Synchronizing Behavioural
Mismatch in Software Composition

Carlos Canal

Pascal Poizat

UNIVERSITE D'EVRY
VAL LVESSCN NE

G Salaiin s
wen Salaun e

— A
FMOODS’ 06, Bologna, Italy, June 14-16, 2006 /<

Composition Scenario

-

e Addition of a component C to the system S

— Z | —

FMOODS’06, Bologna, Italy, June 14-16, 2006

Composition Scenario

S

g

e Addition of a component C to the system S
e Connection is not possible: C|S is blocking!

— Z | —

FMOODS’06, Bologna, Italy, June 14-16, 2006

Composition Scenario

|
C D .
[]= @

e Addition of a component C to the system S
e Connection is not possible: C|S is blocking!
e Generation of an adaptor A using a mapping M

7 ——
FMOODS’06, Bologna, Italy, June 14-16, 2006 ‘l 2

Composition Scenario

__
C I (S
e Addition of a component C to the system S
e Connection is not possible: C|S is blocking!

» Generation of an adaptor A using a mapping
e The system C|A|S is not blocking

7 |
FMOODS’06, Bologna, Italy, June 14-16, 2006 ‘l

Motivation

« Component-based systems are built by
composition and reuse of existing components

e Several levels of interoperability which may
raise incompatibilities:
+Signatures, behaviours
- Semantic aspects, quality of services

e A component is seldom used directly as it is
and needs some adaptations

e Reusing components as automatically as
possible

7 B
FMOODS’06, Bologna, Italy, June 14-16, 2006 ‘l

Outline of the Presentation

e Overview of our Approach

e Adaptation using Vectors

e Adaptation using Regular Expressions
e Conclusion and Future Work

« Demo

— Z | —

FMOODS’06, Bologna, Italy, June 14-16, 2006

Behavioural Interfaces (BIDL)
e Signatures of operations
e LTS: (A,S, I, F, T)
e Simple process algebra (sequential CCS):
P::=0 | ml.P| m?2.P | P1+P2 | A
with [i] and [f] for initial and final states

ack? service!

| | ? ?
_ query.)O % (e query.)O vm

end!

Server[i,f] = query?.value?.servicel.Server

— Z | —

FMOODS’06, Bologna, Italy, June 14-16, 2006 38

Compatibility Check
e Synchronized product [Arnold94] to build a
unique LTS from several LTS components

e A deadlock in a LTS if one state is reachable
yet not final

e Several components are compatible if the
product of their interfaces is deadlock-free

This state
| IS not final!

C (query!,query?) ’O

— Z | —

FMOODS’06, Bologna, Italy, June 14-16, 2006

Overview of our Approach

Component Interfaces

mismatch
detectad ?

adaptorspeclfication
(vectors + regex)

o] = <l 5T
ol = Rl

A= (vl _ w3+

§

Gl

renruerlng
neaded?

o adaptor needed

FMOODS’06, Bologna, Italy, June 14-16, 2006

Bahavloural adaptation
(synchronous product)
Adaptor

adaptor
generation
(Petrl net encoding) /

/

Outline of the Talk

e Overview of our Approach

e Adaptation using Vectors

e Adaptation using Regular Expressions
e Conclusion and Future Work

« Demo

— 7l

FMOODS’06, Bologna, Italy, June 14-16, 2006

11

Synchronization Vectors
e Being given aset of LTS L. = (A, S;, |, F;, T.),
a vector is a tuple <e;> with e;e A U {&}
e Example:

ack? service!

| | ? ?
ﬁ@ NI T et
end! @

e Vectors:
<c:.query!, s:query?> <c:arg!, s:value?>
<c:ack?, s:service!> <c:end!, s:e>

NOODS 06, ¢ W 12

FMOODS’06, Bologna, Italy, June 14-16, 2006

Adaptation without Reordering

e Algorithm:

- Compute the synchronized product from LTS L,
and vectors V

- Remove paths to deadlock
- Compute permutations and reverse actions

e Example: (c:ack?,s:service!)

. | < ? . | - ?
(c.query.,s.query.))G (c.arg.m

c.end!,s:g)

@ Step 1: synchronized product
[W |

FMOODS’06, Bologna, Italy, June 14-16, 2006 13

Adaptation without Reordering

e Step 2: no deadlock to remove
e Step 3: reverse actions

c:ack! O« s:service?
/? | | | ? | '
- c:query? O s:query! ’G c:arg? m
c:end?

®

—_— A | —

FMOODS’06, Bologna, Italy, June 14-16, 2006

Adaptation with Reordering

e Algorithm:
- Encode all LTSs and vectors V into Petri nets
- Compute marking / cover graph (TINA)
- Remove paths to deadlock
- Apply reduction on adaptor to remove t (CADP)

e Example:

ack? service!
req! m value? q%
- -O—— ~O0—0——
<c:req!, s:query?> <c:arg!, s:value?>
<c:ack?, s:service!>
‘ 15

FMOODS’06, Bologna, Italy, June 14-16, 2006

Adaptation with Reordering
e Step 1: encoding into Petri nets

Contro;cﬂ Aac reg
tau
: o reql. 1
Control s 1

Control ¢ . Contm;_s_z
Em_ack Rec service
= e
Control ¢ 3 accept Control s 3

—_— A | —

FMOODS’06, Bologna, Italy, June 14-16, 2006

Adaptation with Reordering

e Step 2: marking graph computation

e Step 3: no deadlock to
remove

e Step 4. reduction to
remove T actions

FMOODS’06, Bologna, Italy, June 14-16, 2006

Outline of the Talk

e Overview of our Approach

e Adaptation using Vectors

» Adaptation using Regular Expressions
e Conclusion and Future Work

e Demo

S @

FMOODS’06, Bologna, Italy, June 14-16, 2006

18

Regular Expressions

e Ordering needed: regular expressions of vectors
R::=v | R1.R2 (SEQ) | R1+R2 (CH) | R* (ITER)
e Example:

ack? ack!
log! req! log? req?
—)G >(@ > —>(@®)O >
e Vectors:
vo=<c:log!, s:log?> vV,=<C:g, s:log?>

v,=<c:req!, s:req?> vy=<c:ack?, s:ack!>
e Regexp: Vy.V,.V3.(V4.V5.V3)"

FMOODS’06, Bologna, Italy, June 14-16, 2006 !‘l 19

Adaptation without Reordering
e Algorithm: replace Step 1 of Vectors algo by

- Com

- Com
and

pute the LTS L; for the regexp R
pute the synchronized product from LTS L,

TS Ly

- Discard elements of R in the resulting LTS

e Example:

Abstract adaptor =>

FMOODS’06, Bologna, Italy, June 14-16, 2006 "l

Adaptation with Reordering

e Algorithm: replace Step 1 of Vectors algo by

- Encode all LTSs and the LTS L of the regexp R
into Petri nets

o Example: service!

? ?
ack? N value?)G q%
| |
—> G >G s service!
end! ue? ,
@ (o) Vale!)O query? |

v.=<c:req!, s:query?, a:e> v, = <..>
v,=<c:arg!, s:value?, a:e> V) = <> Regexp:

v=<c:ack?, s:servicel, a:e> v ;=<..> *
3 ’ ’ a3 (Vs1'V52°V53 * Vat-Va2- Va3) *Vend
Veng= <C:endl!, s:g, a:e>

—_— A | —

FMOODS’06, Bologna, Italy, June 14-16, 2006

Adaptation with Reordering

e Encoding into Petri nets and abstract adaptor

c.end?

FMOODS’06, Bologna, Italy, June 14-16, 2006 !‘l 22

Outline of the Talk

e Overview of our Approach

e Adaptation using Vectors

e Adaptation using Regular Expressions
e Conclusion and Future Work

e Demo

— 7l

FMOODS’06, Bologna, Italy, June 14-16, 2006

23

Conclusion

e An approach for component adaptation based
on vectors and regular expressions

e Supported by algorithms and tools:
- CADP: compatibility check, t-reductions
- TINA: Petri nets marking and cover graphs

 Fully automated by a prototype (ADAPTOR)
— a demo is coming soon!

e Significant insight compared to existing
related works...

—_— A | —

FMOODS’06, Bologna, Italy, June 14-16, 2006

Comparison with Related Work

. Inverardi & -
Criteria Tivoli Brogi et al. ours
LTS
BIDL Automata Proc. algebra
S Proc. Algebra
Properties No deadlock No deadlock No deadlock
P LTL Regexp
Abstraction Yes Yes Yes
Incomp. names No Yes Yes
Data No Yes No
Reordering No Yes Yes
System Yes No Yes
Tools Yes No Yes
I 0 W B

FMOODS’06, Bologna, Italy, June 14-16, 2006

25

Future Work

« Adaptations of messages with data

e Extending our approach with semantic aspects or
quality of services (resources, time)

e Automating the generation of mappings
e Formal proof of the algorithms correction

e Connection with implementation component
models

Demo
(by Pascal Poizat)

—_— A o

FMOODS’06, Bologna, Italy, June 14-16, 2006

