
Local Model-Checking of
Modal Mu-Calculus on Acyclic
Labeled Transition Systems

Radu Mateescu
INRIA Rhône-Alpes / VASY
655, avenue de l’Europe

F-38330 Montbonnot Saint Martin, France

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 2

Outline

• Introduction

• Modal µ-calculus and acyclic LTSs

• Local model-checking on acyclic LTSs

• Implementation and applications

• Conclusion

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 3

Model-checking

Verify that a finite-state concurrent system satisfies
a set of desired correctness properties

system
description

compiler

model
(LTS)

correctness
properties

model-checker

yes / no + diagnostic

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 4

Labeled Transition Systems

An LTS is a quadruple
M = (S, A, T, s0)

LTS representations:
• explicit (« predecessor » function)

– iterative computations using sets of states
– BCG (Binary Coded Graphs) environment [Garavel-92]

• implicit (« successor » function)
– on-the-fly exploration of the transition relation
– Open / Caesar environment [Garavel-98]

SEND τ

TOUT

RECV
DELIVACK

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 5

Verification of sequential systems

Analysis of single trace LTSs using model-checking:

• Intrusion detection
– Check security properties of log files

– USTAT rule-based expert system [Ilgun-et-al-95]

• Program debugging
– Check correctness queries on execution traces

– OPIUM analysis system for Prolog [Ducassé-99]

• Run-time monitoring
– Check temporal properties of event traces

– MOTEL monitoring system [Dietrich-et-al-98]

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 6

Context of the work

• Goal: enhance the performance (speed, memory) of
model-checking for acyclic LTSs (ALTSs)

• Temporal logic adopted:
– Modal µ-calculus [Kozen-83,Stirling-01]
– « Assembly language » for temporal logics

• Simplification of µ-calculus on ALTSs:
– Syntactic reduction (valid on all LTSs)

full µ-calculus → guarded µ-calculus
– Semantic reduction (valid on ALTSs)

guarded µ-calculus → alternation-free µ-calculus

• Optimization of model-checking algorithms on ALTS

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 7

Modal mu-calculus

Let M = (S, A, T, s0) be an LTS.
Syntax of the modal µ-calculus:

Action formulas

α ::= a  ¬α  α1 ∨ α 2

State formulas

ϕ ::= F  ¬ϕ  ϕ1 ∨ ϕ 2  〈 α 〉 ϕ  X  µX . ϕ

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 8

Action formulas

Let M = (S, A, T, s0). Semantics [[α]] ⊆ A:
• [[a]] = { a }
• [[¬α]] = A \ [[α]]
• [[α1 ∨ α 2]] = [[α1]] ∪ [[α2]]

Derived operators:
• T = a ∨ ¬ a
• F = ¬T
• α1 ∧ α 2 = ¬ (¬α 1 ∨ ¬α 2)
• α1 ⇒ α2 = ¬α 1 ∨ α 2

• α1 ⇔ α2 = (α1 ⇒ α2) ∧ (α2 ⇒ α1)

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 9

State formulas

Let M = (S, A, T, s0) and ρ : Y → 2S a context mapping
variables to state sets. Semantics [[ϕ]]ρ ⊆ S:

• [[F]]ρ = ∅ • [[¬ϕ]]ρ = S \ [[ϕ]]ρ
• [[ϕ1 ∨ ϕ 2]]ρ = [[ϕ1]]ρ ∪ [[ϕ2]]ρ
• [[〈 α 〉 ϕ]]ρ = { s ∈ S | ∃ (s, a, s’) ∈ T . a ∈ [[α]] ∧

s’∈ [[ϕ]]ρ }
• [[Y]]ρ = ρ (Y) • [[µY . ϕ]]ρ = ∪ k≥0 Φρ

k (∅)
where Φρ : 2S → 2S , Φρ (U) = [[ϕ]]ρ[U/Y]

Derived operators:
• [α] ϕ = ¬ 〈 α 〉 ¬ϕ • νY . ϕ = ¬µY . ¬ϕ [¬Y / Y]

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 10

Guarded mu-calculus

• ϕ is guarded (weakly guarded) wrt X if all (except
those at top-level) free occurrences of X in ϕ fall in
the scope of a 〈 〉 or [] modality

ϕ = X ∧ [a] Z ∧ µ Y . 〈 b 〉 X ∨ 〈 c 〉 Y
is guarded wrt Z, weakly guarded wrt X

• ϕ is guarded if for all subformulas σX.ϕ1 of ϕ
(σ ∈ {µ, ν}), ϕ1 is guarded wrt X

CTL operators yield guarded formulas:
E [ϕ1 U ϕ2] = µX . ϕ2 ∨ (ϕ1 ∧ 〈 T 〉 X)
A [ϕ1 U ϕ2] = µX . ϕ2 ∨ (ϕ1 ∧ 〈 T 〉 T ∧ [T] X)

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 11

Translation to guarded mu-calculus

ϕ1 = 〈 (a | b*)* . c 〉 T
= µX . 〈 c 〉 T ∨ 〈 a 〉 X ∨ µ Y . X ∨ 〈 b 〉 Y

Translation to weakly guarded form (unfolding):
ϕ2 = µX . 〈 c 〉 T ∨ 〈 a 〉 X ∨ (X ∨ 〈 b 〉 µY . X ∨ 〈 b 〉 Y)

Translation to guarded form (flattening):
ϕ3 = µX . 〈 c 〉 T ∨ 〈 a 〉 X ∨ (F ∨ 〈 b 〉 µY . X ∨ 〈 b 〉 Y)

= µX . 〈 c 〉 T ∨ 〈 a 〉 X ∨ 〈 b 〉 µY . X ∨ 〈 b 〉 Y
= 〈 (a | b+)* . c 〉 T = ϕ1

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 12

Unfolding (direct)
σ1X1

ϕ1

σ2X2

ϕ2

σnXn

ϕn

X1

Xn Xn

X1

Xn Xn

σnXn σnXn

ϕn

X1

X1

Xn Xn

ϕn ϕn

|ϕn|2

Overall size: |ϕ|2|ϕ|

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 13

Unfolding (with factorization)

|ϕn|+|ϕn|

Overall size: |ϕ|2

σ1X1

ϕ1

σ2X2

ϕ2

σnXn

ϕn

X1

Xn Xn

X1

Xn Xn

σnXn

ϕn

ϕn

X1

Xn Xn

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 14

Flattening (with conversion in DNF)

Eliminate all top-level unguarded
occurrences of X in σX.ϕ
[Kozen-83,Walukiewicz-95]:

• Convert ϕ in DNF
σX.ϕ = σX.(X ∧ P(X)) ∨ Q(X)

• Apply the identities
µX.(X ∧ P(X)) ∨ Q(X) = µX.Q(X)
νX.(X ∧ P(X)) ∨ Q(X) = νX.P(X) ∨ Q(X)

Problem:
quadratic blow-up for each fixed

point subformula ⇒
exponential blow-up for the

whole formula

σX

∧

∨ϕ1

ϕ2

ϕn X

∧

∧
…ϕ3

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 15

Flattening (direct)

Replace all top-level unguarded occurrences of X in
σX.ϕ by F if σ = µ and by T if σ = ν:

• Apply the absorption property
X ∧ ϕ [T/X] ⇒ ϕ ⇒ X ∨ ϕ [F/X]

• Obtain equivalent formulas
µX.ϕ ⇒ µX.X ∨ ϕ [F/X] = µX.ϕ[F/X] ⇒ µX.ϕ
νX.ϕ ⇒ νX.ϕ[T/X] = νX.X ∧ ϕ [T/X] ⇒ νX.ϕ

Keep the size of the formula unchanged

Translation to guarded form (unfolding + flattening)
⇒ quadratic blow-up of the formulas

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 16

Simplification of guarded formulas

Let M = (S, A, T, s0) be an ALTS and ϕ guarded wrt X.
Theorem: [[µX.ϕ]]ρ = [[νX.ϕ]]ρ for any context ρ.

νX.ϕ
µX.ϕ

S

…

…

=> νX.ϕ = µX.ϕ

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 17

Summary

• Translation from full to guarded µ-calculus
– Unfolding (with factorization) and flattening (direct)
– Quadratic blow-up of the formulas

• Reduction of guarded µ-calculus on ALTSs
– Equivalence between minimal and maximal fixed points
⇒ Reduction to alternation-free µ-calculus

• Model-checking of full µ-calculus on ALTSs
– Reduction to alternation-free mu-calculus
– Linear local model-checking algorithms
⇒ O (|ϕ|2 · (|S| + |T|)) time and space complexity

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 18

Local model-checking

• Let M = (S, A, T, s0) an ALTS, ϕ guarded alt-free.
Model-checking method:
– Translation of ϕ to HML with recursion
– Encoding of the verification problem s0 |= ϕ

as a boolean equation system (BES)
– Local resolution of the BES by DFS traversal of its

dependency graph

• M acyclic and ϕ guarded
⇒ BES with acyclic dependency graph
⇒ vertices stabilized when popped from the DFS stack
⇒ no need to store edges for back-propagation
⇒ O (|ϕ| · |S|) space complexity

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 19

Distributed summing protocol

P0 P1

P2

I01 I02 I11 I12

O1O0

R

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 20

Model and property

Property:
result eventually delivered

µX . 〈 T 〉 T ∧ [¬ “R 10”] X

Translation in HMLR:
X0 = X1 ∧ X2

X1 = 〈 T 〉 T
X2 = [¬ “R 10”] X0

I01 1

I01 1

I01 1 I11 3

I11 3

I11 3

I02 2

I02 2

I02 2

I12 4

I12 4

I12 4

R 10

0

1 2

3 4 5

6 7

8

9

ALTS of the
protocol:

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 21

Verification
10

00

T

20

01

02

11 21

12
22

T

03

04

T

13

T

T

14

23

06

24

07

16

T

05
15

T

25

17

T

27

26

08

18

T

28

X0 = X1 ∧ X2

X1 = 〈 T 〉 T
X2 = [¬ “R 10”] X0

Zij = sj |= Xi

R 10

0

1 2

3 4 5

6 7

8

9

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 22

Handling unguarded
alternation-free formulas

• Let M = (S, A, T, s0) an ALTS and ϕ alternation-free.
Space complexity of model-checking:
O (|ϕ|·(|S|+|T|)) time, O (|ϕ|·|S|) space if ϕ guarded
O (|ϕ|2·(|S|+|T|)) time, O (|ϕ|2·|S|) space if ϕ unguarded

• Model-checking of unguarded alternation-free ϕ:
– Translation of the problem s0 |= ϕ into a BES
– Identification of the SCCs in the BES dependency graph
– Local resolution by DFS of the dependency graph
⇒ stabilize SCCs when their root is popped
⇒ no need to store edges for back-propagation
⇒ O (|ϕ|·|S|) space complexity

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 23

Implementation
(within the CADP toolbox)

Evaluator 3.5 on-the-fly model-checker developed using the
Open/Caesar generic environment [Garavel-98] of CADP

source
program

compiler Evaluator 3.5

cc

executable

temporal
formula

yes / no + diagnostic

graph
module (C)

O/C
library

O/C
interface

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 24

Applications

Industrial project BULL-INRIA:
• Verification of multiprocessor architectures

(cache coherency protocols)
• Off-line analysis of execution traces (100,000

events) obtained by intensive testing
• Several hundreds PDL temporal formulas

[R1] 〈 R2 〉 T
• Reduction of the formulas (conversion ν → µ)
• Application of the improved DFS algorithms
⇒ gains in speed (less LTS traversals)

and memory (no transitions stored)

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) 25

Conclusion

Already done:
• Reduction results for µ-calculus on acyclic LTSs

(applicable for other logics, e.g. CTL)
• Memory-efficient local model-checking algorithms
• Implementation in CADP (Evaluator 3.5)
• Industrial applications (hardware verification)

Ongoing work:
• Apply the solving algorithms to preorder checking
• Devise single-scan algorithms for traces

http://www.inrialpes.fr/vasy/cadp

