
A Generic On-the-Fly Solver
for Alternation-Free

Boolean Equation Systems

Radu Mateescu
INRIA Rhône-Alpes / VASY
655, avenue de l’Europe

F-38330 Montbonnot Saint Martin, France
http://www.inrialpes.fr/vasy

TACAS'03 (Warsaw, April 2003) 2

Outline

• Introduction

• Boolean Equation Systems

• On-the-fly resolution algorithms

• Equivalence checking and model checking

• Implementation and experiments

• Future work

TACAS'03 (Warsaw, April 2003) 3

Introduction

• On-the-fly verification
– Builds the state space incrementally
– Allows to detect errors in large systems

• Practical needs
– Easy construction of on-the-fly verification tools
– Generic software components for verification

• Boolean Equation Systems (BES)
– Technology for equivalence checking and model checking
– On-the-fly resolution and diagnostic generation

Goal: provide generic software (libraries)

TACAS'03 (Warsaw, April 2003) 4

Alternation-free BES

x1 =µ x2 ∨ x3

x2 =µ x3 ∨ x4

x3 =µ x2 ∧ x7M1

x4 =µ x5 ∨ x6

x5 =µ x8 ∨ x9

x6 =µ F
M2

x7 =ν x8 ∧ x9

x8 =ν T

x9 =ν F
M3

TACAS'03 (Warsaw, April 2003) 5

On-the-fly resolution

• Alternation-free BES B = (x, M1, …, Mn)
– Compute x without solving the whole BES

• Approach:
– Associate a resolution routine Ri to block Mi

– Ri (xj) computes the value of xj in Mi

– Evaluation of right-hand side formulas and substitution
– Bounded call stack R1 (x) … Rn (xk)

Simple algorithms (a single kind of fixed points)
Easy to optimize (particular kinds of blocks)

TACAS'03 (Warsaw, April 2003) 6

Example

x1 =µ x2 ∨ x3

x2 =µ x3 ∨ x4

x3 =µ x2 ∧ x7M1

x4 =µ x5 ∨ x6

x5 =µ x8 ∨ x9

x6 =µ F
M2

x7 =ν x8 ∧ x9

x8 =ν T

x9 =ν F
M3

TACAS'03 (Warsaw, April 2003) 7

Resolution algorithms: Principles

• Represent blocks as boolean graphs [Andersen-94]

• Block M represented by boolean graph G = (V, E, L):
– V: set of vertices (variables)
– E: set of edges (dependencies between variables)
– L : V { ∨ , ∧ }: vertex labeling (disjunctive/conjunctive)

• Principle of resolution algorithms:
– Forward exploration of G starting at x ∈ V
– Backward propagation of stable (computed) variables
– Termination when x is stable or G is entirely explored
– Diagnostic by keeping relevant successors [Mateescu-00]

TACAS'03 (Warsaw, April 2003) 8

Example

BES (µ-block) boolean graph

x1 =µ x2 ∨ x3

x2 =µ F
x3 =µ x4 ∨ x5

x4 =µ T
x5 =µ x1

: ∨ -variables
: ∧ -variables

1

4

2 3

5

TACAS'03 (Warsaw, April 2003) 9

Three effectiveness criteria

For each resolution routine R:

A. The worst-case complexity of a call R (x) must be
O (|V|+|E|)

linear-time complexity for the overall BES resolution

B. While executing R (x), every variable explored
must be « linked » to x via unstable variables

graph exploration limited to « useful » variables

C. After termination of R (x), all variables explored
must be stable

keep resolution results between subsequent calls of R

TACAS'03 (Warsaw, April 2003) 10

Algorithm A1
(general)

• DFS of the boolean graph
• Satisfies A, B, C
• Memory complexity

O (|V|+|E|)
• Optimized version of

[Andersen-94]
• Developed for model

checking regular
alternation-free µ-calculus
[Mateescu-Sighireanu-00]

1

5

3 4

2

TACAS'03 (Warsaw, April 2003) 11

Algorithm A2
(general)

• BFS of the boolean graph
• Satisfies A, C

(risk of computing
useless variables)

• Slightly slower than A1
• Memory complexity

O (|V|+|E|)
• Low-depth diagnostics

2

10

5

98

76

1

3

4

TACAS'03 (Warsaw, April 2003) 12

Algorithm A3
(acyclic)

• DFS of the boolean graph
• Back-propagation of stable

variables on the DFS stack
only

• Satisfies A, B, C
• Avoids storing edges
• Memory complexity

O (|V|)
• Developed for trace-based

verification [Mateescu-02]

53 6

4

1

2

TACAS'03 (Warsaw, April 2003) 13

Algorithm A4
(disjunctive / conjunctive)

• DFS of the boolean graph
• Detection and

stabilization of SCCs
• Satisfies A, B, C
• Avoids storing edges
• Memory complexity

O (|V|)
• Developed for model

checking ACTL and PDL

1

5

4

63

2

SCC of false
variables

SCC of true
variables

TACAS'03 (Warsaw, April 2003) 14

Resolution algorithms: Summary

• A1 (DFS, general)
– Satisfies A, B, C
– Memory complexity O (|V|+|E|)

• A2 (BFS, general)
– Satisfies A, C + « small » diagnostics
– Memory complexity O (|V|+|E|) Time

• A3 (DFS, acyclic) complexity
– Satisfies A, B, C O (|V|+|E|)
– Memory complexity O (|V|)

• A4 (DFS, disjunctive/conjunctive)
– Satisfies A, B, C
– Memory complexity O (|V|)

TACAS'03 (Warsaw, April 2003) 15

Equivalence checking

system
description

compiler

LTS
1

equivalence checker

true / false
+

diagnostic

service
description

LTS
2

compiler

TACAS'03 (Warsaw, April 2003) 16

s1 ≤ s2
(preorder)

From equivalences to BESs

• Strong equivalence: s1 ≈ s2 iff Xs1,s2 is true
Xs1,s2 =ν (∧ s1 →a s1’ Ya,s1’,s2) ∧ (∧ s2 →a s2’ Za,s1,s2’)
Ya,s1’,s2 =ν ∨ s2 →a s2’ Xs1’,s2’

Za,s1,s2’ =ν ∨ s1 →a s1’ Xs1’,s2’

• Weak equivalences:
– Similar scheme, with transitive closure over τ-transitions
– Branching, observational, τ*.a, safety, delay, …

Translation allows to build the LTS on-the-fly

TACAS'03 (Warsaw, April 2003) 17

Equivalence checking: Summary

• General boolean graph:
– All equivalences and their preorders
– Algorithms A1 and A2 (counterexample depth ↓)

• Acyclic boolean graph:
– Strong equivalence: one of the LTS acyclic
– τ*.a and safety: one LTS acyclic (τ-circuits allowed)
– Branching and observational: both LTS acyclic
– Algorithm A3 (memory ↓)

• Conjunctive boolean graph:
– All equivalences: one of the LTS deterministic
– Algorithm A4 (memory ↓)

TACAS'03 (Warsaw, April 2003) 18

Model checking

system
description

compiler

LTS

properties

model checker

true / false
+

diagnostic

TACAS'03 (Warsaw, April 2003) 19

From temporal logics to BESs

• Alternation-free µ-calculus: s |= ϕ iff ϕs is true
• Potential reachability of an action a:

µX . ϕ ∨ 〈 a 〉 X

Xs =µ ϕs ∨ ∨ s→a s’ Xs’

• Other temporal logics:
– Similar scheme (via translation to µ-calculus)
– CTL, ACTL (Action CTL), PDL

Translation allows to build the LTS on-the-fly

TACAS'03 (Warsaw, April 2003) 20

Model checking: Summary

• General boolean graph:
– Any LTS and any alternation-free µ-calculus formula
– Algorithms A1 and A2 (diagnostic depth ↓)

• Acyclic boolean graph:
– Acyclic LTS and guarded formula (CTL, ACTL)
– Acyclic LTS and µ-calculus formula (via reduction)
– Algorithm A3 (memory ↓)

• Disjunctive/conjunctive boolean graph:
– Any LTS and any formula of CTL, ACTL, PDL
– Algorithm A4 (memory ↓)

TACAS'03 (Warsaw, April 2003) 21

CAESAR_SOLVE library

OPEN/CAESAR
libraries

CAESAR_SOLVE
library

(A1 … A4 & diagnostic)
Im

pl
ic

it

gr
ap

h

(s
uc

ce
ss

or

fu
nc

ti
on

)

BES
(boolean
graph)

diagnostic
(boolean
subgraph)

variable value

Im
pl

ic
it

gr

ap
h

(s
uc

ce
ss

or

fu
nc

ti
on

)

TACAS'03 (Warsaw, April 2003) 22

BISIMULATOR and EVALUATOR

LTS1 LTS2 LTS formula

BES
translator

BES
translator

implicit boolean graph &
diagnostic interpreter (.c)

implicit boolean graph &
diagnostic interpreter (.c)

BI
SI

M
U

LA
TO

R

EV
AL

U
AT

O
R

C compilerOPEN/CAESAR
CAESAR_SOLVE

executable

diagnostic
runtime environment

true / false

TACAS'03 (Warsaw, April 2003) 23

Performance measures

• A2 versus A1:
– Compare LTS - erroneous LTS (strong equivalence)
– Check invalid properties on the LTS

Reductions 75 % - 99 % in diagnostic depth

• A3 versus A1:
– Inclusion of sequences (100,000 transitions) in the LTS
– Check valid properties on sequences

Reductions 15 % - 27 % in memory

• A4 versus A1:
– Compare LTS – service LTS (τ*.a equivalence)
– Check valid properties (ACTL + PDL) on the LTS

Reductions 12 % - 63 % in memory

TACAS'03 (Warsaw, April 2003) 24

Future work

• New algorithms within CAESAR_SOLVE
– Single-scan & low-memory algorithms for trace-based

verification (low-depth acyclic boolean graphs)
– Further resolution strategies (combined DFS-BFS, random

exploration, …)

• New applications of CAESAR_SOLVE
– Detection of τ-confluent transitions [CAV 2003]
– Test generation
– Discrete controller synthesis

• Distributed resolution algorithms
Distributed equivalence checking and model checking

using diagnostic generation

