
Formal Analysis of a Fault-Tolerant Routing Algorithm
for a Network-on-Chip

Zhen Zhang1, Wendelin Serwe2, Jian Wu3, Tomohiro Yoneda4,
Hao Zheng5, and Chris Myers1

1Dept. of Elec. & Comp. Eng., Univ. of Utah, Salt Lake City, UT 84112, USA

2Inria & Univ. Grenoble Alpes, LIG Inovallée 38334 St-Ismier Cedex, France

3Marvell Technology Group Ltd., Santa Clara, CA 95054, USA

4National Institute of Informatics, Tokyo, Japan

5Dept. of Comp. Sci. and Eng., Univ. of S. Florida, Tampa, FL 33620, USA

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 1

Motivating Application: Cyber-Physical Systems

A Cyber-Physical System (CPS) has tight interaction between
computation and physical processes.

Example: Electronic control units (ECUs) control everything (engine,
brakes, drive-train, etc.) in automotive systems.

An ECU uses some sensors and actuators to control a part of the
physical system through a feedback loop.

ECUs statically tied to a processor cannot share computing power and
are subject to faults.

Prof. Tomohiro Yoneda’s research group at National Institute of
Informatics (Japan) proposed a Network-on-Chip (NoC) approach for
flexible mapping of ECUs onto the available processors.

In this talk: experience report about the verification of different routing
models with CADP.

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 2

Related Work

precomputed route tables: not adaptive, only permanent faults

Glass/Ni algorithm: faults of complete routers rather than single links

GeNoC: formal proofs with ACL2

ANOC/CHP: verified with CADP, but no fault-tolerance

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 3

Network-on-Chip Topology

Two-dimensional mesh

Nodes labeled by their
position “(x ,y)”

Multi-flit wormhole routing

(0,0)

(0,1)

(1,0)

(0,2)

(1,1)

(0,3)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 4

Properties for Verification

The link-fault tolerant routing algorithm is free of deadlocks.

Given at most one failure link, it is never the case that a router is unable
to route a packet.

Given at most one failure link, a packet never gets dropped when it is the
only one packet in the network.

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 5

Plan of the Presentation

Two-By-Two Mesh Architecture

Principles of the Routing Algorithm

Counter-Clockwise Routing Model

Structural Abstraction to Reduce the State Space

Data-Abstractions to Reduce the State Space

Verification Results

Conclusion

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 6

Two-by-Two Mesh Architecture

4 nodes
each node with

3 arbiters
arb_D_xy
3 routers
r_D_xy

D: direction
(North, East,
South, West, PE)

xy : coordinates

r_PE_00

arb_N_00

arb_E_00

arb_PE_00

r_N_00

r_S_01

r_E_00

r_W_10

r_PE_10

arb_N_10

arb_W_10

arb_PE_10

r_S_11

r_N_10

r_PE_01

arb_E_01

arb_S_01

arb_PE_01

r_E_01

r_W_11

r_PE_11

arb_W_11

arb_S_11

arb_PE_11

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 7

Principles of the Routing Algorithm

Two-phase routing
1 negative phase: towards south/west
2 positive phase: towards north/east

Illegal turn: switch from the positive
phase back into the negative phase

Tolerance of link faults: divert packets
to take illegal turns

Deadlock avoidance by dropping
packets attempting illegal turns (if the
path is occupied)

0,0 1,0

0,1 1,1

X

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 8

An Example of Cyclic Deadlock

r_PE_00

arb_N_00

arb_E_00

arb_PE_00

r_N_00

r_S_01

r_E_00

r_W_10

r_PE_10

arb_N_10

arb_W_10

arb_PE_10

r_S_11

r_N_10

r_PE_01

arb_E_01

arb_S_01

arb_PE_01

r_E_01

r_W_11

r_PE_11

arb_W_11

arb_S_11

arb_PE_11

link failure “arb_W_10 -> r_E_00” implies diversion & illegal turn for green packet from r_ip_10 to arb_ip_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 9

An Example of Cyclic Deadlock

r_PE_00

arb_N_00

arb_E_00

arb_PE_00

r_N_00

r_S_01

r_E_00

r_W_10

r_PE_10

arb_N_10

arb_W_10

arb_PE_10

r_S_11

r_N_10

r_PE_01

arb_E_01

arb_S_01

arb_PE_01

r_E_01

r_W_11

r_PE_11

arb_W_11

arb_S_11

arb_PE_11

link failure “arb_W_10 -> r_E_00” implies diversion & illegal turn for green packet from r_ip_10 to arb_ip_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 10

Deadlock Avoidance: Example

r_PE_00 arb_PE_00

r_N_00 arb_N_00

r_E_00

arb_E_00

r_PE_10arb_PE_10

arb_N_10r_N_10

r_W_10

arb_W_10

r_PE_01 arb_PE_01

r_E_01

arb_E_01

r_S_01arb_S_01

r_PE_11arb_PE_11

r_W_11

arb_W_11

arb_S_11 r_S_11

to avoid deadlock, drop green packet attempting an illegal turn

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 11

Deadlock Avoidance: Example

r_PE_00 arb_PE_00

r_N_00 arb_N_00

r_E_00

arb_E_00

r_PE_10arb_PE_10

arb_N_10r_N_10

r_W_10

arb_W_10

r_PE_01 arb_PE_01

r_E_01

arb_E_01

r_S_01arb_S_01

r_PE_11arb_PE_11

r_W_11

arb_W_11

arb_S_11 r_S_11

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 12

Deadlock Avoidance: Example

r_PE_00 arb_PE_00

r_N_00 arb_N_00

r_E_00

arb_E_00

r_PE_10arb_PE_10

arb_N_10r_N_10

r_W_10

arb_W_10

r_PE_01 arb_PE_01

r_E_01

arb_E_01

r_S_01arb_S_01

r_PE_11arb_PE_11

r_W_11

arb_W_11

arb_S_11 r_S_11

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 13

CADP (Construction and Analysis of Distributed Systems)

Toolbox for the design of asynchronous systems

Formal approach rooted in concurrency theory:
process calculi, labeled transition systems, temporal logic

Many verification techniques:
simulation, model- and equivalence checking, compositional and distributed
verification, test-case generation, performance evaluation, rapid prototyping

Convenient languages for
system modeling (LNT),
temporal logic properties (MCL), and
execution of verification scenarios (SVL)

More than 150 published case-studies and 70 third-party tools

For more information: http://cadp.inria.fr

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 14

http://cadp.inria.fr

A Counterclockwise Routing Model

Each PE router only
generates one single-flit
packet destined to the node in
its diagonal direction.
Only the counterclockwise
routing direction is available.

No packet forwarding
computation in the routers.
Packets take the north-west
illegal turn in node (1,1).

r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11

r_PE_01

arb_S_01

r_E_01

r_PE_11

arb_W_11

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 15

LNT Model of the West Arbiter of Node (1,1) — arb_W_11

process arbiter_nack [ca, ra, ar : any] is
loop

var one_flit : Nat in
select

ar; -- Router r_E_01 is ready to accept packet
select

ca(?one_flit); -- Receive packet from r_ip_11
ar(one_flit) -- Send packet to r_E_01

[]
ra(true); -- Ready to accept from r_S_11
ra(?one_flit); -- Receive packet from r_S_11
ar(one_flit) -- Send packet to r_E_01

end select
[]

ra(false) -- Send negative acknowledgment to r_S_11
end select

end var
end loop

end process

arbiter_nack [r_ip_11 , r_S_11 , r_E_01] -- arb_W_11
r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11

r_PE_01

arb_S_01

r_E_01

r_PE_11

arb_W_11

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 16

LNT Model of the South Router of Node (1,1) — r_S_11

process router_drop_pkt [ar, ra : any] is
loop

var status : Bool , one_flit : Nat in
ar; -- Ready to accept packet from arb_N_10
ar(?one_flit); -- Receive packet from arb_N_10
ra(?status); -- Request arb_W_11’s status
if status then

ra(one_flit) -- Send packet to arb_W_11 ONLY on TRUE status
end if

end var
end loop

end process

router_drop_pkt [arb_N_10 , arb_W_11] -- r_S_11

r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11

r_PE_01

arb_S_01

r_E_01

r_PE_11

arb_W_11

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 17

Verification Results for the Counterclockwise Routing Model

No reduction techniques are required for state space generation.

Deadlock avoidance mechanism drops packets making an illegal turn.
Expected worst case:

three packets make illegal turns and get dropped;
at least one packet remains cycling in the network.

Reachability analysis finds deadlocks!

Diagnostic sequence (“packet leakage path”):
All four packets get dropped due to deadlock avoidance.

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 18

Packet Leakage Transition Sequence

r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11 r_PE_11

arb_W_11r_E_01r_PE_01

arb_S_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 19

Packet Leakage Transition Sequence Example

r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11 r_PE_11

arb_W_11r_E_01r_PE_01

arb_S_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 20

Packet Leakage Transition Sequence Example

r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11 r_PE_11

arb_W_11r_E_01r_PE_01

arb_S_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 21

Packet Leakage Transition Sequence Example

r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11 r_PE_11

arb_W_11r_E_01r_PE_01

arb_S_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 22

Packet Leakage Transition Sequence Example

r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11 r_PE_11

arb_W_11r_E_01r_PE_01

arb_S_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 23

Packet Leakage Transition Sequence Example

r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11 r_PE_11

arb_W_11r_E_01r_PE_01

arb_S_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 24

Reason for Packet Leakage in the West Arbiter of Node (1,1)

process arbiter_nack [ca, ra, ar : any] is
loop

var one_flit : Nat in
select
ar; -- Router r_E_01 is ready to accept packet
select

ca(?one_flit); -- Receive packet from r_ip_11
ar(one_flit) -- Send packet to r_E_01

[]
ra(true); -- Ready to accept from r_S_11
ra(?one_flit); -- Receive packet from r_S_11
ar(one_flit) -- Send packet to r_E_01

end select
[]
ra(false) -- Send negative acknowledgment to r_S_11

end select
end var

end loop
end process

arbiter_nack [r_ip_11 , r_S_11 , r_E_01] -- arb_W_11

Sending a negative acknoweldegment is always enabled!
r_PE_00

arb_E_00

r_N_00

r_W_10 r_PE_10

arb_N_10

r_S_11

r_PE_01

arb_S_01

r_E_01

r_PE_11

arb_W_11

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 25

Packet Leakage in the West Arbiter of Node (1,1)

Arbiter arb_W_11: nondeterministic choice to send to r_S_11
a positive acknowledgement
a negative acknowledgement

Negative acknowledgment always possible, regardless of potential
deadlocks:
a packet leakage path exists!

Possible solution: prioritized choice: sending a positive acknowledgement with
higher priority

Drawbacks of the priority-based approach:
LNT implementation of the priority choice requires additional processes,
leading to possible state explosion.
Pruning the unwanted execution paths from the generated state space
using the priority operator in EXP.OPEN/SVL.
The divergence-sensitive branching bisimulation is not a congruence for
the priority operator.

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 26

Structural Abstraction to Reduce the State Space

State explosion becomes a problem once all components are built for the
two-by-two mesh.

One major reason: interleavings of gate rendezvous between connected
routers and arbiters.

Idea: Merge routers and arbiters of one node into one process,
completely removing rendezvous internal to a node.

Drawbacks of this simplification:
It removes the possibility of
multiple packets passing through
a single node at the same time.
It removes the buffering capacity of
each arbiter, which causes deadlock.

PE_00

n_00 n_10

n_01

PE_10

n_11

PE_11PE_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 27

Example of Deadlock

process n00 [ip_00 , ...] is
loop

var one_flit : Nat in
select

ip_00(?one_flit);
if one_flit == 1 then

n00_n01(one_flit)
else

...
end if

[]
n01_n00(?one_flit);
...

[]
n10_n00(?one_flit);
...

end select
end var

end loop
end process

process n01 [ip_01 , ...] is
loop
var one_flit : Nat in

select
ip_01(?one_flit);
if one_flit == 0 then

n01_n00(one_flit)
else
...

end if
[]

n00_n01(?one_flit);
...

[]
n11_n01(?one_flit);
...

end select
end var

end loop
end process

par
n00_n01, n01_n00, ... -> n00 [...]

|| n00_n01, n01_n00, ... -> n01 [...]
end par

PE_00

n_00 n_10

n_01

PE_10

n_11

PE_11PE_01

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 28

Finding Proper Data Abstractions

The counter-clockwise routing experiment reveals the packet leakage in
certain arbiter’s design.

The experiment with bufferless arbiters shows the necessity of arbiter’s
buffering ability.

Data abstraction is required to keep the state space manageable.

The packet’s content is only checked by routers to precisely determine
the next forwarding direction.

Each router may potentially send a randomly destined packet to any
possible forwarding direction.

Abstract the precise forwarding direction decision with nondeterministic
choice.

This abstraction results in manageable state space.

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 29

Finding Proper Data Abstractions

Constraints:
Fault-tolerance provides alternative route(s) for all packets.
Router’s nondeterministic choice should allow all forwarding directions for a
randomly destined packet.
Illegal turns are never the preferred choice unless all forwarding routes of a
router are illegal.

Routers are classified into three types:
RI2 can make only one illegal turn:
r_S_11 and r_W_11;
RI1 can make one illegal turn
and one legal turn:
r_W_10 and r_S_01;
RI0 makes no illegal turn:
all other routers.

r_PE_00

arb_N_00

arb_E_00

arb_PE_00

r_N_00

r_S_01

r_E_00

r_W_10

r_PE_10

arb_N_10

arb_W_10

arb_PE_10

r_S_11

r_N_10

r_PE_01

arb_E_01

arb_S_01

arb_PE_01

r_E_01

r_W_11

r_PE_11

arb_W_11

arb_S_11

arb_PE_11

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 30

Packets Without Data

Extreme abstraction: eliminate the packet entirely, use pure
synchronization
The packet leakage still exists at RI2 (router allowing only illegal turns):

RI2 has two choices for a packet: to drop it or forward it on an illegal turn.
With no packet content, the nondeterministic choice may always take the
illegal turn.
An illegal turn leads to packet drop regardless of deadlock avoidance.

A packet takes an illegal turn only after an unsuccessful attempt to take
route due to a failure on the route.

Stated otherwise: When a packet makes an illegal turn, it must have been
diverted at least once before.

Use a single-bit Boolean variable to model packet data: true iff packet has
been diverted before.

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 31

The LNT Process for RI2

process router_two_illegal [input , out_arb_ip , out1_illegal ,
out2_illegal , drop : any] is

var one_flit , arb_status : Bool in loop
input(?one_flit);
select

out_arb_ip(one_flit)
[]
if one_flit == true then

-- priority to out1_illegal
out1_illegal(?arb_status);
if arb_status == true then out1_illegal(one_flit)
else

out2_illegal(?arb_status);
if arb_status == true then out2_illegal(one_flit)
else drop -- both illegal turns impossible
end if

end if
else stop end if

end select
end loop end var

end process

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 32

The LNT Process for The Arbiter Corresponding to RI2
process arbiter_nack_2 [in_ip_router , in1_illegal ,

in2_illegal , arb_out : any] is
var one_flit : Bool in

loop select
in_ip_router(true); in_ip_router(?one_flit);
loop L1 in select

arb_out(one_flit); break L1
[] in1_illegal(false)
[] in2_illegal(false)
end select end loop -- L1

[] in1_illegal(true); in1_illegal(?one_flit);
loop L2 in select

arb_out(one_flit); break L2
[] in1_illegal(false)
[] in2_illegal(false)
end select end loop -- L2

[] in2_illegal(true); in2_illegal(?one_flit);
loop L3 in select

arb_out(one_flit); break L3
[] in1_illegal(false)
[] in2_illegal(false)
end select end loop -- L3

end select end loop
end var end process -- arbiter_nack_2

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 33

Compositional LTS generation for Two-by-Two NoCs

Nine scenarios: without failed link plus all possible single link failures

SVL scripts to automate compositional LTS generation and reduction

No deadlocks found in any of the generated LTSs
All but route-failure and drop gates hidden:

No route failures: no corresponding label in the LTSs
No packet drop for a single packet in the NoC
Packet drop possible whenever more than one packet in the NoC

Failure Interm. LTS Size Final LTS Performance Labels
Link States Transitions St. Tr. RAM Time
none 6,295,773 83,386,208 1 1 32,945 5,976 i

01 → 00 20,340 193,726 41 224 111 83 i, drop_Sr_11, drop_Wr_11
01 → 11 1,369,068 18,221,153 1 3 4,039 499 i, drop_Sr_01, drop_Sr_11
00 → 10 6,560 50,688 21 104 111 80 i, drop_Sr_11, drop_Wr_11
00 → 01 6,560 50,688 21 104 111 81 i, drop_Wr_11, drop_Sr_11
10 → 11 122,724 1,269,981 1 3 111 89 i, drop_Wr_10, drop_Wr_11
10 → 00 20,340 193,726 41 224 111 80 i, drop_Wr_11, drop_Sr_11
11 → 01 367,200 4,172,652 1 3 111 106 i, drop_Sr_11, drop_Wr_11
11 → 10 367,200 4,172,652 1 3 111 105 i, drop_Sr_11, drop_Wr_11

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 34

Conclusion & Future Work

Formal Analysis facilitates detection of design flaws
(packet leakage)

Gain deeper understanding of the routing algorithm
(necessary buffering capacity of the arbiters)

Extension of the LNT model to larger networks (three-by-three,
four-by-four, ...), where nodes differ in the number of connections

Study packet delivery guarantees

Refine abstractions

Can the discovered symmetries help in fighting the state space
explosion?

Enrich the model to enable performance analysis

Z. Zhang et al. (U. of Utah and Inria) Formal Analysis Fault-Tolerant Routing Algorithm for a Network-on-Chip Sep. 11, 2014 35

