
Formal Verification of CHP Specifications with CADP,
Illustration on an Asynchronous Network-on-Chip

Gwen Salaün, Wendelin Serwe (INRIA / VASY)
Yvain Thonnart, Pascal Vivet (CEA / LETI)

ASYNC’07 Symposium, Berkeley, USA

March 12th, 2007

Async’07 Symposium – Berkeley - Pascal Vivet 2March 12th, 2007

Outline of the Presentation

• Introduction
• Translation from CHP to LOTOS
• CADP toolbox overview
• Verification of ANOC protocol
• Conclusion & Future Work

Async’07 Symposium – Berkeley - Pascal Vivet 3March 12th, 2007

Context & Objective

process calculus CHP

Petri nets

process calculus LOTOS
(CEA/Leti)

translation

translation

(INRIA/VASY)

verification

synthesis CADP toolbox

LTS semantics

(TIMA Lab)

Designing of complex asynchronous designs :
- existing tool support for : simulation and synthesis
- verification is needed!

=> Translate CHP to LOTOS by using CADP toolbox

Async’07 Symposium – Berkeley - Pascal Vivet 4March 12th, 2007

CHP language

• Abstract descriptions of asynchronous circuits ?
– Model asynchronous handshaking by asynchronous VLSI

programming language seen as a Process Algebra

• Several existing languages :
– High-level languages to describe processes

communicating by message-passing along wires
– CHP, Balsa, Haste/Tangram, Verilog channel extension, SystemC

extensions, …

• CHP (Communicating Hardware Processes):
– Compilation to VLSI circuits [Martin-86]
– Inspired by guarded commands and CSP
– Tool support: TAST tools (TIMA Lab., Grenoble)

• Specific Probe operator :
– Probe allows to observe a pending communication
– Used to exploit low-level aspects of hardware implementation of

communication channels

Async’07 Symposium – Berkeley - Pascal Vivet 5March 12th, 2007

Outline of the Presentation

• Introduction
• Translation from CHP to LOTOS

• CADP toolbox overview
• Verification of ANOC protocol
• Conclusion & Future Work

Async’07 Symposium – Berkeley - Pascal Vivet 6March 12th, 2007

• CHP and LOTOS are based on CSP
• Main differences between CHP and LOTOS

– looping guarded commands vs recursive processes
– symmetrical vs asymmetrical sequential composition
– implicit vs explicit (exit/accept) variable passing
– implicit vs explicit termination
– internal vs external choice
– p2p HW type vs multi-dir abstract typed channel
– no LOTOS equivalent for CHP probe operation!

in CHP: probed channel ?
• Corresponds to a shared variable/resource

in LOTOS: probed channel ?
• Requires additional processes

CHP to LOTOS translation principle

Async’07 Symposium – Berkeley - Pascal Vivet 7March 12th, 2007

The Probe Operator : c#, c#V

• Used in the passive side only
• Boolean Operation:

true if active side waits (for sending V) on c
false otherwise

• Active side is blocked in case of a successful probe:
– Cannot change V before synchronisation / acknowledge
– Cannot emit a different value on c

• Thus: Channels are “particular shared variables”
– Written only by active side
– Read only by passive side
– Between two writes, a synchronisation is required

c#V =

Async’07 Symposium – Berkeley - Pascal Vivet 8March 12th, 2007

Probe operator : Example

Two-way arbiter example :
• client 1: @[c1!; loop]
• client 2: @[c2!; loop]
• arbiter:

@@[c1# ⇒ (c1?, c!1); loop
c2# ⇒ (c2?, c!2); loop]

client 1

client 2
arbiter

c1

c2

c

τ(xc1
:=T)

c1!1

c1!1c!1

c1!1

Interaction with client 1 only

τ(xC:=T)

Definition of a SOS semantics for CHP :
=> to garantee translation correctness

[IFM’05] G. Salaün, W. Serwe. Translating Hardware Process Algebras into Standard Process
Algebras – Illustration with CHP and LOTOS. Proc. of IFM’05. LNCS 3771, Springer.

Async’07 Symposium – Berkeley - Pascal Vivet 9March 12th, 2007

Channel translation

• Translation of a channel c :
– Depends whether a probe occurs on c
– Perform pre-processing before the translation task

This optimizes the generated state-graph

• Three cases:
– Un-probed channels direct translation
– Single probe in guards simplified translation

@[c1# ⇒ (c1?, c!1); loop …
– Probe in expression generic translation

@[c2# and ¬(c1#true)) ⇒ (c!2, c2?); loop …

Async’07 Symposium – Berkeley - Pascal Vivet 10March 12th, 2007

Channel translation : for Un-Probed channel

• For un-probed channels : Direct translation

CHP Model

PROCESS SimpleBuffer
PORT(E : IN DI passive DR[32];

S : OUT DI active DR[32])
VARIABLE data : DR[32];
BEGIN

[E?data ;
S!data ;
loop];

END;

LOTOS model

PROCESS SimpleBuffer
[E, S :T] :
noexit :=

E?data:T ;
S!data ;
SimpleBuffer[E,S]

ENDPROC

Simple
Buffer

E S

Async’07 Symposium – Berkeley - Pascal Vivet 11March 12th, 2007

Channel translation : for Single Probe in Guards

Simplified grammar for guards:
• Guard ::= V | c# | c#V
• No probe in expressions V
⇒ Avoid additional channel process and gates

• Send c!V

c?x

c!probe!V

c!V

c!probe!V

• Probe c#V

• Receive c?x

value matching

Async’07 Symposium – Berkeley - Pascal Vivet 12March 12th, 2007

• Translation Schema

• Tool Implementation
– code specialization for probes

(reduction up to a factor of 156)

– 19,300 lines of SYNTAX, LOTOS NT, and C
– test base of more than 500 CHP specifications

Translator CHP ⇒ LOTOS

LOTOSLOTOSCHPCHP intermediate
representationparsing

simplified
representation

channel
profiles

optimization
code
gene-

ration

Async’07 Symposium – Berkeley - Pascal Vivet 13March 12th, 2007

Outline of the Presentation

• Introduction
• Translation from CHP to LOTOS
• CADP toolbox overview

• Verification of ANOC protocol
• Conclusion & Future Work

Async’07 Symposium – Berkeley - Pascal Vivet 14March 12th, 2007

CADP : Key Concepts

• CADP takes roots in concurrency theory
• Process algebra

– Modular value-passing languages
– Equivalences (Bisimulation)
– Compositionality

• Explicit-state verification
– As opposed to symbolic methods (BDDs, etc.)
– Action-based models (Labeled Transition Systems)
– µ-calculus, temporal logics
– Model checking + Equivalence checking

http://www.inrialpes.fr/vasy/cadp
(Google: CADP Toolbox)

Async’07 Symposium – Berkeley - Pascal Vivet 15March 12th, 2007

CADP : Toolbox Architecture

network of
LTSs (EXP)

LOTOS

implicit LTS
(OPEN/CÆSAR)

explicit LTS
(BCG)

explicit LTS
(other format)

BCG_IO

BCG_Open
GENERATOR

Cæsar.OpenCæsar.ADT EXP.Open

other
format

Visualization (BCG_Draw)

Verification (XTL)

Minimization (BCG_Min)
Performance Evaluation
(BCG_Steady/BCG_Transient)

…

Random Walk (Executor)

Sequence searching

Bisimulation (Bisimulator)
Verification (Evaluator)

…

Simulation (OCIS)

Test generation (TGV)
(Exhibitor)

Cæsar

Prototyping (EXEC/CÆSAR)
Scripting (SVL)
Graphical user interface (XEuca)

Async’07 Symposium – Berkeley - Pascal Vivet 16March 12th, 2007

Outline of the Presentation

• Introduction
• Translation from CHP to LOTOS
• CADP toolbox overview
• Verification of ANOC protocol

– ANOC presentation
– state space generation techniques
– verification techniques

• Conclusion & Future Work

Async’07 Symposium – Berkeley - Pascal Vivet 17March 12th, 2007

Asynchronous Network-on-Chip Architecture

• ANOC architecture
– 2D-mesh based
– Provide Quality-of-Service
– Implemented in QDI logic

• ANOC network protocol
– Packet Switching
– Source Routing

• ANOC Communication node
– Composed of :

5 input controllers
5 output controllers

– Handle Virtual Channel policy

1 0 header payload Path-to-Target
(shifted in each node) 0 0 data payload 0 1 data payload

Packet

Flits

HW
operator Memory

HW
operator

HW
operator

HW
operator

HW
operator

HW
operator Memory

CPU

OUT NorthOUT NorthIN NorthIN North

IN ResIN Res

OUT SouthOUT South IN SouthIN South

IN
West

IN
West

OUT
West
OUT
West

OUT
East
OUT
East

IN
East
IN

East

OUT ResOUT Res

Async’07 Symposium – Berkeley - Pascal Vivet 18March 12th, 2007

ANOC Node Input Controller

• For each node input :
– Routes flits of a packet to

the corresponding output
– direction determined by

the header flit
– 4 possible directions
– 2 virtual channels

• Complex arrangement
of 14 Asynchronous
Processes

Async’07 Symposium – Berkeley - Pascal Vivet 19March 12th, 2007

Verification Approach: Overview

• Simplifications on the CHP level
• Compositional state space generation
• Verification of properties

– absence of deadlocks
– correct stimulus-response protocol
– NOC data integrity
– NOC data routing

• Simplified via SVL scripts

Async’07 Symposium – Berkeley - Pascal Vivet 20March 12th, 2007

Simplifications on the CHP level

• Data Independence
– fix part of the flits
– reduction from 1025 down to 5 * 1016 states

• Traffic Generator
– emulate a “realistic environment”
– check correctness (“observer” processes)

• Verification Scenarios
– cut a large verification into several smaller ones
– several sequences of inputs
– a generic SVL script for all scenarios

BOP EOP flit id fixed sequence flit id
33 32 31 30 29 2 1 0

Async’07 Symposium – Berkeley - Pascal Vivet 21March 12th, 2007

Compositional State Space Generation

• Principle: “Divide and conquer”
• Alternate the steps of

– generation
– hiding internal transitions
– minimization
– combination

• Order following the data path
– Use inputs to restrict behaviors
– Use SVL scripts (41 steps to generate the state graph)

• Results
– The SVL script generates in about 4’ the corresponding LTS

1300 states, 3116 transitions
– Largest intermediate LTS observed :

295 000 states, 812 000 transitions

Async’07 Symposium – Berkeley - Pascal Vivet 22March 12th, 2007

Verified Properties: Deadlocks

• Deadlock freedom:
– check for states without successor

• Infinite Occurrence:
– check for cyclic behavior

• no issue detected

Async’07 Symposium – Berkeley - Pascal Vivet 23March 12th, 2007

Verified Properties: Stim.-Resp. protocol

• Correct Stimulus-Response Protocol:
stimuli { S1, …, Sm } trigger responses { R1, …, Rn }

• A single check “((S1 || … || Sm) ; (R1 || … || Rn))*”
is insufficient!

(overlapping stimuli and responses)
• Three steps of equivalence checking

– cyclic occurrence of all stimuli:
– cyclic occurrence of all responses:
– stimuli generate responses:

• no issue detected

“(S1 || … || Sm)*”
“(R1 || … || Rn)*”
“(Si ; Rj)*”

S1

Sm

… R1

Rn

…… …

hide
other

actions

Async’07 Symposium – Berkeley - Pascal Vivet 24March 12th, 2007

Verified Properties: NOC Data Integrity

• Observer processes:
– Compare responses with the expected results
– Use special error channels

• Check for absence of error signals
• no issue detected

Async’07 Symposium – Berkeley - Pascal Vivet 25March 12th, 2007

Verified Properties: NOC Data Routing

• NoC DATA routing : expresses as a µ-calculus formula :
[true* . on_channel(0) . to_dest(1)]
<(no_Data0_toD())* . ’Data0_to1’>
true

• CHP model check: a routing issue is detected
– Tool generate a counter example :

Occurs if a new packet is admitted in the input controller
before last flit of the previous packet was routed

• NoC node design ?
– correct in simulation on Verilog netlist: no routing error

• So … a real routing issue ?
– due to CHP model under-specification:

CHP model does not account for handshake expansion
asynchronous processes actually have a ½ capacity (half-buffers)

– If we explicit in the CHP model the real design slack, corresponding
to the chosen HSE reshuffling, the routing issue is fixed.

Async’07 Symposium – Berkeley - Pascal Vivet 26March 12th, 2007

Conclusion

• Translation of CHP into LOTOS
– Formal definition (including a SOS semantics)
– Implementation of a translator tool

• Verification strategy using CADP toolbox :
– Compositional state graph generation
– Verification of various properties

• Case studies on CHP models of :
– Asynchronous DES
– ANOC communication node

Verification revealed a routing issue in the CHP model
due to absence of the real system slack modeling

=> Positive feedback from realistic case studies

