'2001, Krakow ;‘I 4




Dynamic reconfiguration

e Run-time modifications of the application:

- Architecture (creation/deletion of agents,
modification of communication channels)

- Migration (placement of agents on sites)
- Implementation (replacement of code)
- Interface (upgrade of services)

e Problem:

preserve the consistency of the application
after reconfiguration

|
DAIS'2001, Krakow ;‘I 5



Inconsistency after migration

A, at site 1

4 I
: A2 °
Qite 2 )

4 N

@

site 1

site 3

Migration of A, from site 2 to site 3

A, at site 2

N

m

A, at site 3
A, at site 2

N

\3‘

DAIS'2001, Krakow




Avoiding inconsistencies

Three issues:

e Agent naming

references to migrating agents must be
properly updated

e Agent states

agents must resume computation from their
state prior to reconfiguration

e Communication channels

messages in transit during reconfiguration
must be preserved and properly redirected

— o A
DAIS'2001, Krakow ‘



Principles of the protocol

e Use a configurator agent, which:

- keeps a view of the application configuration
» placement of agents on execution sites
= communication channels between agents

- handles all reconfiguration commands
= ADD, DELETE, MOVE, BIND, REBIND

- updates the configuration view accordingly

e Precondition for safe reconfiguration:

all communication channels involved must be
empty before the reconfiguration can occur

DAIS'2001, Krakow ;‘I 8




Abstract states of agents

« Application agents can be:

- Active (execute normally)
- Passive (react to events, but send no messages)
- Frozen (cannot receive any event)

activate, rebind

add ‘{ active } passivate { passive J

ack

( frozen l move

. )

» delete

I I B ]
DAIS'2001, Krakow ;‘ 9




Overview of the protocol

Reconfiguration of an agent A:

1. Compute the change passive set of A
cps(A) = agents with channels towards A

2. Passivate all agents in cps(A);
when this is completed, A is frozen

3. Send the reconfiguration command to A;
all channels towards A are empty

4. Activate all agents in cps(A)

S / —

DAIS'2001, Krakow



Formal specification
. LOTOS [ISO 1988]:

formal description technique for communication
protocols and distributed systems

e Two « orthogonal » sub-languages:

Data part (abstract data types, ActOne)
= sorts and operations
= equations and pattern-matching

Behaviour part (process algebras, CCS and CSP)
= parallel processes interacting by rendez-vous
» value-passing communication on gates

| J |
DAIS'2001, Krakow ;‘ 11



LOTOS - behaviour part

Behaviour operator Meaning
stop inaction
G!V?IX:S;B action prefix
B, [] B, choice
[E] -> B conditional
B, 1[Gy,...,G,]| B, parallel composition
B, ||l B, interleaving
exit successful termination
B, >> B, sequential composition

P[G,,..,G.] (Vi,..., V) process call



Architecture of the protocol

Configurator
Agent 1 Agent 2 .. Agent n
{@)J View [ |
“ SEND SEND SEND
SEND || RECY RECV RECV RECV

Software bus (AAA infrastructure)

| l B |
DAIS'2001, Krakow ;‘ 13




Architecture (in LOTOS)

behaviour

(
Agent [SEND, RECV] (DEAD, a1@s1, {})

| ]
| ]
Agent [SEND, RECV] (DEAD, an@sn, {})

|11
Configurator [SEND, RECV] (nil, a1@s1+ ... + an@sn + {})

)
|[SEND, RECV]|

Bus [SEND, RECV] (nil)
DAIS'2001, Krakow W _14




Configurator agent (in LOTOS)

process Configurator [SEND,RECV] (C:Config, R:AddrSet):=
(* ADD command: add an agent to the application *)
choice A:Addr []
[(A notin C) and (A isin R)] ->
SEND !A !confaddr !ADD !dummy !dummy;
RECV !confaddr !A !ACK !dummy !dummy;
Configurator [SEND,RECV] (ins(A & {}, C), rem(A,R))
[]
(* . . . other reconfiguration commands *)
endproc

| J |
DAIS'2001, Krakow ;‘ 15



Application agent (in LOTOS)

process Agent [SEND,RECV] (S:State, A:Addr, R:Addrset):=

[S eq DEAD] ->

RECV !A Iconfaddr !ADD !dummy !dummy;
SEND !confaddr !A !ACK !dummy ! dummy;
Agent [SEND, RECV] (ACTIVE, A, {})

[]

(* ... other reconfiguration commands *)
endproc

| I |
DAIS'2001, Krakow ;‘ 16



Verification by model-checking

(@ )
LOTOS
program property
c

compiler

U » model-checker
l

yes/no + diagnostic

| l |
DAIS'2001, Krakow ;‘ 17



Model

Labelled Transition System (S, A, T, s;):
- S is the set of states
- A is the set of actions (a=G v, ... v,)
- TS xAxSis the transition relation
- 5o U S is the initial state

Ack
Snd 1 = T = Rcv 1 L
S0 51T 1 usz 53
Timeout %

| I B |
DAIS'2001, Krakow ;‘ 18



CADP

(http://www.inrialpes.fr/vasy/cadp)

e Caesar/Aldebaran Development Package:

a toolbox for the verification of communication
protocols and distributed systems

e Functionalities:
- compilation (Caesar.adt, Caesar)
- interactive and guided simulation (Ocis)
- bisimulation checking (Aldebaran, Bcg_min)
- temporal logic model-checking (Evaluator)
- compositional verification (5Svl)
- test generation (Tgv)

B |
DAIS'2001, Krakow ;‘I 19



Interactive simulation

[*] OpensCaesar Interactive Simulator v1.0 (untitled.bcg)

File Edit Motion Window Options Help

MSC format § Text format Tree format §
Expanded tree & Fired i

A

= g START
INBUS i@ (AGEMTY, SITET ) ig (ACOMF, SITE1 ) lADD & (AGEMTI, SITE1 ) & (AGEMTI, SIT
DUTBUS W& (AGEMTY, SITE ) & (ACOMF, SITET ) 1ADD & (AGEMTI, SITEL ) & (AGEMT
INBUS iz {ACDNF SITE1 2 k& (AGEMTI, SITEL ) IACK & (AGEMNTI, SITE1 ) & (AGE
OUTBUS hE@ (ACOMNF, SITE1 ) k& (AGEMNTT, SITE1 ) IACK & (AGEMT1, SITE1 ) iZ
INBUS IiE (AGEMNTZ2, SITE1 ) kg (ACOMF, SITE1 ) lADD & (AGEMT1, SITE1 )
DUTBUS W@ (AGEMNT2, SITE1 ) I (ACOMF, SITE1 ) 1ADD & (AGEMTI, SI

INBUS i@ CACOMNF, SITEL ) k& (AGEMT2, SITE1 ) WACHK hiE {AGENT1
a‘::-.‘b—- OUTEUS hE (ACOMF, SITE1 ) i@ (AGEMT2, SITEL ) IACK & {.-'-\GE
|{e><|t}
INBUS W& (AGEMTT, SITEL ) & (ACOMF, SITE1 3 IDELETE & (AGEMTI, S
EIUTBLIS W& (AGEMTT, SITEL ) & (ACOMF, SITE1 ) 'DELETE W& (AGE
INEBUS & (ACOMF, SITE1) W& (AGEMTI, SITE1 ) IACK & (AGEMN
IIII_ITBLIS i@ (ACOMF, SITEL ) i@ (AGEMNTI, SITE1 ) LACK li |

s?@* Ligxit s

ol

MSZ — Mext Transitions Text — Mext Transitions

Fireable transitions

1. IMBUS @ (AGEMTI, SITE] 3 I (ACORF, SITE1 3 1ADD e (AGEMTI, SITED ) e (AGEMNTI, SITED )
2 INBUS @ (AGEMNTZ, SITE1 S & (ACOMF, SITE1 3 1ADD k& (AGEMTI, SITE1 ) i@ (AGEMTI, SITE1 )

DAIS'2001, Krakow

.



Temporal logic

Regular alternation-free u-calculus:

e Action formulas (ACTL):
a:=aglbhalbo Lo,

e Regular formulas (PDL):
Bu=aB,.BB,IBHB"

e State formulas (p-calculus):

¢:=FOTOp,Tp, 0,0,
(B¢ UB]ol YILY.0VY. 0

I I B ]
DAIS'2001, Krakow ;‘

21



Correctness properties

« Safety: something bad never happens

After a move command, the target agent cannot receive
any event until it completes its migration

[«Rec !A IMove~». (- «Rec !A Ack»)*. «Rec !A lany~>] false

e Liveness: something good eventually happens

Every reconfiguration command is eventually followed
by an acknowledgement

[«Snd 'A ICmd>] uX . (<true> true O [-«Rec !A !Ack~»] X)

| l B |
DAIS'2001, Krakow ;‘ 22



Verification results

e Several experiments
- bounded number of agents
- bounded number of sites
- various subsets of reconfiguration commands

 Successful check of 10 temporal properties

e Rapid growth of model size
- exponential number of possible configurations
3 agents, Add, Bind, Rebind, Move
= more than 1,000,000 states

| J B |
DAIS'2001, Krakow ;‘ 23



Conclusion and future work

« Formal specification and verification of AAA’s
middleware dynamic reconfiguration protocol:

- 900 lines of LOTOS specification
- 10 safety and liveness properties
- verification of several finite-state configurations

e Future work:
- implement a distributed configurator agent
- continue the validation on larger configurations
- improve the tools (massively parallel model-checking)
- automatic test generation

| J B |
DAIS'2001, Krakow ;‘ 24



