Local Model-Checking of
Modal Mu-Calculus on Acyclic
Labeled Transition Systems

Radu Mateescu
INRIA Rhone-Alpes / VASY
655, avenue de ’Europe
F-38330 Montbonnot Saint Martin, France

o il i P -

WINRLj

/4

Outline

e Introduction

e Modal p-calculus and acyclic LTSs

e Local model-checking on acyclic LTSs
e Implementation and applications

e Conclusion

T T—s /
© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) ‘

Model-checking

Verify that a finite-state concurrent system satisfies
a set of desired correctness properties

system
description

comp|ler

./ model\

(@ D)
correctness
properties

» model-checker

(LTS)

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002)

)

l

yes / no + diagnostic

Labeled Transition Systems

An LTS is a quadruple TOUT
M= (5, A, T, s) ;/L SEND ~ T

o
O .
RECV
ACK . DELIVi
LTS representations: =

e explicit (« predecessor » function)

- iterative computations using sets of states

- BCG (Binary Coded Graphs) environment [Garavel-92]
e implicit (« successor » function)

- on-the-fly exploration of the transition relation
- Open / Caesar environment [Garavel-98]

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J‘!I

Verification of sequential systems

Analysis of single trace LTSs using model-checking:

e Intrusion detection
- Check security properties of log files
- USTAT rule-based expert system [lIlgun-et-al-95]

e Program debugging
- Check correctness queries on execution traces
- OPIUM analysis system for Prolog [Ducassé-99]

e Run-time monitoring

- Check temporal properties of event traces
- MOTEL monitoring system [Dietrich-et-al-98]

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J‘!I

Context of the work

e Goal: enhance the performance (speed, memory) of
model-checking for acyclic LTSs (ALTSs)

e Temporal logic adopted:
- Modal p-calculus [Kozen-83,5tirling-01]
- « Assembly language » for temporal logics

e Simplification of p-calculus on ALTSs:
- Syntactic reduction (valid on all LTSs)
full p-calculus - guarded p-calculus
- Semantic reduction (valid on ALTSs)
guarded p-calculus - alternation-free p-calculus

e Optimization of model-checking algorithms on ALTS

. W B
© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) ‘ 6

Modal mu-calculus

Let M= (S, A, T, s;) be an LTS.
Syntax of the modal p-calculus:

Action formulas
a::=ald-a Uag Lo,

State formulas

¢ ::=F0-0 U, LH, UCa)o DXTpX. ¢

T re— /
© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) ‘

Action formulas

Let M = (S, A, T, s;). Semantics [[a]] U A:
e [[a]l={a}

e [[-~a]]=AN[[a]]

e[[oy T,]l=[[oy IO [[a;]]
Derived operators:

e[=alh a

e F =T

e 04 L ;== (-0, [ha ,)

e 0, =>0,=-0, L0,

* Oy = Oy = (04 = 0y) L(a; = ay)

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J‘II

State formulas

Let M= (5, A, T,sp)and p: Y - 2° a context mapping
variables to state sets. Semantics [[¢]]p U S:
 [[Fllp=0 *[[-¢ Jlp=5\[[¢]lp
c[[o: D, Jlp=1[¢,]lp Tl 0, 1lp
e [[(a)o]lp={sUSI s, as)0T.al[[a]]l
ssUl¢]lps

 [[Y]lp=p(Y) *[[pY . ¢]lp =0 P (0)
where @ : 2> - 23, @, (U) = [[¢]]p[U/Y]

Derived operators:

efa]d ==(a)-¢ VY.0=-pY.-¢ [-Y /Y]

ﬁ]
© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J 9

Guarded mu-calculus

e ¢ is guarded (weakly guarded) wrt X if all (except
those at top-level) free occurrences of X in ¢ fall in
the scope of a {) or [] modality

O6=XL al]ZuY.{(b)YXUO{(c)Y
is guarded wrt Z, weakly guarded wrt X

e ¢ is guarded if for all subformulas aX.¢, of ¢
(o O{M, v}), ¢, is guarded wrt X

CTL operators yield guarded formulas:
E[¢, Ud,]=pX. ¢, 0O(d, OCT) X)
Ao, U] =pX. o, (¢, OCT)HTL T]X)

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J‘II 10

Translation to guarded mu-calculus

b, =((@al b*).c)T
S WX (YT O(a) XU Y. XO(b)Y

Translation to weakly guarded form (unfolding):
b, =X . (c)TO(a)XO(XO(bYRY.XTO(b)Y)

Translation to guarded form (flattening):

¢;=pX . (c)TUCa)XUFUCb)yuY . XU(b)Y)
=X . (c)TO(a)XO{(bYuY.XO(b)Y
={((a| b*)".c)T =0,

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J! I 11

Unfolding (direct)

0,X;

Overall size: [¢]2!®]

NE

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002)

12

Unfolding (with factorization)

0.,

Overall size: | |2

[Ol +10y]

X X

n W’ n
I - TTTT—
© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) ‘ 13

Flattening (with conversion in DNF)

Eliminate all top-level unguarded X
occurrences of X in oX.¢
[Kozen-83,Walukiewicz-95]:

]

n

e Convert ¢ in DNF
oX.0 = oX.(X 0 P(X)) 0 Q(X) o, [

« Apply the identities ¢AD

UX. (X O P(X)) OQ(X) = pX.Q(X) :

VX.(X O PX)) 0QX) = vX.PX) 0 Q(X)

Problem: ¢ -
quadratic blow-up for each fixed PN
point subformula = X
exponential blow-up for the b

whole formula

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J‘II 14

Flattening (direct)

Replace all top-level unguarded occurrences of X in
oX.0byFifo=pand by T if 0 =v:
e Apply the absorption property
X [T/X] = ¢ = XL [F/X]
e Obtain equivalent formulas

uX.¢ = pX.X L [F/X] = pX.¢[F/X] = pX.
VX.0 = vX.O[T/X] =vX. X [T/X] = vX.¢
Keep the size of the formula unchanged

Translation to guarded form (unfolding + flattening)
— quadratic blow-up of the formulas

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J‘!I 15

Simplification of guarded formulas

Let M= (S, A, T, sp) be an ALTS and ¢ guarded wrt X.
Theorem: [[uX.9 1]p = [[VX.9]]p for any context p.

I W T
© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) ‘ 16

Summary

e Translation from full to guarded p-calculus
- Unfolding (with factorization) and flattening (direct)
- Quadratic blow-up of the formulas

e Reduction of guarded p-calculus on ALTSs
- Equivalence between minimal and maximal fixed points
— Reduction to alternation-free p-calculus

e Model-checking of full p-calculus on ALTSs
- Reduction to alternation-free mu-calculus
- Linear local model-checking algorithms
=0 (1o|2- (IS] + |T|)) time and space complexity

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J‘!(

17

Local model-checking

e Let M= (S, A, T, sp) an ALTS, ¢ guarded alt-free.
Model-checking method:

- Translation of ¢ to HML with recursion

- Encoding of the verification problem s, |= ¢
as a boolean equation system (BES)

- Local resolution of the BES by DFS traversal of its
dependency graph

e M acyclic and ¢ guarded
— BES with acyclic dependency graph
= vertices stabilized when popped from the DFS stack
= no need to store edges for back-propagation
= 0 (1¢] - |S]|) space complexity

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) ‘II 18

Distributed summing protocol

. W T
© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) ‘ 19

Model and property

ALTS of the Property:
protocol:

result eventually delivered
WX . (TYTO- “R10”]1 X

Translation in HMLR:

(X, = X, OX,
< X1=<T>T
\X2=[_|"R10”]XO

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J‘!I 20

Verification

X, = X, UX,

Xp=(T)T

X, =[-"R10”] X,
Z]-J-=sj |= X

R10

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002)

/

E

21

Handling unguarded
alternation-free formulas

e Let M= (S5, A, T, sp5) an ALTS and ¢ alternation-free.
Space complexity of model-checking:

O(ldl-(ISI+IT])) time, O (19|-1S|) space if ¢ guarded
O(ld|%(]SI+]T])) time, O (19]2-]1S|) space if ¢ unguarded
e Model-checking of unguarded alternation-free ¢:
- Translation of the problem s, |= ¢ into a BES
- Identification of the SCCs in the BES dependency graph
- Local resolution by DFS of the dependency graph
— stabilize SCCs when their root is popped
= Nno need to store edges for back-propagation
= O (|p|-1S|) space complexity

T / —

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002)

Implementation
(within the CADP toolbox)

Evaluator 3.5 on-the-fly model-checker developed using the
Open/Caesar generic environment [Garavel-98] of CADP

source : 0/C J temporal
program | interface formula
|

I \ 4

' |

' —'—>‘ graph —[Evaluator 3.5}
compiler I | module (C)} \

|
|
|
| 0/C
| library I
| yes / no + diagnostic

» CC
ST re—s /U
© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) ‘ 23

[exec&table }

Applications

Industrial project BULL-INRIA:

 Verification of multiprocessor architectures
(cache coherency protocols)

« Off-line analysis of execution traces (100,000
events) obtained by intensive testing

e Several hundreds PDL temporal formulas
[Ri]1(R)HT

e Reduction of the formulas (conversion v -)

e Application of the improved DFS algorithms
—> gains in speed (less LTS traversals)
and memory (no transitions stored)

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) ‘II 24

Conclusion

Already done:

e Reduction results for p-calculus on acyclic LTSs
(applicable for other logics, e.g. CTL)

« Memory-efficient local model-checking algorithms
e Implementation in CADP (Evaluator 3.5)
e Industrial applications (hardware verification)

Ongoing work:
e Apply the solving algorithms to preorder checking

e Devise single-scan algorithms for traces
http://ww. I nrial pes.fr/vasy/ cadp

© Radu Mateescu, TACAS'02 (Grenoble, April 10, 2002) J‘II

25

