
Reference Manual of the LNT to LOTOS Translator

(Formerly: Reference Manual of the LOTOS NT to LOTOS Translator)

(Version 7.5)

David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Frédéric Lang,
Christine McKinty, Vincent Powazny, Wendelin Serwe, and Gideon Smeding

INRIA/VASY – INRIA/CONVECS

December 17, 2024

© INRIA 2005-2024– All rights reserved – Tous droits réservés

Note: this PDF document contains hyperlinks written in grey, whereas the normal text is in black.

Abstract

This document defines the Lnt language (version 7.5), which is a simplified variant of E-Lotos
(International Standard ISO-15437:2001). In a nutshell, Lnt provides the same expressiveness as
Lotos, but has more user-friendly and regular notations borrowed from imperative and functional
programming languages. In particular, unlike Lotos, the data type and process parts of Lnt share
many similar constructs, leading to a more uniform and easy-to-learn language than Lotos. This doc-
ument defines the syntax, static semantics, and dynamic semantics of Lnt, and presents its associated
tools: the Lnt2Lotos translator and the Lnt.Open script that interfaces with the Open/Cæsar
framework so as to enable Lnt specifications to be analyzed using the Cadp toolbox.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

4

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Contents

1 Introduction 11
1.1 Goals . 11

1.1.1 A brief history of Lotos and E-Lotos . 11
1.1.2 The Lnt (formerly Lotos NT) language . 11
1.1.3 Lnt-to-Lotos translation . 12

1.2 Document structure . 12

2 Overview of the translation from Lnt to Lotos 15
2.1 Modules and principal module . 15
2.2 Root process . 15
2.3 Tools for translation of Lnt into Lotos . 15
2.4 File types and extensions . 16
2.5 Including external C code . 16
2.6 Lnt modularity and file separation . 17
2.7 Naming translation rules . 18
2.8 Environment variables . 18
2.9 Semantic checks . 18

3 Notations and lexical elements 21
3.1 Meta-language . 21
3.2 Comments . 21
3.3 Keywords . 21
3.4 Identifiers . 22
3.5 Natural numbers . 23
3.6 Integer numbers . 24
3.7 Real numbers . 24
3.8 Characters . 25
3.9 Strings . 26
3.10 Prefix and infix calls of constructors and functions . 26

4 Module definitions in Lnt 29
4.1 Notations . 29
4.2 Syntax . 29
4.3 Module definitions . 31
4.4 Module pragmas . 31
4.5 Constructors, functions, procedures, and processes . 33

5 Type definitions in Lnt 35

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

6 CONTENTS

5.1 Notations . 35
5.2 Syntax . 35
5.3 Type definitions . 37
5.4 Type expressions . 37
5.5 Constructor definitions . 38
5.6 Type pragmas and constructor pragmas . 39
5.7 Predefined function declarations . 40
5.8 Predefined function pragmas . 47
5.9 Module “with” clauses . 47

6 Channel definitions in Lnt 49
6.1 Notations . 49
6.2 Syntax . 49
6.3 Channels . 50
6.4 Channel profiles . 50
6.5 Gate and exception events . 51
6.6 Predefined events . 51
6.7 Compatible events . 52

7 Function definitions in Lnt 53
7.1 Notations . 53
7.2 Syntax . 53
7.3 Resolution of syntactic ambiguities . 57
7.4 Variables . 59
7.5 Function definitions . 59
7.6 Function pragmas . 60
7.7 Lists of formal events . 62
7.8 Lists of formal parameters . 62
7.9 Modes of formal parameters . 62
7.10 Preconditions and postconditions . 64
7.11 Statements . 65

7.11.1 Null statement . 65
7.11.2 Sequential composition . 65
7.11.3 Return statement . 65
7.11.4 Exception raise . 66
7.11.5 Assertion . 66
7.11.6 Array element assignment . 66
7.11.7 Procedure call . 66
7.11.8 Variable declaration . 69
7.11.9 Case statement . 69
7.11.10If statement . 71
7.11.11Breakable loop statement . 71
7.11.12Unbreakable loop statement . 71
7.11.13Breakable while statement . 71
7.11.14Unbreakable while statement . 72
7.11.15Breakable for statement . 72
7.11.16Unbreakable for statement . 72
7.11.17Break statement . 72
7.11.18Use statement . 73
7.11.19Access statement . 73

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

CONTENTS 7

7.12 Patterns . 73
7.12.1 Variable binding . 73
7.12.2 Pattern matching . 74
7.12.3 List patterns . 75

7.13 Value expressions . 75
7.13.1 Variable . 75
7.13.2 Result . 75
7.13.3 Constructor call . 76
7.13.4 Function call . 76
7.13.5 Field selection . 76
7.13.6 Field update . 77
7.13.7 Array element access . 77
7.13.8 Type coercion . 77
7.13.9 List expressions . 77

8 Process definitions in Lnt 79
8.1 Notations . 79
8.2 Syntax . 79
8.3 Resolution of syntactic ambiguities . 81
8.4 Process definition . 82
8.5 Process pragmas . 82
8.6 Lists of formal events . 83
8.7 Lists of formal parameters . 84
8.8 Behaviours . 84

8.8.1 Stop . 84
8.8.2 Procedure call . 84
8.8.3 Only-if statement . 85
8.8.4 Nondeterministic assignment . 85
8.8.5 Exception raise . 85
8.8.6 Assertion . 85
8.8.7 Process call . 86
8.8.8 Communication . 90
8.8.9 Nondeterministic choice (alternative) . 90
8.8.10 Parallel composition . 90
8.8.11 Hiding . 91
8.8.12 Disruption . 92

A Syntax summary of the Lnt language (version 7.5) 93
A.1 Extended BNF notation used in this appendix . 93
A.2 Identifiers . 93
A.3 Modules . 94
A.4 Types . 95
A.5 Channels . 96
A.6 Functions . 97
A.7 Instructions and statements . 98
A.8 Patterns . 99
A.9 Value expressions . 99
A.10 Processes . 100
A.11 Behaviours . 100

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

8 CONTENTS

B Formal semantics of the Lnt language (version 7.5) 103
B.1 Preliminaries . 103

B.1.1 SOS rules . 103
B.1.2 Values and stores . 104

B.2 Dynamic semantics of expressions . 105
B.2.1 Definitions . 105
B.2.2 Variable . 105
B.2.3 Constructor call . 105
B.2.4 Built-in function call . 106
B.2.5 User-defined function call . 106

B.3 Dynamic semantics of patterns . 106
B.3.1 Definitions . 106
B.3.2 Variable . 107
B.3.3 Wildcard . 107
B.3.4 Aliasing . 107
B.3.5 Constructed pattern . 108
B.3.6 Constant pattern . 108
B.3.7 Conditional pattern . 108
B.3.8 Alternative . 109

B.4 Dynamic semantics of offers . 109
B.4.1 Definitions . 109
B.4.2 Send offer . 110
B.4.3 Receive offer . 110

B.5 Dynamic semantics of statements . 110
B.5.1 Definitions . 110
B.5.2 Null . 111
B.5.3 Sequential composition . 111
B.5.4 Return . 112
B.5.5 Assignment . 112
B.5.6 Procedure call that returns a value . 112
B.5.7 Procedure call that does not return a value . 113
B.5.8 Case statement . 113
B.5.9 Loop break . 114
B.5.10 Breakable loop . 114

B.6 Dynamic semantics of behaviours . 114
B.6.1 Definitions . 114
B.6.2 Stop . 115
B.6.3 Null . 116
B.6.4 Sequential composition . 116
B.6.5 Deterministic assignment . 116
B.6.6 Nondeterministic assignment . 117
B.6.7 Procedure call that returns a value . 117
B.6.8 Procedure that does not return a value . 117
B.6.9 Case behaviour . 117
B.6.10 Loop break . 118
B.6.11 Breakable loop . 118
B.6.12 Process call . 119
B.6.13 Communication . 120
B.6.14 Nondeterministic choice . 120

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

CONTENTS 9

B.6.15 Parallel composition . 120
B.6.16 Hiding . 121
B.6.17 Disrupting . 122

B.7 Discussion on the dynamics semantics . 122

C Predefined functions 125
C.1 Functions on Booleans . 125
C.2 Functions on natural numbers . 126
C.3 Functions on integer numbers . 126
C.4 Functions on real numbers . 126
C.5 Functions on characters . 127
C.6 Functions on strings . 127

D Examples 129
D.1 Lnt types . 129

D.1.1 Enumerated type . 129
D.1.2 Record type . 130
D.1.3 List type . 130
D.1.4 Array types . 131

D.2 Lnt functions . 131
D.2.1 Manipulating record fields . 131
D.2.2 The factorial function . 132

D.3 Lnt processes . 134
D.3.1 Hello World program . 134
D.3.2 Pattern matching in a rendezvous . 134
D.3.3 Array types . 134
D.3.4 The Alternating Bit protocol . 136

E Differences between Lnt2Lotos and Traian 139
E.1 Introduction . 139
E.2 Keywords . 139
E.3 Module definitions . 139
E.4 Type definitions . 139
E.5 Channel definitions . 140
E.6 Function definitions . 140
E.7 Process definitions . 140

F Translation of Lnt constants 141
F.1 Translation of Lnt natural numbers to Lotos . 141
F.2 Translation of Lnt integer numbers to Lotos . 142
F.3 Translation of Lnt real numbers to Lotos . 143
F.4 Translation of Lnt characters to Lotos . 144
F.5 Translation of Lnt strings to Lotos . 144

G Change history 147

Bibliography 149

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

10 CONTENTS

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Chapter 1

Introduction

1.1 Goals

This document defines the Lnt language for specifying safety-critical systems.

1.1.1 A brief history of Lotos and E-Lotos

The Lotos language [ISO89] was designed by experts in FDT (Formal Description Techniques) at Iso
during the years 1981-1988. The objective was to design an expressive, well-defined , well-structured ,
and abstract language.

Lotos has been used to describe numerous complex systems formally. A number of tools have been
developed for Lotos, covering user needs in the areas of simulation, compilation, test generation,
and formal verification.

However, Lotos actually has certain limitations, notably that the data types do not meet users’
needs and the inability to specify real-time constraints.

For these reasons, Iso/Iec undertook in 1993 a revision of the Lotos standard. This revision com-
pleted in 2001 with a new International Standard [ISO01]. The revised language is called E-Lotos
(for Extended-Lotos). The enhancements of Lotos are intended to remove known limitations of the
language concerning expressiveness, abstraction and structuring capabilities, and user friendliness.

1.1.2 The Lnt (formerly Lotos NT) language

Lnt is a language that follows the main concepts of E-Lotos and offers other features, in order to
provide versatility, as well as compilation and verification efficiency.

One major advantage of Lnt is that its syntax is imperative, and thus easy to learn for developers
and computer scientists.

Moreover, the purpose of Lnt is to be both a concise language for small specifications (the so-called
programming in the small level) and a suitable language for large specifications, with the ability to
structure a project for team work (the so-called programming in the large level). While E-Lotos is
good only at the second point, Lnt tries to address both needs.

The rationale for the semantic foundations of Lnt are discussed in the four following publications:

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

12 Chapter 1 : Introduction

[Gar95] (gate typing), [GS96] (exceptions), [GS99] (parallel composition), and [Gar15] (sequential
composition).

So far, Lnt has been been implemented in two different compilers, Traian and Lnt2Lotos:

• Traian1 is a translator developed by the Vasy and Convecs teams since 1996. It takes as
input a Lnt specification and generates corresponding C code. The current version of Traian
only compiles the data part (type definitions and function definitions) of Lnt. The Lnt User
Manual [SCC+24] describes the syntax and semantics of Lnt, and lists the main differences
between Lnt and E-Lotos.

• Lnt2Lotos is a translator from Lnt to Lotos, the development of which was undertaken
in 2005, the Vasy team undertook, as Bull’s request. his translator enabled one to reuse
the Lotos-to-C compilers (namely, Cæsar.adt and Cæsar) available in the Cadp toolbox2.
This translator progressively expanded in the framework of the FormalFame3 and Multival4

industrial projects.

When the development of Lnt2Lotos started, the initial goal was to reuse the same language as
Traian. However, while developing the tools and gaining industrial feedback from Bull, extensions
(e.g., array types) and restrictions (related to translation issues) have been brought to the input
language of Lnt2Lotos. This progressively led to two diverging versions of the language.

Between 2005 and 2014, the name “Lotos NT” has been used for both languages supported by
Traian and Lnt2Lotos.

Between 2014 and October 2023, “Lotos NT” was exclusively used to refer to the input language
of Traian, whereas the name “Lnt” (a shorthand for Lotos NT) became the official name to
designate the input language accepted by Lnt2Lotos.

As of October 2023, after making a significant effort to reduce the differences between Lotos NT and
Lnt, “Lnt” is now used as the name for the common input language of Traian and Lnt2Lotos.

A retrospective overview of the evolution of Lotos and its descendents E-Lotos, Lotos NT, and
Lnt can be found in [GLS17].

1.1.3 Lnt-to-Lotos translation

This document describes the Lnt language as accepted by the Lnt-to-Lotos translation tools
Lnt.Open and Lnt2Lotos.

The role of the Lnt.Open and Lnt2Lotos tools that are presented in this document is to translate
specifications written in the Lnt language into Lotos code that can be taken as input by the Cadp
tools.

1.2 Document structure

This document first explains how to use the translation tools Lnt.Open and Lnt2Lotos to apply
the Cadp verification toolbox to Lnt specifications (Chapter 2).

1http://vasy.inria.fr/traian
2http://cadp.inria.fr
3http://vasy.inria.fr/dyade/formalfame.html
4http://vasy.inria.fr/multival

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

http://vasy.inria.fr/traian
http://cadp.inria.fr
http://vasy.inria.fr/dyade/formalfame.html
http://vasy.inria.fr/multival

§ 1.2 : Document structure 13

Chapters 3 to 8 describe the syntax and semantics of the Lnt language: its basic features (lexical
structure, reserved keywords, etc.), the definition of modules (Chapter 4), the definition of data types
(Chapter 5), the definition of functions (Chapter 7), and last, but not least, the definition of channels,
behaviours, and processes (Chapter 8).

Appendix A contains a summary of the Lnt syntax. by Lnt2Lotos.

Appendix B provides a formal semantics for Lnt.

Appendix C contains a list of all the predefined functions.

A set of examples is given in Appendix D. They show how to define and use different kinds of Lnt
types, and explain how to use Lnt types in Lotos specifications, and Lotos sorts in Lnt programs.
They also show how to define Lnt functions.

Appendix E contains a summary of the current differences between Lnt2Lotos and Traian.

Appendix F provides detailed examples showing how Lnt constants are translated to Lotos by
Lnt2Lotos.

Appendix G gives the history of versions and changes for the Lnt language and the associated tools.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

14 Chapter 1 : Introduction

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Chapter 2

Overview of the translation from
Lnt to Lotos

This chapter presents the translation of Lnt into Lotos and the related tools. For a detailed
description of the tools, their options and usage, please refer to their manual pages.

2.1 Modules and principal module

A typical Lnt specification consists of some Lnt modules written in files with extension “.lnt”. Lnt
modules can import other Lnt modules, as explained in subsection 2.6. The module that transitively
imports all other modules of the specification is called the principal module.

2.2 Root process

One of the modules must contain the root process, i.e., a process that is in general named “MAIN”
unless the name of this process is specified on the command line using the “-root” option.

The root process is usually located in the principal module, but this is not mandatory.

2.3 Tools for translation of Lnt into Lotos

For details of how to use these tools, see their manual pages.

• Lnt.Open is a script providing a connection between Lnt2Lotos and the Open/Cæsar
environment. The script automates the conversion of Lnt programs to Lotos code, by auto-
matically calling Traian, Lnt2Lotos, and finally Cæsar.Open (which invokes Cæsar.adt
and Cæsar). See the Lnt.Open manual page for details of its features, including, notably,
multi-module compilation.

Lnt.Open takes as input the principal module of an Lnt specification and an Open/Cæsar
application program. Lnt.Open first translates the complete Lnt specification (i.e., the princi-
pal module and all included modules) into Lotos, compiles the generated Lotos specification,

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

16 Chapter 2 : Overview of the translation from Lnt to Lotos

and finally calls the Open/Cæsar application program. Thus Lnt.Open tries to automate
and hide the translation steps as much as possible.

Lnt.Open is the recommended tool for using Lnt specifications in conjunction with Cadp.

• Traian is a compiler from Lnt to C, whose front-end is used to perform advanced semantic
analyses of the input Lnt specification, providing useful error and warning messages. The C
code generation is deactivated when Traian is called from Lnt.Open.

The input file contains user-written Lnt code.

The output file contains the resulting code translated from the input file.

• Lnt2Lotos translates the Lnt program into Lotos.

The input file must be a valid Lnt program according to the specifications given in Chapters
3, 4, 5, 7, and 8.

The output file contains the resulting Lotos code translated from the input file.

2.4 File types and extensions

Each Lnt module is translated into three output files:

• A Lotos library (written in a file with extension “.lib”) or, in case of the principal module,
a Lotos specification (written in a file with extension “.lotos”)

• A “.f” file

• A “.t” file

The Lnt.Open tool automates the translation of an Lnt specification into Lotos and the connection
to the Open/Cæsar interface of Cadp.

An example of a project using the Cadp verification tools to analyze a set of Lnt modules is shown
in Figure 2.1.

2.5 Including external C code

Optional external C code can be provided to Lnt2Lotos in a “.fnt” file for functions or a “.tnt”
file for data type definitions (these files play for Lnt2Lotos the same role as the “.f” and “.t” files
for Cæsar and Cæsar.adt). The “.fnt” file must contain the line

#define LNT2LOTOS_EXPERT_FNT 7.5

The “.tnt” file must contain the line

#define LNT2LOTOS_EXPERT_TNT 7.5

These files are read by Lnt2Lotos and the contents are included in the generated “.f” or “.t” files.
The names of all the files that define a module (the “.lnt” file and its optional “.tnt” and “.fnt”
files) must be written in exactly the same way, including matching in case.

The version number tag, 7.5, is checked by Lnt2Lotos in the “.fnt” and “.tnt” files and by
Cæsar.adt in the “.f” and “.t” files.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 2.6 : Lnt modularity and file separation 17

module mod1

end module

is

...

MOD1.lnt

module mod2

end module

...

is

MOD2.lnt

module mod3

end module

...

is

MOD3.lnt main.lnt

end module
end process

module main
(mod1, ...)
is
...

process main
...

Lnt.Open

Open/Cæsar
application

for instance:
ocis.a
generator.c

evaluator.a
bisimulator.a

...

library/code

Open/Cæsar
application

Source code directory

...

Figure 2.1: Using Lnt.Open to apply an Open/Cæsar application to an Lnt specification

2.6 Lnt modularity and file separation

Lnt is more modular than Lotos: each Lnt file contains exactly one module definition, and both
the file and the module must have the same name. Letter case is not significant: a module example

can indifferently be defined in a file named Example.lnt, example.lnt or EXAMPLE.lnt.

However, any import of the module must use the precise name of the file containing the module
(respecting lower and upper case exactly).

A module M can import other modules M0, ..., Mn as follows:

module M (M0, ..., Mn) is

-- module expression

...

end module

In such a module M, all definitions of M0, M1, ... and Mn are visible and can be used in the definitions
in M.

Lnt2Lotos handles nested includes by importing all the modules directly into the auxiliary file of
the principal module. For example, if principal module “X.lnt” directly imports modules “Y.lnt”,
the auxiliary file “X.f” will include the file “Y.f”. The auxiliary “.t” file is generated using the same
method as the “.f” file. It also automatically includes “LNT V1.h”, so this must not be included in
the hand-written “.fnt” or “.tnt” files. Lnt2Lotos detects and avoids multiple inclusions of the
same code.

The included modules are searched first in the directory of the principal module, and then in the direc-
tory “$LNT_LOCATION/lib”. This allows the existence of a collection of predefined Lnt libraries. Cur-
rent examples of such libraries can be found in “$CADP/lib/BIT.lnt” and “$CADP/lib/OCTET.lnt”.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

18 Chapter 2 : Overview of the translation from Lnt to Lotos

In future releases, modules will import interfaces, which are the visible parts of
modules. In the current release, no distinction is made between interfaces and
modules: all definitions of a module (types, functions, channels, and processes)
are considered visible.

2.7 Naming translation rules

Lnt2Lotos respects the following rules when translating Lnt to Lotos:

1. An Lnt file or file.lnt is translated into a Lotos FILE whose name is obtained by uppercas-
ing the source file name and changing its extension to “.lib” (or “.lotos” for the principal
module).

2. An Lnt module is translated into a Lotos type with the same name.

3. An Lnt type is translated into a Lotos sort with the same name.

4. An Lnt type constructor is translated into an Lnt constructor operation with the same
name.

5. An Lnt function that returns a value and has neither “out” nor “in out” parameters, or that
returns no value and has at most one “out” or “in out” parameter is translated into a Lotos
function with the same name. Otherwise, the Lnt function is translated into several Lotos
functions, whose names are unspecified.

Moreover, if a type or function name would result in a clash with a Lotos keyword, then the name
is prefixed with respectively “TYPE__” or “FUNC__”.

2.8 Environment variables

The $LNT_LOCATION shell environment variable should refer to the Lnt2Lotos installation directory.
If this variable is not defined, the value of $CADP is used.

The environment variable $PATH should be modified in order to include the directories
$LNT_LOCATION/bin.‘$CADP/com/arch‘ and $LNT_LOCATION/com.

The files generated by Lnt2Lotos are stored in a separate directory, so that there is no confusion
between the source code written by the user and the generated code.

The $LNTGEN environment variable should specify the path to this directory. Note that, if this path is
relative to the source code directory, the same environment variable can be used for several projects.

If $LNTGEN is undefined in the current environment, “./LNTGEN” is used instead.

If the resulting path does not point to an existing directory, Lnt2Lotos tries to create it. If the
creation fails, they issue an error message and stop.

2.9 Semantic checks

In general, the static semantic rules given in Chapters 4, 5, 6, 7, and 8 are checked at compile-time
by Traian.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 2.9 : Semantic checks 19

In few cases however, the checks are deferred to other tools and performed later. Such cases are
indicated using the following notations:

• [checked by Lnt2Lotos] means that an error message can be raised at translation time by
Lnt2Lotos.

• [checked by Cæsar/Cæsar.adt] means that an error message can be raised by
Cæsar/Cæsar.adt when compiling the Lotos code generated by Lnt2Lotos.

• [checked at runtime] means that an error message may be raised when the generated Lotos
code is executed.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

20 Chapter 2 : Overview of the translation from Lnt to Lotos

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Chapter 3

Notations and lexical elements

This chapter describes the lexical structure of the Lnt language.

3.1 Meta-language

In this manual, to specify the concrete syntax of Lnt, we use BNF (Backus-Naur Form) grammars
extended with the following notations:

• ε denotes the empty string

• [...] is the optional operator (0 or 1 instance)

• y0...yn is the concatenation of one or more y characters

• y1...yn is the concatenation of zero or more y characters

• y0, ..., yn is the concatenation of one or more y characters separated by commas

• y1, ..., yn is the concatenation of zero or more y characters separated by commas

3.2 Comments

In addition to Lotos-like block comments of the form “(* text *)”, single-line comments of the
form “-- text” can be used in Lnt. For the latter, all the text from the characters “--” to the end
of the line is ignored.

Lnt2Lotos removes first the block comments, then the line comments, allowing line comments to
be used within block comments.

3.3 Keywords

All LNT keywords must be written using lowercase letters. The list of Lnt keywords is the following:

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

22 Chapter 3 : Notations and lexical elements

access alt and any array as assert

break by case channel disrupt div else

elsif end ensure eval for function hide

if in is list loop mod module

null of only or out par process

raise range rem require result return select

set sorted stop then trap type use

var where while with xor

The identifiers of types, functions without “out” and “in out” parameters, processes, and gates
present in the source Lnt program are kept unchanged in the generated Lotos program. Therefore, if
such identifiers are Lotos keywords, then Lnt2Lotos prints an error message rather than generating
syntactically incorrect code. As a reminder, the list of Lotos keywords is the following (those written
in italic font are also keywords of Lnt):

accept actualizedby any behavior behaviour choice

endlib endproc endspec endtype eqns exit

for forall formaleqns formalopns formalsorts hide
i in is let library noexit

of ofsort opnnames opns par process
renamedby sortnames sorts specification stop type
using where

Note: In standard Lotos, the token “i”, which represents the internal gate (see Section 6.6), is a
reserved keyword; it is thus impossible for the user to declare any identifier named “i”, even if this
identifier does not represent an event. In Lnt, “i” is not a reserved keyword, but a predefined event
identifier: it can thus be used without any restriction for naming Lnt modules, types, constructors,
channels, functions, variables, etc. However, “i” retains its special meaning when used as an event:
thus, it is forbidden to declare an event named “i”, to pass “i” as an actual event parameter in a
process call, or to require synchronization on “i” in a parallel composition.

3.4 Identifiers

There are three types of identifiers:

• A “normal-identifier” consists of a letter optionally followed by any number of letters, digits,
or underscores. It cannot start or end with an underscore, and cannot contain consecutive
underscores. Examples of normal-identifier names are: “Main”, “timer 27”, “x 6 p”.

• A “special-identifier-1” consists of a digit optionally followed by any number of letters or
digits. Examples of special-identifier-1 names are: “99catchall”, “0start”.

An identifier denoting a natural or integer constant, e.g., “123” or “0b11” (see Sections 3.5 and
3.6) is considered as such (rather than as a special-identifier-1).

• A “special-identifier-2” consists of a sequence of one or more of the following characters:“#”,
“%”, “&”, “*”, “+”, “-”, “/”, “>”, “=”, “<”,“@”, “”, “^”, “~”. Examples of special-identifier-2
names are: “>=”, “<>”, “**”.

The sequence “!=” is also considered a special-identifier-2, even though the “!” is not normally
permitted.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 3.5 : Natural numbers 23

Identifiers are not case-sensitive. For instance, “my idf”, “My Idf”, and “MY IDF” denote the same
module, type, type constructor, function, variable, loop label, channel, event, or process. Note
however that:

• Keywords are reserved, meaning that they cannot be used as identifiers, except “and”, “div”,
“mod”, “or”, “rem”, and “xor”, which can be used as constructor or function identifiers.

• Identifiers obtained by turning some lowercase letter to uppercase are valid identifiers. For
instance, “END” and “Var” are valid identifiers whereas “end” and “var” are keywords.

As a general rule, when using a module, a type, a type constructor, a function, a variable, a loop
label, a channel, an event, or a process identifier, it is recommended to use the same letter case as its
definition whenever possible.

Constructor and function identifiers can be any identifier-type, whereas other identifiers are normal-
identifier type, as shown below:

Identifier Meaning Identifier type
M module normal-identifier
T type normal-identifier
C type constructor normal-identifier or special-identifier-1 or special-identifier-2
X variable normal-identifier
F function normal-identifier or special-identifier-1 or special-identifier-2
L loop label normal-identifier
Γ channel normal-identifier
E event normal-identifier
Π process normal-identifier

The use of Lotos keywords as identifiers should be avoided (see Section 3.3 above).

3.5 Natural numbers

With Lnt, natural number notations can be used as in any programming language. The notations are
those of the Microsoft’s F# language. They were preferred to those of C, C++ and Java. Firstly,
these last three languages lack a notation for binary numbers. Secondly, there is a risk of confusion
between decimal and octal notations: a number notation which only contains digits can either be
decimal (756) or octal (0756).

Lnt supports four notations:

bindigit ::= 0|1 binary digit

octdigit ::= 0|1|2|3|4|5|6|7 octal digit

decdigit ::= 0|1|2|3|4|5|6|7|8|9 decimal digit

hexdigit ::= 0|1|2|3|4|5|6|7|8|9|a|A|b|B|c|C|d|D|e|E|f|F hexadecimal digit

nat ::= decdigit+ decimal constant, e.g., 34

| 0xhexdigit+ hexadecimal constant e.g., 0xf2

| 0ooctdigit+ octal constant e.g., 0o42

| 0bbindigit+ binary constant e.g., 0b10010

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

24 Chapter 3 : Notations and lexical elements

In addition, leading zeros are forbidden in decimal numbers, so that the only syntactically valid
decimal number starting with a zero is 0.

For readability, the “_” character can be used to separate groups of digits, as in Ada or VHDL;
it is just a convenient syntactic notation for writing numbers, without semantic meaning. The “_”
character is accepted anywhere in natural number notations except before the first digit or after the
last digit. Consecutive “_” characters are not allowed. Some examples of correct expressions are:
19_785, 0xAFF_BCDE, 0o3_377, 0b110_0110_0111.

By default, natural numbers in Lnt are assumed to be in the range 0..255. This is explained by the
fact one wants to avoid large numbers that increase complexity in explicit state model checking. If an
Lnt specification handles larger numbers than 255, an overflow error is likely to occur at run-time.
However, the domain of natural numbers can easily be enlarged using either the “!nat bits”, the
“!num bits”, the “!num card”, or the “!nat inf/!nat sup” pragmas (see Section 4.4 for details).

3.6 Integer numbers

Integer numbers can be either positive, negative or zero.

By default, integer numbers in Lnt are assumed to be in the range −128..127. This is explained by
the fact one wants to avoid large numbers that increase complexity in explicit state model checking. If
an Lnt specification handles larger numbers, an underflow or overflow error is likely to occur at run-
time. However, the domain of integer numbers can easily be enlarged using either the “!int bits”
or the “!int inf/!int sup” pragmas (see Section 4.4 for details).

All the notations available for natural numbers are also available for integer numbers. Here are some
examples of integer numbers: 0, 123, -123, 0x4, -0xFD, -0o76, -0b1011, etc.

Explicit type casts can be used to resolve typing ambiguities that may arise between natural numbers
and integer numbers: for instance, one can distinguish between 12 of Nat and 12 of Int. Note
that explicit type casts “of Int” are superfluous for integer number with a unary operation “+” or
“-”.

As with natural numbers, the “_” character can be used to separate groups of digits.

Note: integer numbers preceded by a unary “-” without parentheses are considered as negative integer
constants rather than applications of the unary operator “-” to a positive integer constant. This has
the advantage of allowing to write the constant −2k−1, even when integers are represented using k
bits. Notice that writing “−(2k−1)” yields an integer overflow, because “2k−1” is not an admissible
integer value when integers are represented using k bits.

3.7 Real numbers

Reals (i.e., floating-point numbers) can be written as in classical programming languages. The Lnt
syntax is inspired from the floating-point numbers of the C programming language, with a few
restrictions and an extension.

A floating-point number is a non-empty sequence of digits optionally containing a decimal point,
followed by an optional exponent part. At least one of the two optional parts (decimal point or
exponent) must be present. If the decimal point is present, it must be preceded and followed by at
least one digit. A floating-point number cannot have a leading zero unless the zero is immediately
followed by the decimal point or by the exponent. Leading zeros are accepted in the exponent.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 3.8 : Characters 25

As natural in numbers, the “_” character can be used to separate groups of digits; The “_” character
is accepted anywhere in between two digits. Consecutive “_” characters are not allowed.

Here are some examples of floating-point numbers: 0.1, 0.2, 3.0e-1, 7.49E-005,
5_521.49_61E-0_0_5, 4.0e0, 5.0, 0E0, etc.

The following notations (some of which are available in the C programming language) are not available
in LNT: 3._14, 0_.1, .1, 02.87e-10, 3.e-1, 5., 7.4_, 00E0, _6.21, etc.

3.8 Characters

Characters of type Char are C-like (unsigned) characters enclosed into single quotes:

• Any ASCII character: “a”, “é”, “|”, “0”, etc.

• C escape sequence shortcuts for non-printing characters (carriage return, tabulation, etc.):

ASCII Name Description C escape sequence
nul null byte \0

bel bell character \a

bs backspace \b

np formfeed \f

nl newline \n

cr carriage return \r

ht horizontal tab \t

vt vertical tab \v

• C standard escape sequences:

Printable character C escape sequence
" \"

\ \\

’ \’

? \?

• Restricted C-like octal or hexadecimal escape sequences:

– An octal escape sequence \ooo with exactly three octal digits o (o ∈ [0..7]) where the ooo
octal value is less than or equal to \377. Escape sequences with less than or more than
three digits, like \1, \01 or \0001, are rejected.

– A hexadecimal escape sequence \xhh with exactly two hexadecimal digits h (h ∈
[0..9, A..F]). Escape sequences with less than or more than two digits, like \x1 or \x001,
are rejected.

Note: The same character can be written using different notations in Lnt. For instance, the null
character can be written either “\0”, or “\000”, or “\x00”; the newline character can be written
either “\n”, or “\12”, or “\012”; and so on.

Character values will be displayed surrounded by single quotes. All printable characters will be
displayed as such, e.g., ’a’, ’b’, ’c’, etc. All non-printable characters (e.g., control characters) will
be displayed using three-byte octal notation ’\ooo’, where o is an octal digit. The single quote and
backslash characters are displayed as ’\’’ and ’\\’, respectively.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

26 Chapter 3 : Notations and lexical elements

3.9 Strings

The String constants areC-like strings: they consist of character sequences enclosed in double quotes.
The characters supported are the same as for the Char type. There can also be any ASCII character,
C escape sequence shortcuts for non-printing characters (carriage return, tabulation, etc.), C standard
escape sequences, and restricted C-like octal or hexadecimal escape sequences, for example:

""

"éêè"

"2\nlines"

"\""

"’"

"\’"

"\\"

"AZERTY"

"A\x5AERTY"

"A\132ERTY"

String values will be displayed surrounded by double quotes. All printable characters will be displayed
as such in strings, e.g., "...abc...". All non-printable characters (e.g., control characters) will be
displayed using three-byte octal notation "...\ooo...", where o is an octal digit. The double quote
and backslash characters are displayed as "...\"..." and "...\\...", respectively.

3.10 Prefix and infix calls of constructors and functions

In general, a call to any constructor or function identifier, whatever its number of arguments
(0, 1, 2, ...n), can be done in prefix notation followed by parentheses: e.g. “@()”, “f (1)”,
“g (x, y)”, or “+ (1, 2)”.

For convenience, the following extensions are provided:

• A call to a nullary constructor or function identifier that is a normal-identifier or special-
identifier-1 can be done without parentheses. For example: “pi” instead of “pi()”, “2F3A”
instead of “2F3A()”.

Note: A nullary that is special-identifier-2 must be called with parentheses, e.g., “@()” instead
of “@”.

Note: If a variable and a constructor or function have the same names, putting parentheses
after the constructor avoids ambiguity and distinguishes between them. If no parentheses are
used, the variable masks the constructor.

• A call to a unary constructor or function identifier that is a special-identifier-2 can be done
without parentheses: e.g. “-n” or “-(n)” are syntactically correct, but are semantically differ-
ent if n = 2k and integer numbers are represented using k bits, as explained in Section 3.6 for
details.

Note: Sequences of unary constructors or functions without parentheses are not recommended,
because the proper handling of negative integer numbers is only ensured for sequences of odd
length. For instance, if k bits are used to represent values of type Int and function @ is defined
as

function @ (X: Int) : Int is

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 3.10 : Prefix and infix calls of constructors and functions 27

return (X % 2)

end function

“@ -2k−1” yields an overflow, whereas “@(-2k−1)” does not.

Note: A call to a unary constructor or function identifier that is a normal-identifier or special-
identifier-1 must be done with parentheses: e.g. “f (x)” and not “f x”.

• A call to a binary operator that is a normal-identifier or special-identifier-2 can also be done
in an infixed way, e.g. :“ 1 div 2”, “1 mod 2”, “1 + 2” (in addition to “div (1, 2)”,
“mod (1, 2)”, and “+ (1, 2)”).

Note: A binary operator that is a special-identifier-1 must be used in prefix mode, i.e.,
“000 (x, y)” and not “x 000 y”.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

28 Chapter 3 : Notations and lexical elements

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Chapter 4

Module definitions in Lnt

4.1 Notations

This chapter uses the BNF notations defined in Section 3.1.

The following additional convention is used:

• M is a module identifier

4.2 Syntax

lnt file ::= module M [(M0, ...,Mm)] module

[with predefined function0, ..., predefined functionn] is

module pragma1...module pragmap

definition0...definitionq

end module

predefined function ::= == | = equality

| <> | != inequality

| < less than

| <= less than or equal to

| > greater than

| >= greater than or equal to

| append tail insertion

| card set cardinality

| delete element deletion

| diff asymmetric difference

| element indexed access

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

30 Chapter 4 : Module definitions in Lnt

| empty emptyness test

| first first element

| get field selection

| head first element

| insert insertion

| inter intersection

| last last element

| length list length

| member membership test

| minus symmetric difference

| ord ordinal

| remove element removal

| reverse reversal

| set field update

| subset subset test

| tail next elements

| union union

| val value

module pragma ::= !nat bits nat number of bits for type Nat

| !nat inf nat lowest value of type Nat

| !nat sup nat highest value of type Nat

| !nat check bit check for Nat overflows/underflows

| !int bits nat number of bits for type Int

| !int inf int lowest value of type Int

| !int sup int highest value of type Int

| !int check bit check for Int overflows/underflows

| !num bits nat number of bits for numeral types

| !num card nat maximal cardinality for numeral types

| !string card nat maximal cardinality for type String

| !update string update tag

| !version string version tag

where nat denotes a natural number constant (in decimal notation without underscores), int denotes
an integer number constant (in decimal notation without underscores), and bit denotes 0 or 1.

definition ::= type definition type definition

| function definition function definition

| channel definition channel definition

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 4.3 : Module definitions 31

| process definition process definition

Type definitions are covered in Chapter 5. Chapter 7 describes function definitions. Process defini-
tions are discussed in Chapter 8.

4.3 Module definitions

(MD1) The name of each file containing an Lnt module must have the “.lnt” extension. The
characters used in such a file name can only be letters, digits, and underscore (“ ”) — in
addition to the dot occurring in the extension.

(MD2) Module M must have the same name as the file in which it is defined (without extension).
Letter case is significant. For instance, a module “MyModule” has to be defined in a file
named MyModule.lnt. Other names such as mymodule.lnt or MYMODULE.lnt are not
allowed.

However, in the particular case where the module name is “TEST” (or “Test”, “test”, etc.),
having a different file name only triggers a warning, whereas in all other cases a fatal error
is issued if the module name and file name do not match. This particular case is intended
to ease debugging and rapid prototyping.

(MD3) The identifiers M0, ...,Mm must refer to different modules, and must be different from M .

(MD4) The “with” clause of a module requests the corresponding predefined functions to be
present for all the types declared inside the module (if these functions exist for these
types). Each predefined function must be declared only once in the “with” clause of a
given module.

Additional information about the semantics of predefined functions can be found in Section 5.7.

4.4 Module pragmas

Module pragmas can be used to modify the default settings related to the implementation of the
predefined types Nat, Int, and String.

(MP1) All module pragmas but !version and !update must only appear in the principal module
(see Section 2.1). Otherwise a warning will be emitted. [checked by Lnt2Lotos]

(MP2) Each pragma but !version and !update must appear at most once. [checked by
Lnt2Lotos]

(MP3) Pragma !update must appear at most once in each module. [checked by Lnt2Lotos]

(MP4) The module pragmas “!num bits” and “!num card” are mutually exclusive.

(MP5) The value nat of the pragmas “!num bits” and “!num card” must be natural numbers.

(MP6) The value nat of a pragma “!num bits” should be different from 0; even if value zero might
be tolerated in some cases, its precise effect is undocumented.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

32 Chapter 4 : Module definitions in Lnt

(MP7) The value nat of a pragma “!num card” should be different from 0 and 1; even if these
two values are tolerated in some cases, their precise effect is undocumented. [checked by
Lnt2Lotos]

The module pragmas have the following effect:

• !nat bits N (resp. !int bits N) specifies the number of bits (N > 0) with which a value of
type Nat (resp. Int) will be represented. By default, N = 8.

• !nat inf N ′ and !nat sup N ′′ respectively denote the lowest and highest values to be used
when iterating on the Nat domain. By default, N ′ = 0 and N ′′ = 2N − 1, where N is the
number of bits for type Nat.

• !int inf I ′ and !int sup I ′′ respectively denote the lowest and highest values to be used
when iterating on the Int domain. By default, I ′ = −2N−1 and I ′′ = 2N−1− 1, where N is the
number of bits for type Int.

• !nat check B (resp. !int check B) specifies whether numeric overflows/underflows have to
be checked (B = 1 means checked, B = 0 means unchecked) for type Nat (resp. Int). By
default, B = 1, meaning that checks must be disabled explictly by setting B = 0.

Note: The implementation of predefined libraries (in $CADP/incl/X NATURAL.h and
$CADP/incl/X INTEGER.h) does its best to detect overflows and underflows, especially by per-
forming computations on naturals/integers that are twice as large (in number of bits) than
what is needed to store values of types Nat and Int. This can be slightly more CPU-intensive,
but this is probably the price to pay for gaining increased confidence in an Lnt specification.
However, because of the limitations of the C language, some overflows or underflows may remain
detected (e.g., if types Nat and Int have the maximum number of bits allowed on the machine,
or if involved arithmetic operations are used).

• !string card N stores all character strings in a hash table with N entries at most. Technically,
this is achieved by setting the macro “CAESAR ADT HASH ADT STRING” to N in the C code
generated by Lnt2Lotos.

• !update can be used to declare that the module takes into account updates introduced in LNT
up to the given CADP version.

Currently, “!update "2021-b"” is the only update tag allowed. It means that the module
takes into account the priorities of infix operators introduced in CADP 2021-b (February 2021)
and described in Section 7.3. It allows to avoid warnings indicating that expressions are parsed
differently due to this change.

Beware that due to a current limitation of modules, the scope of update tags extends to all
modules of the LNT program.

Another way to avoid these warnings is to set the environment variable “$LNT UPDATE” with
the value 2021-b.

• !version can be used to label the module with a version tag. This pragma has no effect in the
generated code so far.

• “!num bits N ” specifies a maximal value 2N for the number of elements of all numeral types T ,
meaning that each of these elements will be implemented in C using at most N bits. A numeral
type is any type isomorphic to “type T is Zero, Succ (X:T) end type”, where T , Zero,
Succ, and X can be arbitrary identifiers (the nat type is a particular case of numeral type).

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 4.5 : Constructors, functions, procedures, and processes 33

By default, numeral types are implemented by Lnt2Lotos and Cæsar.adt using one single
byte; the “!num bits” pragma can be used to change this default setting to a number of bits
different from eight.

The module pragmas “!nat bits” and “!nat sup”, and the type pragmas “!bits” and “!card”
(see Section 5.6) have precedence over “!num bits”. This means that, if both pragmas
“!num bits” and “!nat bits” (or “!nat sup”) are present, natural numbers are encoded using
the number of bits specified by “!nat bits” (or “!nat sup”), while the elements of any other
numeral type T are encoded using the number of bits specified by “!num bits”, unless the
definition of T has a “!bits” (or “!card”) pragma, in which case the number of bits specified
by this type pragma will be used for implementing T .

Note: This pragma is implemented by inserting a macro “ADT PRAGMA NUMERAL -N ” in the
generated C code.

• ‘!num card N ” specifies a maximal value N for the number of elements of all numeral types
(see previous item), whose values are thus in the range 0, ...,N − 1. The module pragmas
“!nat bits” and “!nat sup”, and the type pragmas “!bits” and “!card” have precedence
over “!num card”.

Note: This pragma is implemented by inserting a macro “ADT PRAGMA NUMERAL N ” in the
generated C code.

4.5 Constructors, functions, procedures, and processes

The Lnt language has four different kinds of routines:

• A “constructor” (see Chapter 5) is a routine that has zero, one, or more arguments and that
returns a single result. A constructor has only formal parameters of mode “in”. A constructor
is defined as part of the definition of the type of its result. The body of a constructor is never
defined explicitly.

• A “function”1 (see Chapter 7) is a routine that has zero, one, or more arguments and that
returns a single result. A function has only formal parameters of mode “in” and/or “in var”.
Functions can be predefined, externally defined (i.e., written in Lotos or in C), or defined by
the user in Lnt. The body of a user-defined function is an Lnt statement (see Section 7.2),
the simplest form being a “return” statement.

• A “procedure” (see Chapter 7) is a routine that has zero, one, or more arguments and that
may return a result. A procedure can have formal parameters of mode “in”, “in var”, “out”,
“out var”, or “in out”. Procedures can be externally defined (i.e., written in C) or defined by
the user in Lnt. The body of a user-defined procedure is an Lnt statement (see Section 7.2),
which may or not contain a “return” statement.

• A “process” (see Chapter 8) is a routine that resembles a procedure, but has a greater ex-
pressiveness, as it can perform actions (i.e., inputs, outputs, communications, synchronizations,
internal actions, etc.), nondeterministic choices, parallel composition, etc. Processes can be
externally defined (i.e., written in Lotos) or defined by the user in Lnt. The body of a
user-defined process is an Lnt behaviour (see Section 8.2). Unlike processes, functions and
procedures do not perform actions; they are deterministic and atomic (i.e., they execute in zero
time). Conversely, a process does not return a result (i.e., it has no “return” statement).

1Functions are sometimes referred to as non-constructors.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

34 Chapter 4 : Module definitions in Lnt

Contrary to ALGOL-like languages (including Pascal, Ada) and like C-like languages (including C++
and Java), Lnt does not make a syntactic distinction between functions and procedures. Both are
declared using the same keyword “function” and, sometimes, the word function is used to designate
either a function or a procedure. However, there are semantic differences between functions and
procedures; for instance, only functions (but not procedures) can be used in expressions.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Chapter 5

Type definitions in Lnt

5.1 Notations

This chapter uses the BNF notations defined in Section 3.1.

The following additional conventions are used:

• T is a type identifier

• C is a type constructor identifier

• X is a variable identifier

• V is a value expression (see Section 7.13)

• m and n are integer numbers in decimal notation without underscores (“_”).

5.2 Syntax

type definition ::= type T is type pragma1...type pragman type

type expression

[with predefined function declaration0, ..., predefined function declarationm]

end type

type expression ::= constructor definition0, ..., constructor definitionn constructed type

| set of T set

| list of T list

| sorted list of T sorted list

| array [m..n] of T array

| range m..n of T ′ range

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

36 Chapter 5 : Type definitions in Lnt

| X:T ′ [where V] predicate

| empty (external type only)

constructor definition ::= C [(constructor parameters1, ..., constructor parametersn)]

constructor pragma1...constructor pragmam

type pragma ::= !external external type

| !implementedby "[C:]name" C type name

| !comparedby "[C:]name" C equality function

| !printedby "[C:]name" C printing function

| !list print as list

| !iteratedby "[C:]name1" , "[C:]name2" C iterator functions

| !pointer C pointer implementation

| !nopointer C unboxed implementation

| !bits nat number of bits for the C type

| !card nat maximal cardinality for the C type

predefined function declaration ::= predefined function

[predefined function pragma1...predefined function pragman]

where predefined function is defined in Section 4.2.

predefined function pragma ::= !external external function

!implementedby "[(C | LOTOS):]name" C/Lotos name scheme

constructor parameters ::= X0, ..., Xn : T constructor parameters

constructor pragma ::= !implementedby "[C:]name" C operator name

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 5.3 : Type definitions 37

5.3 Type definitions

(TD1) All types T defined in module M must have different identifiers.

(TD2) All types T defined in module M and in the imported modules M0, ...,Mn must have
different identifiers.

(TD3) In the list type pragma1...type pragman of each type definition, there should be at most
one pragma of each kind (i.e., there cannot be two “!external” pragmas, nor two
“!implementedby ". . ."”/“!implementedby "C:. . ."” pragmas, etc.)

(TD4) Each predefined function must be declared only once in the “with” clause of a given type.

5.4 Type expressions

(TE1) T must be the identifier of a type defined in the current module or in an imported module.

(TE2) When a type expression defines a sorted list of T or a set of T , a comparison operator <
must be defined for type T and for all the types that are used to define T . Such an operator
is automatically generated by Lnt2Lotos when clause with < is specified.

(TE3) When a comparison operator is requested (using a with clause) for a type T , a comparison
operator < must be defined for each type appearing in the definition of T .

(TE4) When a type expression defines an array, the bounds m and n must be natural numbers
such that m ≤ n.

(TE5) When a type expression defines a range, the type T ′ must be Char, Int, or Nat.

(TE6) When a type expression defines a range of Char, the bounds m and n must be character
constants such that m <= n. In this case, m and n are expressed using the ASCII code of
the characters.

(TE7) When a type expression defines a range of Int, the bounds m and n must be integer numbers
such that m <= n.

(TE8) When a type expression defines a range of Nat, the bounds m and n must be natural
numbers such that m <= n.

(TE9) A type definition using set, list, or sorted list should not be directly recursive. For
instance, it is forbidden to write “type T is list of T end type” (such a definition is mis-
leading, since T does not correspond to a list, but to a binary tree). Notice that indirect
(i.e., transitive) recursion by means of one or more auxiliary types is allowed. [checked by
Cæsar/Cæsar.adt, which emits warnings about incorrect “!list” pragmas (such prag-
mas are automatically added, but the type constructors do not have the right profiles)]

(TE10) A type expression can be empty only if the pragma “!external” is present.

The following array type definition:

type T is

array [m..n] of T ′

end type

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

38 Chapter 5 : Type definitions in Lnt

is equivalent to defining a type T with one constructor T and n−m+ 1 parameters of type T ′.

Note: Array bounds are required to be natural numbers. This implies that they must be representable
using 32 bits.

Note: Lnt2Lotos allocates memory for creating the Lotos files. Defining a large array can lead to
errors if there is insufficient memory for compilation. For example, an Lnt specification containing
the definition:

type T is

array [1..1000000000] of Int

end type

when compiled, may cause a stack overflow.

To initialize variables of type T , Lnt2Lotos provides a more convenient way than calling constructor
T with n − m + 1 parameters. Constructor T is overloaded with an operation T which takes one
parameter V of type T ′ and builds an array that contains n−m+ 1 times the same value V .

Moreover, the syntax defined in chapter 7 allows one to assign a value to an array element, and to
use an array element in an expression.

A range type must be written with spaces before and after m and n. For example, a definition
containing

range -3..-2 of Int

will be rejected with an error message. It should instead be written as

range -3 .. -2 of Int

5.5 Constructor definitions

Note: Each list of constructor parameters “X0, ..., Xn : T ” is flattened into a list “X0 : T , ..., Xn : T ”.

(CD1) Two or more constructors may have the same name (may be overloaded) if their profiles
(the list of the types of fields) differ.

(CD2) All the constructor parameters X0, ..., Xn must have different identifiers.

(CD3) For the set of constructors of a given type, fields having the same name should have the
same type.

(CD4) Each type T0, ..., Tn must refer to a type defined in the current module or in an imported
module.

(CD5) In the list constructor pragma1...constructor pragman of each constructor definition, there
should be at most one pragma of each kind (i.e., there cannot be two “!implementedby
". . ."”/“!implementedby "C:. . ."” pragmas).

(CD6) Type declarations may be mutually recursive. However, each type must be productive, i.e.
it must have at least one value. Formally, a type is productive if and only if: (a) it has a
constructor with arity 0 or (b) all the parameters of its constructors have productive types.

(CD7) A constructor C with two parameters can be used both in infix or prefix forms (i.e., both
“x C y” or “C(x, y)”).

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 5.6 : Type pragmas and constructor pragmas 39

5.6 Type pragmas and constructor pragmas

(TCP1) In pragmas of the form “!implementedby "[C:]name"”, “!comparedby "[C:]name"”,
and “!printedby "[C:]name"”, name must be valid C function identifier. It must nei-
ther be a reserved keyword of the C language nor an identifier predefined in the standard
libraries of the C language (e.g., “true”, “false”, “bool”).

(TCP2) In pragmas of the form “!iteratedby "[C:]name1", "[C:]name2"”, name1 and name2
must be valid C macro identifiers corresponding to Cæsar.adt iteration macros. They
must neither be reserved keywords of the C language nor identifiers predefined in the
standard libraries of the C language (e.g., “true”, “false”, “bool”).

(TCP3) The pragma “!external” must not be given for set, list, sorted list, array, range, or
predicate types. Otherwise, a warning message is issued and the pragma is ignored.

(TCP4) The pragma “!list” should be given only to a type T having a list-like structure, i.e., T
should have exactly two constructors, a first one, usually called “nil”, without parameters
and a second one, usually called “cons”, with two parameters, exactly one of which is of
type T (see Section 5.7).

(TCP5) For list, sorted list, and set types, the type pragma !list is automatically added if it
is not specified already.

(TCP6) The type pragmas “!pointer”,“!nopointer”, “!bits”, and “!card” are mutually exclu-
sive.

(TCP7) The value nat of the pragmas “!bits” and “!card” must be natural numbers.

(TCP8) The value nat of a pragma “!bits” should be different from 0.

(TCP9) The value nat of a pragma “!card” should be different from 0 and 1. [checked by
Lnt2Lotos]

(TCP10) The type pragmas “!pointer”,“!nopointer”, “!bits”, and “!card” should not be given
for enumerated types (including singleton types, which are enumerated types with a single
value). [checked by Cæsar/Cæsar.adt]

(TCP11) The type pragmas “!pointer” and “!nopointer” should not be given for numeral types,
i.e., types that have two constructors, one having no field and the other one having a
single field of this same type (recursively). [checked by Cæsar.adt]

The pragmas attached to types and/or constructors have the following effects:

• The pragma “!external” indicates that the type (respectively, constructor) is defined by an
external C type (respectively, C function); this pragma is translated into a special comment
in the generated LOTOS code. For a type declared “!external”, Lnt2Lotos automatically
associates the “!external” pragma to all its constructors.

• If a type has the pragma “!external”, then all constructors of this type (if any) and all
functions declared in the “with” clause of this type (if any) are also external, i.e., an external
definition of these constructors and functions must be provided in C code.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

40 Chapter 5 : Type definitions in Lnt

• The pragma “!implementedby "C:name"” (or simply “!implementedby "name"”) indicates
that the type (respectively, constructor) should be implemented by the C type (respectively,
C function) named name; this pragma is translated into a special comment in the generated
LOTOS code.

• The pragma “!comparedby "C:name"” (or simply “!comparedby "name"”) indicates that the
C function implementing the comparison of two elements of the type should be named name;
this pragma is translated into a special comment in the generated LOTOS code.

• The pragma “!printedby "C:name"” (or simply “!printedby "name"”) indicates that the C
function printing elements of the type should be named name; this pragma is translated into a
special comment in the generated LOTOS code.

• The pragma “!list” indicates that the type should be printed as a list, i.e., using the notation
“{V1, ..., Vn}”; this pragma is translated into a special comment in the generated LOTOS code.

• The pragma “!iteratedby "C:name1" , "C:name2"” (or simply “!iteratedby "name1" ,
"name2"”) indicates that the two C macros implementing the iterator for the type should be
named name1 and name2; this pragma is translated into a special comment in the generated
LOTOS code.

• The pragma “!pointer” specifies that type T must be implemented by a pointer in C.

• The pragma “!nopointer” specifies that type T must not be implemented by a pointer in C,
i.e., it must have an unboxed implementation.

• The pragma “!bits nat” specifies a maximal value 2nat for the number of elements of type T ,
meaning that each of these elements will be implemented in C using at most nat bits.

Note: This pragma is implemented by inserting a macro “CAESAR ADT HASH T ′ -nat” in the
generated C code, where T ′ is the name of the C type implementing type T . For details, see
entries #623 and #1250 of file “$CADP/HISTORY”.

• The pragma “!card nat” specifies a maximal value nat for the number of elements of type T .

Note: This pragma is implemented by inserting a macro “CAESAR ADT HASH T ′ nat” in the
generated C code, where T ′ is the name of the C type implementing type T . For details, see
entries #623 and #1250 of file “$CADP/HISTORY”.

In pragmas “!implementedby "C:. . ."”, “!implementedby "LOTOS:. . ."”, “!comparedby "C:. . ."”,
“!iteratedby "C:. . .", "C:. . ."”, and “!printedby "C:. . ."”, the prefixes “C:” and “LOTOS:” are
case-sensitive. Other forms, such as “c:” and “Lotos:” are rejected.

5.7 Predefined function declarations

For the basic data types (Boolean, natural number, integer, real number, character, string), a number
of predefined functions are automatically available. See Annex C for the list of these predefined
functions.

For the non-basic data types, predefined functions are generated according to the specified “with”
clauses. We split non-basic data types into various sub-categories:

• Singleton types, consisting of a single constructor, either without parameters or whose param-
eters are all of singleton types.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 5.7 : Predefined function declarations 41

• Enumerated types, consisting of several constructors, either without parameters or whose pa-
rameters are all of singleton types:

type T is

C0, ..., Cn

end type

• Cascade types, consisting of several constructors, at least one of which has parameters, but only
of singleton and/or enumerated types.

• Numeral types, consisting of several constructors, one of which has a parameter of this numeral
type; The constructors may have additional parameters, provided they are all of singleton types.

• Set types T declared as:

type T is

set of T ′

end type

• List and sorted list types T declared as:

type T is

[sorted] list of T ′

end type

• Array types T declared as:

type T is

array [m..n] of T ′

end type

• Range types T declared as:

type T is

range m..n of T ′

end type

• Predicate types T :

type T is

X : T ′ [where value expression]

end type

The type expression “type T is X : T ′ end type” is equivalent to “type T is X :
T ′ where true end type”. The only difference is that the latter definition issues a warn-
ing “condition always true”, whereas the former does not.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

42 Chapter 5 : Type definitions in Lnt

• All other non-basic types T , including record-like types, union-like types, etc.

The following table shows the Lnt predefined constructors and functions that can be created for non-
basic data types. The functions marked by a star are generated automatically. The other functions are
optional and must be generated by specifying the relevant “with” clause in the data type declaration.

Function Profile Supported data types T
==, = T , T → Bool all types
<>, != T , T → Bool all types
<, <=, >, >= T , T → Bool all types
ord T → Nat all types
val Nat → T singleton, enumerated, range
first → T singleton, enumerated, cascade, range
last → T singleton, enumerated, cascade, range
succ T → T enumerated, cascade, numeral, range
pred T → T enumerated, cascade, numeral, range
get functions T → U all types but singleton, enumerated, range
set functions U , T → T all types but singleton, enumerated, range
nil∗ → T set, list, sorted list
cons∗ T ′, T → T set, list, sorted list
insert∗ T ′, T → T set, list, sorted list
empty T → Bool set, list, sorted list
length T → Nat set, list, sorted list
member T ′, T → Bool set, list, sorted list
element T , Nat → T ′ set, list, sorted list
delete T ′, T → T set, list, sorted list
remove T ′, T → T set, list, sorted list
head T → T ′ set, list, sorted list
tail T → T set, list, sorted list
union T , T → T set, list, sorted list
inter T , T → T set, sorted list
minus T , T → T set, sorted list
diff T , T → T set, sorted list
reverse T → T (unsorted) list
append T ′, T → T (unsorted) list
subset T , T → Bool set
T (array constructor)∗ T ′ → T array
T (array constructor)∗ T ′, ..., T ′ → T array
T (conversion to subtype)∗ T ′ → T range, predicate (partial function)
T (identity)∗ T → T range, predicate
T ′ (conversion to parent type)∗ T → T ′ range, predicate

These predefined functions over non-basic types are defined as follows:

• Comparison operators can be generated for all types T . All these operators have the same
profile: T, T -> BOOL.

Equality relations correspond to structural equivalence between values of type T .

Order relations correspond to the underlying lexicographic order (which is a total order) over
values of type T considered as algebraic terms (constructors are ordered by their occurrence
of declaration in the Lnt type definition — in the case of sets, lists, and sorted lists, the nil
constructor is considered to be smaller than the cons constructor). Note therefore that, in the

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 5.7 : Predefined function declarations 43

case of lists or sets, these comparison operators do not correspond to (list or set) inclusions
(which are partial orders).

The inequality operator “!=” is translated into a Lotos operator “/=” since the character “!”
cannot be used in Lotos special identifiers.

• The function “ord : T -> NAT” can be generated for all types T .

If T is not a range type, ord (X) returns, for each element X of type T , the order number
of the constructor of X , the first constructor being numbered 0 and the last constructor being
numbered n− 1 where n is the number of constructors of T .

If T is a range type of the form “range m..n”, ord (X) returns the order number of X in that
range, the lower bound m being numbered 0 and the upper bound n being numbered n−m.

• The function “val : NAT -> T” can be generated only when “ord” is injective, i.e., only
when T is an enumerated type or a range type.

For each value X of type T , val (ord (X)) = X.

• The functions “first : -> T” and “last : -> T” can be generated only when T is an
enumerated type, a cascade type, or a range type.

These functions return, respectively, the smallest and greatest values of type T . For enumerated
and range types, first = val(ord(0)) and last = val(ord(n − 1)), where n is the number of
constructors of T .

• The functions “succ : T -> T” and “pred : T -> T” can be generated only when T is
an enumerated type, a cascade type, or a range type.

These functions return, respectively, the successor and the predecessor of a value of type T .
Note that the greatest (resp. smallest) element of T is its own successor (resp. predecessor).

• For all types T except enumerated and range types, when “get” appears in the list of requested
functions given in the “with” clause of type T , one or several Lotos functions (named “get”
functions) will be generated, which will enable the use of field selection notations for values of
type T (see the syntax of expressions in Section 7.2).

For each constructor C of T , for each argument f (of type U) of constructor C, a (partially
defined) Lotos function named “GET f : T -> U” will be generated. For each value X of
type T , if X has the form C(...), where C is a constructor with an argument named f , then
GET f (X) returns the value of f , otherwise it is undefined.

• For all types T except enumerated and range types, when “set” appears in the list of requested
functions given in the “with” clause of type T , one or several Lotos functions (named “set”
functions) will be generated, which will enable the use of field update notations for values of
type T (see the syntax of expressions in Section 7.2).

For each constructor C of T , for each argument f (of type U) of constructor C, a (partially
defined) Lotos function named “SET f : U, T -> U” will be generated. For each value X
of type T and each value Y of type U , if X has the form C(...), where C is a constructor with
an argument named f , then SET f (Y,X) returns the value of X in which argument f has been
replace by Y , otherwise it is undefined.

• The list, sorted list, and set types are very similar: the three of them have two constructors,
“nil” and “cons” and an operation “insert”. In list, insert is a synonym of cons, but is not
a constructor. In sorted list, insert enables one to add an element to a list, still preserving

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

44 Chapter 5 : Type definitions in Lnt

the invariant that list elements are sorted. In set, insert enables one to add an element to a
set, still preserving the invariant that set elements are sorted and each element of a set has at
most one occurrence. insert can be used in expressions, but cannot be used in patterns since
it is not a type constructor.

Those four types also differ in the sets of predefined functions that can be generated using the
“with” clause (see items below).

• The function “empty : T → BOOL” can be generated for all types T of the form “set of T ′”,
“list of T ′”, or “sorted list of T ′”.

For each value X of type T , empty (X) returns true if X is empty.

• The function “card : T → NAT” can be generated for all types T of the form “set of T ′”.

For each value X of type T , card (X) returns the number of elements in X .

• The function “length : T → NAT” can be generated for all types T of the form “list of T ′”,
or “sorted list of T ′”.

For each value X of type T , length (X) returns the number of elements in X .

• The function “member : T ′, T → BOOL” can be generated for all types T of the form “set of
T ′”, “list of T ′”, or “sorted list of T ′”.

For each value X of type T ′ and Y of type T , member (X, Y) returns true if X occurs in Y .

• The function “element : T, NAT → T ′” can be generated for all types T of the form “set of
T ′”, “list of T ′”, or “sorted list of T ′”.

For each value X of type T and N of type NAT, element (X, N) returns the N -th element of
X . An error occurs if N is zero or greater than length (X) (for list and sorted list types) or
card (X) (for set types).

• The function “delete : T ′, T → T ” can be generated for all types T of the form “set of
T ′”, “list of T ′”, or “sorted list of T ′”.

For each value X of type T ′ and Y of type T , delete (X, Y) returns a copy of Y from which
the first occurrence of X (if any) has been suppressed. If Y does not contain any occurrence of
X , then delete (X, Y) returns Y unchanged.

• The function “remove : T ′, T → T ” can be generated for all types T of the form “set of
T ′”, “list of T ′”, or “sorted list of T ′”.

For each value X of type T ′ and Y of type T , remove (X, Y) returns a copy of Y from which
all occurrences of X (if any) have been suppressed. If Y does not contain any occurrence of X ,
then remove (X, Y) returns Y unchanged. Note that if T is a set type, the functions delete
and remove coincide since each element of type T ′ has at most one occurrence in Y .

• The function “head : T → T ′” can be generated for all types T of the form “set of T ′”,
“list of T ′”, or “sorted list of T ′”.

For each value X of type T , head (X) returns the first element of X . An error occurs if
X = nil.

• The function “tail : T → T” can be generated for all types T of the form “set of T ′”,
“list of T ′”, or “sorted list of T ′”.

For each value X of type T , tail (X) returns a copy of X from which the first element has
been removed. An error occurs if X = nil.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 5.7 : Predefined function declarations 45

• The function “union : T, T → T” can be generated for all types T of the form “set of
T ′”, “list of T ′”, or “sorted list of T ′”.

For each values X and Y of type T , union (X, Y) (or “X union Y” in infix notation) returns:
if T is a set type, the set union X ∪ Y ; if T is an unsorted list type, the concatenation of lists
X and Y ; if T is a sorted list type, the sorted merge of X and Y .

• The function “inter : T, T → T” can be generated for all types T of the form “set of T ′”
or “sorted list of T ′”.

For each values X and Y of type T , inter (X, Y) (or “X inter Y” in infix notation) returns:
if T is a set type, the set intersection X ∩ Y ; if T is a sorted list type, the multiset-like sorted
intersection of X and Y (namely, if X and Y contain respectively n and m occurrences of some
element z, then inter (X, Y) contains exactly min(n,m) occurrences of z).

• The function “minus : T, T → T” can be generated for all types T of the form “set of T ′”
or “sorted list of T ′”.

For each values X and Y of type T , minus (X, Y) (or “X minus Y” in infix notation) returns:
if T is a set type, the asymmetric set difference, that is the set of elements present in X and not
present in Y ; if T is a sorted list type, the asymmetric multiset-like sorted difference between
X and Y (namely, if X and Y contain respectively n and m occurrences of some element z,
then minus (X, Y) contains exactly max(0, n−m) occurrences of z).

• The function “diff : T, T → T” can be generated for all types T of the form “set of T ′”
or “sorted list of T ′”.

For each values X and Y of type T , diff (X, Y) (or “X diff Y” in infix notation) returns:
if T is a set type, the symmetric set difference, that is the set of elements present in one of X
or Y and not present in the other; if T is a sorted list type, the symmetric multiset-like sorted
difference between X and Y (namely, if X and Y contain respectively n and m occurrences of
some element z, then diff (X, Y) contains exactly max(m − n, n −m) occurrences of z). In
both cases, diff (X, Y) is equal to minus (X, Y) union minus (Y, X).

• The function “reverse : T → T” can be generated for all types T of the form “list of T ′”.

For each value X of type T , reverse (X) returns a copy of X in which the elements occur in
reverse order.

• The function “append : T ′, T → T” can be generated for all types T of the form “list of
T ′”.

For each value X of type T ′ and Y of type T , append (X, Y) returns a copy of Y in which
element X has been added in the last position.

• The function “subset : T, T → BOOL” can be generated for all types T of the form “set of
T ′”.

For each values X and Y of type T , subset (X, Y) (or “X subset Y” in infix notation) returns
true if all members of X are members of Y .

• The function “T : T ′ → T” is generated for all types T of the form “array [m .. n]

of T ′”. It enables to construct an array whose items are all set to the same value of type T ′

passed as argument.

• The function “T : T ′, ..., T ′ → T” is generated for all types T of the form “array [m
.. n] of T ′”. It enables to construct an array whose ith item is defined by the ith of the
n−m+ 1 arguments of type T ′.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

46 Chapter 5 : Type definitions in Lnt

• Note: The definition of a range or predicate type T will generate Lotos functions that imple-
ment conversion to subtype, identity, and conversion to parent type. Indentity functions are
only generated for type checking reasons (namely, to easily produce a Lotos program that will
type check correctly) and are not intended to be directly invoked from Lnt.

• Note: The definition of an array type T will generate Lotos functions that implement access
and modification of array elements: the accessor function “ARRAY GET : T, NAT -> T ′” and
the modifier function “ARRAY SET : T, NAT, T ′ -> T”, where T ′ is the type of the array
elements. These functions should not be invoked directly from Lnt.

We summarize here the constraints that apply to predefined functions over non-basic types:

(PF1) This constraint was removed in January 2023; see item #XXXX in the $CADP/HISTORY file.

(PF2) The function “val” can be generated only for enumerated types and range types.

(PF3) The functions “first” and “last” can be generated for enumerated types and range types
only.

(PF4) The functions “get” and “set” can be generated for all but enumerated types and range
types.

(PF5) The functions “empty”, “member”, “element”, “delete”, “remove”, “head”, “tail”, and
“union” can be generated for set types, list types, and sorted list types. Function “union”
can be used in both prefix and infix notation.

(PF6) The functions “inter”, “minus”, and “diff” can be generated for set types and sorted list
types. The three of these functions can be used in both prefix and infix notation.

(PF7) The functions “reverse” and “append” can be generated for (unsorted) list types only.

(PF8) The functions “card” and “subset” can be generated for set types only. Function “subset”
can be used in both prefix and infix notation.

(PF9) The function “length” can be generated for list types and sorted list types only.

Users are allowed to define operations with same names and types as the above, preventing the use
of the corresponding “with” clauses. Beware however that some operations present in “with” clause
may depend on others, which are then generated implicitly by Lnt2Lotos. For instance, if a set
type T has a “with subset” clause, then an operation “member” will also be generated for T , thus
preventing users from defining their own version of “member”.

Some operations should ensure properties, which cannot be checked automatically but are key for
program correctness. In particular:

• Obviously, all operations named == or = of profile “T , T → Bool” should be equivalence relations
(i.e., they should be transitive, reflexive, and symmetric). All operations named != or <> of
profile T , T → Bool” should implement the negation of == or =.

• Operations named < of profile “T , T → Bool” should be total orders (i.e., for every every two
values v1 and v2 of type T , v1 < v2 iff not v2 < v1) if they are used for set or sorted list
types. Otherwise, for instance, if “<: T , T → Bool” is not a total order and a type T ′ is
defined as “set of T with ==”, then the operation == defined by Lnt2Lotos (which returns
true only if its operands are structurally identical) will not be an equivalence relation, because
the representation of the elements of T ′ is not canonical (i.e., identical elements may have
structurally different representations).

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 5.8 : Predefined function pragmas 47

If all user-defined operations named ==, =, !=, <>, <, <=, >, and >= of profile “T , T → Bool” satisfy
the above properties, then those generated by Lnt2Lotos also ensure the above properties.

5.8 Predefined function pragmas

The Lnt syntax enables function pragmas to be attached to predefined functions in the “with”
clauses:

(PFP1) In the list predefined function pragma1...predefined function pragman of each predefined
function declaration, there should be at most one pragma of each kind (i.e., there cannot be
two “!external” pragmas, nor two “!implementedby ". . ."”/“!implementedby "C:. . ."”
pragmas, nor two “!implementedby "LOTOS:. . ."” pragmas, etc.)

(PFP2) This constraint was removed in September 2022; see item #2822 in the $CADP/HISTORY
file.

(PFP3) This constraint was removed in September 2022; see item #2822 in the $CADP/HISTORY
file.

The pragmas “!implementedby ". . ."”, “!implementedby "C:. . ."” and “implementedby
"LOTOS:. . ."” for the predefined functions “get” and “set” enable one to control the names of the C
functions and Lotos operations following the same rules as for standard functions (see Section 7.6).

Predefined functions support a pragma !external. In that case, the code of the corresponding
function is not generated automatically, and its definition must be provided as external code, as
explained in chapter 7 for general functions.

In pragmas “!implementedby "C:. . ."” and “!implementedby"LOTOS:. . ."”, the prefixes C and LOTOS

are case-insensitive and can alternatively be written using any combination of upper- and lower-case
characters, such as c, lotos, Lotos, etc.

5.9 Module “with” clauses

A “with” clause in a module M provides a list of predefined functions to be declared automatically
in each type definition of M (see Section 4.2); this list, given at the module level, is subsequently
enriched by the list declared in the “with” clause of each type definition in M .

Notice that the declarations of predefined functions in the “with” clause of a module do not allow
pragmas, since this could create problems. For instance, a pragma “!implementedby "C:. . ."” for
a predefined function declared by the “with” clause of a module M leads to name conflicts for the
generated C functions if M contains several type definitions.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

48 Chapter 5 : Type definitions in Lnt

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Chapter 6

Channel definitions in Lnt

6.1 Notations

This chapter uses the BNF notations defined in Section 3.1 and the non-terminals defined in Chapter 5.

The following additional conventions are used:

• Γ is a channel identifier

• T is a type identifier

• X is a variable identifier

6.2 Syntax

channel definition ::= channel Γ is [raise] channel definition

channel profile0,

...,

channel profilen

end channel

channel profile ::= (profile parameters1,...,profile parametersn) channel profile

profile parameters ::= X0,...,Xn:T profile parameter list

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

50 Chapter 6 : Channel definitions in Lnt

6.3 Channels

A channel defines a set of channel profiles. If a channel has more than one profile, it is called
overloaded.

(CH1) The channel names must be pairwise distinct.

(CH2) The profiles in a channel definition must be pairwise distinct.

(CH3) There exists a predefined channel identifier (noted “none”) that is implicitly declared at
the top level and is visible in each Lnt module. This channel is defined as follows:

channel none is () end channel

This channel can be used to declare events that are used to perform pure synchronization
(without offers). This channel must not be redeclared explicitly.

(CH4) There exists a predefined channel identifier (noted “exit”) that is implicitly declared at the
top level and is visible in each Lnt module. This channel is defined as follows:

channel exit is raise () end channel

This channel can be used to declare events that are used as exceptions without parameters.
This channel must not be redeclared explicitly.

(CH5) We call “raise” channel any channel whose definition contains the “raise” keyword. An
event can be used as an exception iff it is declared with a “raise” channel, and it can be
used in a communication iff it is not declared with a “raise” channel. However it is not yet
possible for users to declare their own “raise” channels, so that “exit” is the only “raise”
channel available so far. An event declared with “any” cannot be used as an exception.
[checked by Lnt2Lotos]

(CH6) To avoid confusion with the keyword “any” (always written in lower case), user-defined
channel names should be distinct from “ANY”, “Any”, or any identifier that is identical
to “any” modulo case-insensitive string comparison. [checked by Lnt2Lotos]

6.4 Channel profiles

A channel profile is a possibly empty list of named parameters.

(CP1) The types T occurring in channel profiles must have been declared, unless they are prede-
fined types.

(CP2) The variable identifiers in a channel profile must be pairwise distinct.

(CP3) In the same channel definition, profile parameters declared with the same variable identifier
should have the same type.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 6.5 : Gate and exception events 51

6.5 Gate and exception events

Lnt has a concept of “event”, which serves for two purposes:

• Events can be used to model gates. As in LOTOS, gates can be used for input/output com-
munication or synchronization. This can only occur in Lnt processes, since Lnt constructors,
functions, and procedures perform only local calculations and are not allowed to engage in
communication or synchronization.

• Events can also be used to model exceptions. This can occur in Lnt functions, procedures, and
processes, all of which can trigger exceptions using the “raise” construct. Constructors are not
allowed to raise exceptions, as these operations are assumed to be total. Thus, all the events
present in Lnt functions and procedures represent exceptions.

Lnt supports the concept of exceptions in the following way:

• In the current version of Lnt2Lotos, exceptions cannot carry value parameters. Thus, every
exception must be declared with channel “exit”. This constraint may be relaxed in the future.

• In the current version of Lnt2Lotos, exceptions are uncatchable: when an exception is raised
at runtime, the executed program prints a message and stops. Thus, so far, Lnt exceptions
can only be used to model unwanted conditions that provoke a fatal termination of the entire
system.

• Lnt follows the checked exception paradigm, meaning that the exceptions raised in a routine
are not global objects, but must be declared as formal parameters of this routine. Syntactically,
such parameters are declared between square brackets.

• When a function, a procedure, or a process that raises exceptions is called, its formal exception
parameters must be instantiated with actual exceptions, in the same way as passing arguments
to a function call, but still using square brackets. This is done by inserting a bracketed list of
actual exceptions right after the routine identifier, e.g., “next element [end of list] (x)”,
“sum [overflow, underflow] (x, y)”, etc., and “x sum [overflow, underflow] y” in the
particular case of an infix function.

• The two latter items merely and straightforwardly extend the rules that exist for gates in Lotos
and Lnt processes: each process must be declared with formal event parameters, which have
to be instantiated with actual events when the process is called.

• In the current version of Lnt2Lotos, it is not allowed to freely mix both types of events: an
exception cannot be used where a gate is expected, and vice-versa.

• However, Lnt2Lotos does not statically detect the case where, in a process call, a formal
exception parameter is instantiated with an actual gate. In such case, Lnt2Lotos will emit
no warning and generate Lotos code that compiles properly. Unfortunately, at run-time,
the parameter substitution will not take place. Such an issue does not occur in function and
procedure calls.

6.6 Predefined events

In addition to user-defined events, there are three special events in Lnt:

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

52 Chapter 6 : Channel definitions in Lnt

• The internal (or invisible) event is noted “i” in Lnt and Lotos. This event corresponds to
the notion of invisible action noted τ in concurrency-theory textbooks. It is a gate (i.e., not an
exception), but it cannot be actually used for communication or synchronization. The channel
of this event is “none”.

• The continuation (or successful termination) event is noted “δ”. This event does not appear
explicitly in the syntax of Lotos and Lnt, but appears in the dynamic semantics of Lotos
and Lnt processes. This event appears each time a behaviour terminates, yielding the control
to another behaviour to be executed in sequence. For example, the “null” behaviour of Lnt
generates an action on the event “δ”. The channel of this event is “any”.

• The anonymous event is noted “unexpected” in the concrete Lnt syntax (notice that this is
not a reserved keyword, but a predefined event identifier) and ξ in the semantics of Lnt. This
event is an exception declared implicitly at the top level and thus should never occur in event
declarations. The channel of this event is “exit”.

6.7 Compatible events

In Lnt routines, formal event parameters can be typed by a channel (following the ideas of [Gar95])
or declared as untyped (like Lotos gates) using the “any” keyword.

We therefore define a compatibility relation between events, so as to determine when a formal event
parameter E1 can be instantiated by an actual event E2.

Two events E1 and E2 are compatible if and only if:

• E1 and E2 are both declared as exceptions or are both declared as gates, and

• E1 and E2 are both untyped (i.e., declared with “any”) or are both declared with the same
channel Γ.

The former rule expresses that a formal event declared as an exception (resp. as a gate) must be
instantiated by an actual event declared as an exception (resp. as a gate). Consequently, the actual
event parameters used in a function call must be exceptions.

The latter rule is based upon “name equivalence” for channels, which simplifies the static semantics
and fits smoothly into the philosophy of Lotos; the motivation for this choice is given more explicitly
in [Gar95].

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Chapter 7

Function definitions in Lnt

7.1 Notations

This chapter uses the BNF notations defined in Section 3.1 and the non-terminals defined in Chap-
ters 5 and 6.

The following additional conventions are used:

• F is a function identifier

• X is a variable identifier

• I is a statement

• V is an expression

• P is a pattern

• L is a loop label

• E is an event identifier (which may denote either a gate or an exception)

The present chapter gives syntactic and semantic definitions for functions and procedures. Many
of these definitions are reused later for processes in Chapter 8, since processes are a superset of
procedures. For conciseness, the definitions of the present chapter are generalized to the case of
processes whenever appropriate.

7.2 Syntax

function definition ::= function F [[formal events0,...,formal eventsm]]

[(formal parameters1,...,formal parametersn)] [:T] is

function pragma1...function pragma l

precondition1...precondition j

postcondition1...postconditionk

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

54 Chapter 7 : Function definitions in Lnt

[I0]

end function function definition

formal events ::= event declaration formal events

event declaration ::= E0,...,En:Γ typed event declaration

| E0,...,En: any untyped event declaration

formal parameters ::= parameter mode X0,...,Xn:T formal parameters

parameter mode ::= [in] input formal parameter

| in var input formal parameter used as local variable

| out output formal parameter

| out var output formal parameter used as local variable

| in out input / output formal parameter

precondition ::= require V [raise E [()]]; precondition

postcondition ::= ensure V [raise E [()]]; postcondition

function pragma ::= !external external function

| !implementedby "[(C | LOTOS):]name" C or Lotos name scheme

I ::= null no effect

| I1 ; I2 sequential composition

| return [V] return

| raise E [()] exception raise

| assert V [raise E [()]] assertion

| X := V assignment

| X[V0] := V1 array element assignment

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.2 : Syntax 55

| [eval] [X :=] F [[actual events]] (actual parameter1,..., procedure call

actual parametern)

| var var declaration0,...,var declarationn in variable declaration

I0

end var

| case V0,...,Vℓ case statement

[var var declaration0,...,var declarationn] in

match clause0 -> I0

| ...

| match clausem -> Im

end case

| if V0 then I0 conditional statement

[elsif V1 then I1

...

elsif Vn then In]

[else In+1]

end if

| loop forever loop

I0

end loop

| loop L in breakable loop

I0

end loop

| while V loop while loop

I0

end loop

| while V loop L in breakable while loop

I0

end loop

| for I0 while V by I1 loop for loop

I2

end loop

| for I0 while V by I1 loop L in breakable for loop

I2

end loop

| break L loop break

| use X0,...,Xn variable use

| access E0,...,En event access

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

56 Chapter 7 : Function definitions in Lnt

var declaration ::= X0,...,Xn:T variable list

actual events ::= E1,...,En positional style

| Eformal ,1 -> Eactual ,1,...,Eformal ,n -> Eactual ,n [,...] named style

actual parameter ::= V actual parameter “in”

| ?X actual parameter “out”

| !?X actual parameter “in out”

match clause ::= P0,...,Pℓ [where V0] | ... | Pn [where Vn] match clause

| any,...,any [where V] wildcard

P ::= X variable

| any T wildcard

| X as P0 aliasing

| C [(P0,...,Pn)] constructed pattern

| P1 C P2 infix constructed pattern

| F [(P0,...,Pn)] constant pattern

| P1 F P2 infix constant pattern

| P0 of T type coercion

| (P) parenthesized pattern

| {P1,...,Pn} list pattern

V ::= X variable

| X.in input parameter value (in postcondition only)

| X.out output parameter value (in postcondition only)

| result function result (in postcondition only)

| C [(V1,...,Vn)] constructor call

| V1 C V2 infix constructor call

| F [[actual events]] [(V1,...,Vn)] function call

| V1 F [[actual events]] V2 infix function call

| V .[[E]] field field selection

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.3 : Resolution of syntactic ambiguities 57

| V .[[E]] {field0->V0,...,fieldn->Vn} field update

| V0 [V1] array element access

| V of T type coercion

| (V) parenthesized expression

| {V1,...,Vn} list expression

7.3 Resolution of syntactic ambiguities

Ambiguity 1

In a statement I having the form “X := Z [[actual events]] (V1, ..., Vn)”, where Z is an identifier
and where V1, ..., Vn are value expressions, there is a syntactic ambiguity, as statement I can be
parsed either using the assignment rule (in such case “Z [[actual events]] (V1, ..., Vn)” is parsed as
an function-call expression) or using the procedure-call rule.

This ambiguity is solved on the semantic level. Indeed, identifier Z must be a function identifier and
cannot be a procedure identifier, because Z is invoked here with “in” or “in var” parameters only,
whereas a procedure has at least one “out”, “out var, or “in out” parameter. Thus, statement I
must be interpreted as an assignment to X of a call to function Z.

Ambiguity 2

In a pattern P having the form “Z [(P0,...,Pn)]”, where Z is an identifier, there is a syntactic
ambiguity between the constructed pattern rule and the constant pattern rule.

Similarly, in a pattern P having the form “V1 Z V2”, there is also a syntactic ambiguity between the
constructed pattern rule and the constant pattern rule.

This ambiguity is resolved on the semantic level. The pattern P is considered to be a constructed
pattern if at least one of the patterns P0, ..., Pn is not a constant pattern or if there exists a constructor
Z whose arguments have the same types as P0, ..., Pn and whose result has the same type as P .

Ambiguity 3

In a value expression V having the form “Z”, where Z is an identifier, there is a syntactic ambiguity
between a variable, a call to a constructor without parameter, and a call to a function without
parameter.

This ambiguity is resolved on the semantic level. If a variable named Z is declared in the current
context, then V is considered a variable. If not, V is assumed to be a constructor call or a function
call.

Thus, priority is given to variable identifiers with respect to constructor and function identifiers.

Notice that a variable Z can coexist with functions and/or constructors having the same name and
without parameter. In such cases, the expression Z is understood as referencing the variable, but it
is always possible to call the functions and/or constructors by having their names followed by empty
parentheses, i.e. Z().

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

58 Chapter 7 : Function definitions in Lnt

In expressions, Lnt2Lotos makes no distinction between a function call F and a constructor call C.
This ambiguity is solved by Cæsar/Cæsar.adt.

Precedence rules

The following precedence rules apply to patterns and value expressions. The precedence of operators
(from highest to lowest) is:

• in patterns: prefix constructed patterns, of (type coercion), infix constructed patterns (see next
paragraph), as (aliasing)

• in value expressions: prefix function calls, array element accesses, dotted notations (field se-
lection and field update), of (type coercion), infix function calls (see next paragraph), and
constructor calls

The precedence of operators (from highest to lowest) in infix constructed patterns and infix function
calls is:

• “of”, “.” field selection and update

• infix operators not listed below

• “**”

• “*”, “/”, “div”, “mod”, “rem”

• “+”, “-”

• “==”, “=”, “!=”, “<>”, “<”, “<=”, “>”, “>=”

• “and”, “and then” (not available as constructor), “or”, “or else” (not available as construc-
tor), “xor”, “=>”, “<=>”

The symbols “and”, “or”, “xor”, “div”, “mod”, and “rem” are keywords, which must be written using
lower-case letters. Identifiers containing upper-case letters (e.g., ‘AND” or “Div”) are assumed to be
user-defined infix operators (with highest precedence). To avoid any confusion with the corresponding
lower-case infix operators, a warning is emitted if parentheses are missing. The symbols “and then”
and “or else” are also keywords and using upper-case letters would trigger a syntax error.

The infix Boolean connectors “and”, “and then”, “or”, “or else”, “xor”, “<=>”, and “=>” having
the same precedence, parentheses should be used when combining them. Absence of parentheses
triggers a warning, as for instance “x and y or z”. Similarly, parentheses should be used when
combining distinct infix functions, which are neither keywords nor key symbols (i.e., “other infix
operators” in the above list).

All (infix) operators of same precedence are parsed from left to right, meaning that “V1 op1 V2 op2 V3”
is parsed as “(V1 op1 V2) op2 V3” rather than “V1 op1 (V2 op2 V3)”.

Examples follow:

• “E (-1 == x - 2)” is parsed as “E (-1 == (x - 2))”, since “-” has precedence over “==”.

• “x gcd 1 + y” is parsed as “(x gcd 1) + y”, since “gcd” has precedence over “+”.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.4 : Variables 59

• “x gcd y scm z” triggers a warning, since “gcd” and “scm” are not keywords and have same
precedence.

To ensure the compatibility between Lnt2Lotos and Traian, the first symbol following T in a
pattern of the form “any T ” should not be an identifier. Otherwise, a warning message is triggered.
The warning can be suppressed by using parentheses, e.g., a pattern of the form “any T C P”
should rather be written “(any T) CP”. Note that “any T of T ” does not require parentheses
around “any T ”, as “of” is a keyword.

7.4 Variables

The data part of Lnt is a fully imperative language in syntax and semantics.

Lnt supposes the existence of a memory: a set of variables (noted X in this manual) which can store
values, and which can be accessed for read and write operations.

However, the static semantics constraints impose a clean imperative style, in the sense that errors in
manipulation of variables are signalled at compile-time, and should not produce runtime errors.

These static semantics constraints are based on two principles:

(VAR1) Lnt is strongly typed: each variable X must be declared before being used . The declara-
tion assigns X a type T , and X keeps the same type T throughout its lifetime .

Variables are declared in “var ... end var” statements, “case ... end case” statements,
and function definitions (as formal parameters).

Variables are used in value expressions and function calls.

The lifetime (or scope) of a variable extends from its declaration to the end of the state-
ment in which it is declared (for “var ... end var” and “case ... end case” statements),
or in the whole function definition (for formal parameters of functions). Outside this scope,
the variable does not exist. Declarations can be nested: any re-declaration, whether with
the same type or a different type, hides the outer declaration.

Variables and expressions are strongly typed.

(VAR2) Access to an uninitialized variable is signalled at compile-time: variables must be assigned
before being used .

Variables can be assigned in assignment statements “X := V ”, by procedure calls with
“out”, “out var”, or “in out” parameters, or by patterns in case statements.

A consequence of this constraint is that every “out” or “out var” function parameter
must be assigned before the function returns.

7.5 Function definitions

A function definition consists of a function name F , optional formal events0,...,formal eventsm,
a (possibly empty) list of formal parameters formal parameter1,...,formal parametern, an op-
tional return type T , optional pragmas function pragma1...function pragma l, optional preconditions
precondition1,...,precondition j , optional postconditions postcondition1,...,postconditionk, and some
instruction I0 called the body of the function:

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

60 Chapter 7 : Function definitions in Lnt

function definition ::= function F [[formal events0,...,formal eventsm]]

[(formal parameters1,...,formal parametersn)] [:T] is

function pragma1...function pragma l

precondition1...precondition j

postcondition1...postconditionk

[I0]

end function

A function can be defined without parameters. In this case, the parentheses can be omitted.

The body I0 computes the result value of F and the output parameters (those declared of mode
“out”, “out var”, or “in out”).

The following static semantics constraints apply to F :

(FD1) If F has a return type T , this type must refer to an existing type.

(FD2) If F has a return type T , I0 must return a result of type T .

(FD3) Two functions can have the same name if their profiles (i.e. the types and modes of formal
parameters or the result type) differ. Such functions are said to be overloaded .

(FD4) This constraint was removed in January 2017; see item #2276 in the $CADP/HISTORY file.

(FD5) If F has no return type, I0 must not return a result, and must have at least one “out”,
“out var”, or “in out” parameter. Indeed, a procedure with no result and only “in” and/or
“in var” parameters does not perform useful computation. [checked by Lnt2Lotos]

(FD6) If F has a return type T and exactly two parameters, which are “in” and/or “in var”
parameters, then it can be used both in prefix and infix forms.

(FD7) If the name of F is a special identifier, then F must have a result type.

(FD8) If the name of F is a special identifier, then F must not have any “out”, “out var”, or
“in out” parameter.

7.6 Function pragmas

The optional pragmas attached to a function give hints about how the translation to Lotos and C
of the source code should be performed.

When translating a non-external Lnt function F , Lnt2Lotos may generate one or several Lotos
operations. More precisely, there will be one Lotos function generated to compute the result of F ,
plus one Lotos function for each “out”, “out var”, and “in out” parameter of F .

The “!implementedby "LOTOS:. . ."” pragma attached to an Lnt function F enables one to specify
precise names to be used by Lnt2Lotos when generating the Lotos function(s) corresponding to
the translation of F . This pragma is useful when interfacing generated Lotos code with hand-written
Lotos code.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.6 : Function pragmas 61

The name of the generated Lotos functions is determined by name within the “!implementedby
"LOTOS:name"” pragma. Precisely, if F has no “out”/“out var”/“in out” parameter, then a single
Lotos function is generated. The name of this Lotos function is name. Otherwise, the name of each
Lotos function is determined by concatenating name with two consecutive underscore characters
(“ ”) and the name of the corresponding “out”/“out var”/“in out” parameter of F , or with the
special name “return” to denote the result returned by F .

The “!implementedby "C:name"” (or simply “!implementedby "name"”) pragma attached to an
Lnt function F enables one to specify precise names to be used by Cæsar.adt when generating the
C function(s) corresponding to the translation of the Lotos operation(s) generated by Lnt2Lotos
for F . This pragma is useful when interfacing generated Lotos code with hand-written or external
C code. The C name is determined by name using the same rules as for the “!implementedby
"LOTOS:name"” pragma.

The “!external” pragma attached to an Lnt function F enables one to use external (handwritten)
C or Lotos functions in an Lnt module. Precisely, if F has an “!external” pragma, Lnt2Lotos
behaves as follows:

• If F has an “!implementedby "LOTOS:name"” pragma, then Lnt2Lotos does not generate
any Lotos function corresponding to F as this function is supposed to be defined by external
Lotos code.

Note that name is currently silently ignored; the external function is supposed to have the same
name as F . This limitation will be removed in the future.

Note also that if F has “require” or “ensure” clauses, then these clauses are ignored. This
limitation will be removed in the future.

• Otherwise, Lnt2Lotos generates Lotos functions named in the same way as non-external
functions but equipped with a special Lotos comment that declares them as external C func-
tions in the generated Lotos code. The corresponding C functions must be be provided in a
“.fnt” file (see Section 2.5).

The following static semantics constraints apply to the pragmas of a function F :

(FPG1) In the list function pragma1...function pragman of each function definition, there should
be at most one pragma of each kind (i.e., there cannot be two “!external” prag-
mas, nor two “!implementedby "LOTOS:. . ."” pragmas, nor two “!implementedby
". . ."”/“!implementedby "C:. . ."” pragmas, etc.)

(FPG2) If the pragma “!external” is present, the body I0 should be “null”.

(FPG3) If both pragmas “!external” and “!implementedby "LOTOS:. . ."” are present, then the
function can neither have “out”, “out var”, nor “in out” parameters. [checked by
Lnt2Lotos]

(FPG4) In pragmas “!implementedby "name"” and “!implementedby C:name"” for all functions,
the values of name should be pairwise distinct.

(FPG5) This constraint was removed in September 2022; see item #2822 in the $CADP/HISTORY
file.

(FPG6) This constraint was removed in December 2022; see item #2837 in the $CADP/HISTORY
file.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

62 Chapter 7 : Function definitions in Lnt

(FPG7) To avoid name clashes in the generated Lotos code, the name provided by a pragma
“!implementedby "LOTOS:name"” to a non-external function should not be a name of
another Lnt function, either predefined or defined by the user. In particular, cyclic or
self references such as “function F is !implementedby "LOTOS:F" ...” are forbidden
unless F is declared as “!external”. [checked by Cæsar/Cæsar.adt]

In pragmas “!implementedby "C:. . ."” and “!implementedby "LOTOS:. . ."”, The prefixes “C:” and
“LOTOS:” are case-sensitive. Other forms, such as “c:” and “Lotos:” are rejected.

7.7 Lists of formal events

formal events ::= event declaration

The above clause declares a list of formal event parameters E0,...,En.

The following static semantic constraints hold:

(FE1) In a function (resp. process) definition, the formal events E0,...,En must be pairwise
distinct.

(FE2) In a function (resp. process) definition, each formal event Ei must be different from the
predefined event noted “i”.

(FE3) In a function (resp. process) definition, each formal event Ei must be different from the
predefined event noted “unexpected”.

(FE4) In a function definition, the channel Γ must be equal to “exit” (see Section 6.5). [checked
by Lnt2Lotos]

7.8 Lists of formal parameters

formal parameters ::= parameter mode X0,...,Xn:T

The above clause declares a list of variable parameters X1,...,Xn, which all have the same mode
parameter mode and the same type T .

(FP1) In a function definition, the names of the formal parameters must be pairwise distinct.

(FP2) T must refer to an existing type.

7.9 Modes of formal parameters

parameter mode ::= [in]

| in var

| out

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.9 : Modes of formal parameters 63

| out var

| in out

A value parameter declared with the keyword “in” denotes a constant parameter. The body I0 of
the function should not change the value of an “in” parameter.

A value parameter declared with the keyword “in var” denotes a constant parameter. The body I0
of the function can change the local value of an ‘in var” parameter, but this change is invisible to
the caller.

A value parameter declared with the keyword “out” is a result parameter that must be assigned by
I0, and its value is visible after the function call. The body I0 of the function should not read the
value of an “out” parameter. Yet, the value of an “out” parameter may be read in the postconditions
of the function.

A value parameter declared with the keyword “out var” is a result parameter that must be assigned
by I0, and its value is visible after the function call. The body I0 can read the value of an “out var”
parameter after it has been assigned. Note however that the value of an “out” parameter can be
read in a postcondition or in the “where” clause of a nondeterministic assignment defining it (as in,
e.g., “x := any nat where x>0”) without having to declare it as “out var”.

A value parameter declared with the keyword “in out” is a modifiable parameter that has an initial
value. I0 may modify this value. The value of the parameter assigned by I0 is visible after the
function call.

The default mode is “in”.

The following static semantics constraint applies to the body I0 of function F :

(FA1) For each formal parameter X with mode “out” or “out var”, X must be assigned a value
on all execution paths before F returns. Section 7.11 explains how a variable can be assigned
a value, and how a function can return.

(FA2) For each formal parameter X with mode “in out”, X must be assigned a value before F
returns. Otherwise, X should be rather declared with mode “in”.

(FA3) For each formal parameter X with mode “in out”, there should exist at least one execution
path on which the value of X is read before F returns and before X is modified again
(should it be). Otherwise, X should rather be removed (if X is also never assigned), or
declared with mode “out”.

(FA4) For each formal parameterX with mode “out var”, there should exist at least one execution
path on which the value of X is read after being assigned. Otherwise, X should be rather
declared with mode “out”.

(FA5) For each formal parameter X with mode “in”, X should never be assigned.

(FA6) For each formal parameter X with mode “in” or “in var”, there should exist at least one
execution path on which the value of X is read before F returns and before X is modified
again (should it be). Otherwise, X should rather be removed (if X is also never assigned),
or transformed into a local variable.

(FA7) For each formal parameter X with mode “in var”, there should exist at least one execution
path on which the value of X is modified. Otherwise, X should be rather declared with
mode “in”.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

64 Chapter 7 : Function definitions in Lnt

In the rest of this document, a function that has at least one formal parameter declared with mode
“out”, “out var”, or “in out”, is called a procedure.

7.10 Preconditions and postconditions

precondition ::= require V [raise E [()]];

postcondition ::= ensure V [raise E [()]];

A “require” clause denotes a function precondition. V is a Boolean expression, whose variables must
be formal parameters declared with mode “in”, “in var”, or “in out” (see Section 7.9).

When entering a function, a precondition “require V raise E” or “require V raise E ()” raises
exception E if the value of V is false when replacing every parameter X by its input value. The
syntax “require V ” is a shorthand notation for “require V raise unexpected”.

An “ensure” clause denotes a function postcondition. V is a Boolean expression, whose variables
must be formal parameters. In V , if X is a parameter declared with mode “in var” or “in out” (see
Sections 7.9 and 7.13.1), then the value expression “X.in” (resp. “X.out”) denotes the input (resp.
output) value of X . V may also contain occurrences of the keyword “result” to denote the function
result, if any (see Section 7.13.2).

Just before leaving a function normally (i.e., when the control reaches a “return” instruction or the
end of the function, but not when an exception is raised), a postcondition “ensure V raise E” or
“ensure V raise E ()” raises exception E if the value of V is false. The syntax “ensure V ” is a
shorthand notation for “ensure V raise unexpected”.

(AF1) If event E is different from “unexpected”, then it must have been declared as a parameter
of the current function.

(AF2) The variables occurring in a precondition must be formal parameters declared with mode
“in”, “in var”, or “in out”.

(AF3) The variables occurring in a postcondition must be formal parameters.

(AF4) “X.out” may occur only in postconditions of functions and processes that declare X as a
parameter of mode “in var” or “in out”.

(AF5) “X.in” may occur only in postconditions of functions and processes that declare X as a
parameter of mode “in var” or “in out”.

(AF6) In a postcondition, if X is a parameter declared with mode “in var” or “in out”, then it
can only occur in V under one of the forms “X.in” or “X.out” (excluding the ambiguous
form “X”). However, if X is declared with mode “in var”, then the form “X.out” is not
recommended and issues a warning.

(AF7) In a postcondition, the “result” keyword can be used only if the function returns a value.

Note: A function F declared with the pragma “!external” can have preconditions and/or postcon-
ditions. In such a case, before translation to Lotos, Lnt2Lotos expands F into two Lnt functions:
an auxiliary function with same profile as F but new (unused) name, to which the “!external” and

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.11 : Statements 65

“!implementedby ". . ."”/“!implementedby "C:. . ."” pragmas of F are attached, and whose body
is defined as “null”; and the function F itself, from which the “!external” and “!implementedby
". . ."”/“!implementedby "C:. . ."” pragmas are detached, and whose “null” body is replaced by
a call to the above auxiliary function. As expected, when F is called from an Lnt program, the
preconditions (if any) are checked, the external function is called, and finally the postconditions (if
any) are checked. Obviously however, calling the external C function directly from a C program
does not yield a verification of the preconditions and/or postconditions. Note that this expansion of
F does not change the name of the Lotos operations implementing F . In particular, if F has an
“!implementedby "LOTOS:. . ."” pragma, then this pragma remains attached to F . Therefore, calling
these operations from a Lotos program remains possible in the same way as any other function.

Note: Each semicolon occurring between successive preconditions (resp. postconditions) is a sequen-
tial composition operator, meaning that their execution is sequential. If several preconditions (resp.
postconditions) are violated, the exception corresponding to the first one (in reading order) is raised.
By contrast, the semicolon delimiting the sequence of preconditions and the sequence of postcon-
ditions and the semicolon delimiting the sequence of postconditions and the function body are not
sequential composition operators, since the postconditions are not evaluated where they appear, but
only when leaving the function.

7.11 Statements

Each Lnt statement is expected to terminate. Although termination cannot be checked automatically
in the general case, Lnt2Lotos may issue error messages when it is certain that a given statement
(e.g., the body of a function or a procedure) will never terminate.

7.11.1 Null statement

This statement has no effect. It does not return any value nor assign any variable.

7.11.2 Sequential composition

The evaluation of the sequential composition “I1 ; I2” starts by evaluating I1, and then evaluating
I2.

7.11.3 Return statement

In its simplest form, without a value expression, “return” makes the function return.

“return V ” evaluates the expression V and makes the function return the value of V .

(R1) The simple “return” form can be used if and only if the function has no return type.

(R2) If the function has a return type, each execution path must contain a “return V ” statement.

(R3) In “return V ”, the type of V must be the return type of the function.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

66 Chapter 7 : Function definitions in Lnt

7.11.4 Exception raise

“raise E” makes the currently executed program print a message and stop.

For debugging purpose, this message includes the name of the identifier E (if different from
“unexpected”) and the name of the current Lnt function (resp. process).

(ER1) If event E is different from “unexpected”, then it must have been declared by the function
(resp. the process) that contains the “raise” statement.

(ER2) E must be an exception, which implies that its channel is “exit”. [checked by Lnt2Lotos]

Note: The current Lnt syntax, i.e., “raiseE” or “raiseE ()”, enforces the restriction that exceptions
do not carry value parameters (see Section 6.5).

7.11.5 Assertion

An assertion statement “assert V raise E” or “assert V raise E ()” raises exception E if the value
of V is false. Otherwise, it is equivalent to null. This statement is thus equivalent to “if V then
null else raise E”.

The syntax “assert V ” is a shorthand notation for “assert V raise unexpected”.

The constraints (ER1) and (ER2) of Section 7.11.4 also apply to assertion statements.

Note that “assert V raise E” and “assert V ; raise E” are fundamentally different, even if they only
differ by the presence of a semicolon. In the latter case, an exception (either E or “unexpected”)
will always be raised, whatever the value of V .

7.11.6 Array element assignment

The statement “X [V0] := V1” modifies the value stored at index V0 of the variable X .

Note that neither V0 nor V1 can contain procedure calls, i.e. calls to function with “out”, “out var”,
or “in out” parameters.

(SAA1) The type T of variable X must be an array type.

(SAA2) Expression V0 must be of type NAT .

(SAA3) Expression V1 must have the same type as elements of array type T .

Note that before being able to use X in an expression, X must have been assigned a value with a
statement of the form “X := V ”. Therefore, initializing each element of array X with a statement of
the form “X [V0] := V1” is not sufficient to initialize X . This is because the Lnt2Lotos translator
cannot statically ensure that all the elements are initialized.

7.11.7 Procedure call

A procedure call has the form “[eval] [X :=] F [[actual events]] (actual parameter1, ...,
actual parametern)”.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.11 : Statements 67

The eval keyword is optional in function definitions, whereas it is mandatory in process definitions
if the “X :=” part is absent (i.e., the function does not return a result); if not, there would be an
ambiguity between procedure calls and communications in the syntax of behaviours (see Section 8.2).

When F is called, its formal event parameters (if any) are replaced with the corresponding actual
event parameters according to the standard call-by-value semantics

The actual events can be written either in the “positional” style or in the “named” one. In the named
style:

• The notation “Eformal ,i -> Eactual ,i” means that the formal event parameter Eformal ,i of

function F is instantiated with the actual event Eactual ,i.

• The notation “...” means that each formal event parameter E of F that does not appear in
Eformal ,1, ..., Eformal ,n is instantiated with the actual event E.

The static semantics constraints (PE1) and (PE2) apply to the positional style
“E1,...,En”. The static semantics constraints (PE3) to (PE8) apply to the named style
“Eformal ,1 -> Eactual ,1,...,Eformal ,n -> Eactual ,n[,...]”. The remaining constraints (PE9) and

(PE10) apply to both positional and named style.

(PE1) The number of actual event parameters of the procedure call must be equal to the number
of formal event parameters of the corresponding procedure definition.

(PE2) Each actual event parameter E1, ..., En must have been declared in the current context, i.e.,
in the function (resp. the process) that contains the call to F , except for the predefined
event “unexpected”.

(PE3) The formal events Eformal ,1, ..., Eformal ,n must be formal events of F and be pairwise

distinct.

(PE4) Each actual event parameter Eactual ,1, ..., Eactual ,n must have been declared in the current

context, i.e., in the function (resp. the process) that contains the call to F , except for the
predefined event “unexpected”.

(PE5) If the notation “...” is used in “Eformal ,1 -> Eactual ,1,...,Eformal ,n -> Eactual ,n,...”,
all the formal events of F that do not appear in Eformal ,1, ..., Eformal ,n must have been

declared in the function (resp. the process) that contains the call to F .

(PE6) When “...” is omitted, all the formal events of F must appear in Eformal ,1, ..., Eformal ,n.

(PE7) If event parameters are passed to F in the named style, and if F has several overloaded
definitions in the current module, then each of those definitions of F must have the same
formal event parameters, in the same order.

(PE8) Function F must be defined in the current module, meaning that the named style can only
be used to call routines in the same module (because, at present, Lnt2Lotos does not do
sophisticated inter-module analysis). [checked by Lnt2Lotos]

(PE9) If F has event parameters but does not have value parameters, then empty parentheses are
mandatory when calling this procedure, as in “F[E0,...,En] ()”, so as to avoid syntactic
ambiguity with array elements when m = 0.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

68 Chapter 7 : Function definitions in Lnt

(PE10) In either named or positional style, each actual event must be compatible (as defined in
Section 6.7) with the corresponding formal event of F .

Each actual parameter corresponds to a formal parameter in the definition of the procedure F (see
Section 7.9) in the usual way. An actual parameter is one of the following:

• An expression V denotes an actual parameter corresponding to an “in” or “in var” formal
parameter. Its value is just passed to the procedure and its variables remain unchanged when
the procedure returns.

• A variable prefixed with a question mark, as in “?X”, denotes an actual parameter correspond-
ing to an “out” or “out var” formal parameter. The variable X does not need to have a value
before the procedure call. It is necessarily assigned a value when the procedure returns.

• A variable prefixed with an exclamation mark and question mark, as in “!?X”, denotes an
actual parameter corresponding to an “in out” formal parameter. The variable X must have a
value before the procedure call. This value is passed to the procedure, and the variable X may
be assigned a new value when the procedure returns.

(PC1) The number of actual parameters of the procedure call must be equal to the number of
formal parameters of the corresponding procedure definition.

(PC2) Each expression V must have the same type and must appear at the same position as the
corresponding “in” or “in var” parameter of the procedure definition.

(PC3) Each variable “?X” must have the same type and must appear at the same position as the
corresponding “out” or “out var” parameter of the procedure definition.

(PC4) Each variable “!?X” must have the same type and must appear at the same position as
the corresponding “in out” parameter of the procedure definition.

(PC5) “X :=” is present if and only if F has a return type. In this case, the type of X must be
the same as the return type of F .

(PC6) If the procedure F is overloaded, the information given by the types and modes of its
parameters and the type of the resulting value should suffice to solve the overloading.

(PC7) The “out”, “out var”, and “in out” parameters should be pairwise distinct (i.e.
“F (?X, ?X)” is forbidden).

(PC8) If the “[eval] X := F (actual parameter1, ..., actual parametern) ” form is used then
X cannot appear among more than once in the “out”, “out var”, and “in out” parameters
(i.e. “X := F (?X)” is forbidden).

(PC9) The assignment and “out”, “out var”, or “in out” parameter passing should be “useful”,
i.e., for each variable X occurring on the left-hand side of the assignment symbol “:=”, or
passed as an actual parameter (“?X” or “!?X”), there should exist at least one execution
path on which the new value assigned to X is read before the execution completes and
before X is modified again (should it be).

The evaluation of a procedure call begins with the simultaneous evaluation of expressions correspond-
ing to the “in” and “in var” parameters. For the “in out” parameters, the input value is the value
of the variable given as a parameter. Then, the body of the procedure is evaluated in the context of
actual values for “in”, “in var”, and “in out” parameters. The body should assign all the “out”
and “out var” parameters and should return a value if F returns a value.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.11 : Statements 69

7.11.8 Variable declaration

The following statement:

var

var declaration0,

...,

var declarationn

in

I0

end var

declares local variables: their names and their types.

The scope of each variable is I0.

Scoping is lexical: any re-declaration of a variable hides the outer declaration.

The declaration must obey the following rule:

(VD1) The names of the variables declared in “var declaration0, ..., var declarationn” must be
pairwise distinct.

7.11.9 Case statement

The most general conditional statement offered by Lnt is the “case” statement:

case V0,...,Vℓ

[var var declaration0,...,var declarationn] in

match clause0 -> I0

| ...

| match clausen -> In

end case

First, the expressions V0, ..., Vℓ are evaluated. Then, the statement Ii corresponding to the first
match clause i that matches V0, ..., Vℓ is executed.

Optionally, some variables can be declared at the beginning of the “case” statement. Their scopes
are the match clauses and the statements I0, ..., In.

The case patterns in the match clauses match clause0, ..., match clausen can bind variables declared
in the optional variable declaration, as well as previously declared variables. The scope of a variable
binding by a case pattern is limited by the variable’s declaration only.

For example, function “f” modifies its local variable y either in the “Succ (y)” pattern or in the “y
:= 0” assignment.

function f (x : Nat) : Nat is

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

70 Chapter 7 : Function definitions in Lnt

var y : Nat in

case x in

Succ (y) −> null

| any −> y := 0
end case;
return y

end var

end function

For example, the function “decr” decrements its parameter x by one if x is not already zero. The
variable x is reassigned by the case statement and keeps its value until the end of the function.

function decr (in var x : Nat) : Nat is

case x in

Succ (x) −> null

| any −> null

end case;
return x

end function

(CS1) The clauses match clause0, ..., match clausen must be exhaustive: they must cover all the
possible sequences of values of the sequence of the types of V0, ..., Vℓ. This ensures that
exactly one statement among I0, ..., In will be executed at runtime. This is checked at
compile-time by Traian; moreover, the Lotos and C code generated by Lnt2Lotos is
such that case statements that are not exhaustive will abort at run-time when executed
with a value V that is not covered by the clauses match clause0, ..., match clausen.]

(CS2) The variables bound in the “case” pattern should be used afterwards; see rule (PA4).

Due to typing limitations in the early versions of the Lnt2Lotos translator, each “Vi” should either
be a variable “X” or an expression of the form “Vi of T ” (∀i ∈ {0, ..., ℓ}). This constraint may be
relaxed in the future.

A match clause has the form “P(0,0), ..., P(0,ℓ) [where V0] | ... | P(k,0), ..., P(k,ℓ) [where Vk]”.
Semantically, “match clause -> I” is strictly equivalent to:

P(0,0),...,P(0,ℓ) [where V0] -> I

| ...

| P(k,0),...,P(k,ℓ) [where Vk] -> I

The number ℓ of patterns must be equal to number of expressions in the case statement, and the
corresponding types have to match.

A sequence of expressions is said to match a clause “P0,...,Pℓ where V ” when:

• it first matches the sequence of patterns P0,...,Pℓ, and then

• the evaluation of V in the context of variables bound by the matching returns the Boolean value
true.

(WT1) The expressions V0, ..., Vk must be of type Boolean.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.11 : Statements 71

In “P0, ...,Pℓ [where] V ”, each Pi can be equal to “any”. This possibility is an exception to the
rule that wildcards inside patterns have to be typed explicitly (using the notation “any T”).

Patterns are discussed in section 7.12

7.11.10 If statement

The “if” construct allows conditional computations, as it is included in all languages.

In Lnt it has the following form:

if V0 then I0

[elsif V1 then I1

...

elsif Vn then In]

[else In+1]

end if

(IF1) The expressions V0, ..., Vn must be of type Boolean.

7.11.11 Breakable loop statement

A loop statement “loop L in I0 end loop” can be interrupted with the statement “break L”.

(BL1) A “loop L” statement cannot be declared inside a loop statement which has the same label
L.

(BL2) A “loop L” statement must contain either a “return” statement, a “break L” statement,
or a “break L′” statement such that the “loop L” statement occurs inside “loop L′”
(otherwise it would be certain that the “loop L” never terminates).

7.11.12 Unbreakable loop statement

An unbreakable loop statement “loop I0 end loop” cannot be interrupted with a “break L” state-
ment. However, since infinite computations should be avoided in the data part, the following static
semantic constraint should be satisfied:

(UL1) A “loop” statement must contain either a “return” statement or a “break L” statement
such that the “loop” statement occurs inside “loop L” (otherwise it would be certain that
the “loop” never terminates).

7.11.13 Breakable while statement

A loop statement “while V loop L in I0 end loop” can be interrupted with the statement
“break L”.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

72 Chapter 7 : Function definitions in Lnt

(BW1) The expression V must be of type Boolean.

(BW2) A “while . . . loop L” statement cannot be declared inside a loop statement which has the
same label L.

7.11.14 Unbreakable while statement

An unbreakable while statement “while V loop I0 end loop” cannot be interrupted with a
“break L” statement.

(UW1) The expression V must be of type Boolean.

7.11.15 Breakable for statement

A loop statement “for I0 while V by I1 loop L in I2 end loop” can be interrupted with
the statement “break L”.

It is semantically equivalent to:

I0;
loop L in
if V then I2 ; I1
else break L
end if

end loop

(BF1) The expression V must be of type Boolean.

(BF2) A “for . . . loop L” statement cannot be declared inside a loop statement which has the
same label L.

7.11.16 Unbreakable for statement

A loop statement “for I0 while V by I1 loop I2 end loop” cannot be interrupted with a
“break L” statement.

This statement is similar to the “for” construct of the C language. It is semantically equivalent to
the statement defined above for breakable “for” statements, except that L must be a loop label that
is not used elsewhere.

(UF1) The expression V must be of type Boolean.

7.11.17 Break statement

The “break L” statement can be used to interrupt a breakable “loop”, “while”, or “for statement”.

Loop statements can be nested, and the “break” statement enables one to interrupt a loop which is
not the innermost loop.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.12 : Patterns 73

(BS1) A statement “break L” can only be used within the body I of a loop statement of either
form “loop L in I end loop”, “while . . . loop L in I end loop”, or “for . . . loop L in I
end loop” declared with the same label L.

7.11.18 Use statement

The statement “use X1,...,Xn” marks the variables X1, ..., Xn as used as if they were used in a
normal expression. Apart from this, it has the same semantics as null.

(U1) The variables X1, ..., Xn must have been assigned previously.

This statement is useful to eliminate warnings about unused “in”, “in var”, and “in out” parameters
when the parameter modes cannot be changed and the parameters cannot be removed; see rules (FA3)
and (FA6) page 63.

This statement could also be used to eliminate warnings about local variables that are not used
after being assigned. However in this case, it is recommended to rather remove the useless variable
assignments instead of resorting to unnecessary “use” statements.

In general, one should avoid writing “use” statements that are not strictly necessary. Thus, it is
forbidden to introduce a “use X” on an execution path where variable X has been already used or
will be used. At present, such check is not yet implemented, but it should be in the future.

7.11.19 Access statement

The statement “access E1,...,En” marks the events E1, ..., En as accessed as if they occurred in a
raise statement (in a function or in a process) or in a communication action (in a process only, see
Chapter 8). Apart from this, it has the same semantics as null.

(A1) In a function (resp. process) definition, each formal event Ei must be different from the
predefined event noted “i”.

(A2) In a function (resp. process) definition, each formal event Ei must be different from the
predefined event noted “unexpected”.

This statement is useful to eliminate warnings about non-accessed events.

In general, one should avoid writing “access” statements that are not strictly necessary. Thus, it is
forbidden to introduce a “access E” on an execution path where event E has been already accessed
or will be accessed. At present, such check is not yet implemented, but it should be in the future.

7.12 Patterns

7.12.1 Variable binding

The variables X belonging to a pattern P are “initialization” occurrences: they previously have been
declared, but do not have to be initialized.

(PA1) The same variable X cannot be used more than once in the pattern sequence P0, ..., Pℓ of
a single match-clause.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

74 Chapter 7 : Function definitions in Lnt

(PA2) The patterns P0, . . . , Pn in a constant pattern F (P0, . . . , Pn) or in the infix constant pattern
P1 F P2, cannot contain any variable, wildcard, or aliasing patterns.

(PA3) If a constant pattern of type T is used, an equality operator “==” of type T, T → Bool must
be in scope in the same module. [checked by Cæsar]

(PA4) For each variable X bound by the pattern, there should exist at least one execution path on
which the new value of X is read before the execution completes and before X is modified
again (should it be). Otherwise, “any” should be used in place of X in the pattern.

7.12.2 Pattern matching

The pattern-matching of a value V with a pattern P has two effects:

• It sends a Boolean result which is “true” if V has the same structure as P (i.e., V matches P),
or “false” otherwise.

• If V matches P , the variables X used by P are initialized with the values extracted from V .

The result returned by matching a list of a list of values “V0, ...,Vℓ” with a list of patterns “P0,

...,Pℓ” is the conjunction of the results returned by matching Vi with Pi.

Matching is recursively defined as follows:

Pattern Value Condition Effect Result

X V None X receives V true
any T V None None true
X as P V P and V match X receives V true
X as P V P and V do not match None false
C(P0, . . . , Pn) C(V0, . . . , Vn) Each Pi, Vi match None true
F (P0, . . . , Pn) V F (P0, . . . , Pn) equals V according to

the operator ==
None true

F (P0, . . . , Pn) V F (P0, . . . , Pn) does not equal V accord-
ing to the operator ==

None false

C(P0, . . . , Pn) C(V0, . . . , Vn) Some Pi, Vi do not match None false
C(P0, . . . , Pn) V V has not the form C(V0, . . . , Vn) or

some Vi has not the same type as Pi

None false

P of T V Same as matching P and V
P1 C P2 V Same as matching C(P1, P2) and V
P1 F P2 V Same as matching F (P1, P2) and V

Note that the pattern “P1 C P2” has the same meaning as “C (P1 , P2)” when the infix notation of
constructor C is used.

Note that the pattern “(P)” has the same meaning as “P”, but is required for instance to express
right associativity of infix constructors.

Constant patterns are compared using the operator “==”. It is the responsibility of the user to provide
a sensible implementation of that operator.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.13 : Value expressions 75

7.12.3 List patterns

A list pattern of the form “{P1, P2, ..., Pn}” is syntactically replaced by
“cons (P1, cons (P2, ... cons (Pn, nil)...))”. For example, {} is converted to nil

and {0} is converted to cons (0, nil).

It is worth noticing that this syntax notation is not restricted to list types. It can also be used for
sorted lists, sets, and even any Lnt type that has nil and cons operations with the right profiles.
Note that nil and cons do not need to be constructors. Precisely, the following constraints must be
satisfied:

(PL1) All the elements Pi must be of the same type T ′ and this type must be declared.

(PL2) The type T of the list pattern result must be declared.

(PL3) The nil function must be declared (with the profile specified in section 5.7).

(PL4) The cons function must be declared (with the profile specified in section 5.7). If cons is not
a constructor, then the list elements P1, ..., Pn cannot contain any variable, wildcard, or
aliasing patterns.

Remind that, in the case of set and sorted list types, and unlike list expressions (see Section 7.13.9), the
pattern must take into account the ordering and/or unicity constraints set by its type. For instance,
considering a type of either form set of nat or sorted list of nat, the pattern {2, 1} (which is
represented internally as cons (2, cons (1, nil)) cannot be matched by any value, including the
value {2, 1} (which is represented internally as cons (1, cons (2, nil))) since 2 > 1.

7.13 Value expressions

7.13.1 Variable

A value expression may be a variable X . The type of the expression is the type of the variable, and
the result of the expression evaluation is the value of the variable X .

Only in postconditions of functions and processes, variables declared as “in out” formal parameters
may only occur in one of the forms “X.in” or “X.out”, to distinguish between their input and
output values (see Section 7.10).

(EV1) The variable X must have been declared and assigned a value before it is used in an
expression.

(EV2) The value expressions “X.in” and “X.out” can be used only in postconditions.

7.13.2 Result

The “result” keyword may be used in postconditions of functions that return a result (see Sec-
tion 7.10).

(RV1) The “result” keyword can be used only in postconditions.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

76 Chapter 7 : Function definitions in Lnt

7.13.3 Constructor call

The constructor call “C [(V1, ..., Vn)]” computes a value of the domain of its target type.

The infix notation “V1 C V2” is equivalent to “C(V1, V2)”.

The evaluation of a constructor call begins with the simultaneous evaluation of its actual parameters
V1, ..., Vn. The values obtained are used to form the constructed value which is the result of the
evaluation.

(EC1) Each expression V must have the same type and must appear at the same position as the
corresponding parameter of the constructor definition.

(EC2) If the constructor C is overloaded, the information given by the type of its parameters and
the type of the resulting value should suffice to solve the overloading.

The type coercion operator explained below may help to solve the overloading.

7.13.4 Function call

A function call has either form “F [[actual events]] [(actual parameter1,...,actual parametern)]”
(prefix notation) or “V1 F [[actual events]] V2” (infix notation). The latter is equivalent to
“F [[actual events]] (V1, V2)”.

Function calls allowed inside value expressions are a particular case of procedure calls. Therefore, all
constraints that have been defined for procedure calls in Section 7.11.7 also hold for function calls in
the context of value expressions. The only additional constraints here are the following:

(FC1) Function F should return a value and cannot have side-effects, i.e., F must have only “in”
and/or “in var” parameters.

(FC2) If F has event parameters and is the left-hand operand of an array element access expression,
then parentheses are mandatory around the call to F , as in “(F [E0, ..., En] (V1, ...,
Vm))[V ′]”.

All static semantics constraints given above for constructor calls also apply to function calls.

If F is a Lotos function, it is the programmer’s responsibility to ensure that
F has no side effect. A typical Lotos function cannot have side effects, but
a Lotos function declared external can have side effects, depending on its
actual C implementation.

7.13.5 Field selection

A field selection has the form “V .[[E]] field” where V is an expression of type T , E (optional) is
an exception, and field is the name of a formal parameter of a constructor of type T .

(FS1) At runtime, the value of V must be of the form “C (...)” where C is a constructor of type
T that has a formal parameter named field . If not, then an exception (E if it is present or
“unexpected” otherwise) is raised. [checked at runtime]

The selection expression returns the value of the actual parameter corresponding to field .

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 7.13 : Value expressions 77

It is interesting to note that, while field selection is sometimes useful, in most cases it is more efficient
to use a “case” instruction with pattern matching. Field selection should be used for accessing only
one field, whereas pattern matching is better when several fields have to be accessed.

7.13.6 Field update

A field update has the form “V .[[E]] {field0 -> V0, ..., fieldn -> Vn}” where V , (resp. E, field0,
..., fieldn) respects the same semantic constraints as V (resp. E, field) in a field selection expression.

Additionally:

(FU1) The expressions V0, ..., Vn must have the same type as the corresponding formal parameters
field0, ..., fieldn.

The update expression returns the value of V where the fields field0, ..., fieldn have been replaced by
the values resulting from the evaluation of the expressions V0, ..., Vn.

7.13.7 Array element access

An array element access has the form “V0 [V1]”.

(AE1) The type of expression V0 must be an array type.

(AE2) The expression V1 must be of type NAT .

(AE3) The value of expression V1 must be a valid index for the array represented by expression
V0. [checked at runtime]

7.13.8 Type coercion

Type coercion “V of T ” is allowed, to help solve the type ambiguity introduced by function and
constructor overloading.

(TC1) T must be a possible type for expression V .

Another source of ambiguity is the precedence of infix functions. This precedence can be forced using
parenthesized expressions “(V)”.

Type coercion also serves to ease the use of range and predicate types (see Section 5.7). If type T ′ is
defined as a range type (i.e., “type T ′ is range ... of T ”) or as a predicate type (i.e., “type T ′ is
{X : T where ... }”), and if V is a value of type T , it is permitted to write “V of T ′” — in addition
to writing “V of T ”, which is already permitted for any type T . The notation “V of T ′”, which
enforces the principle of uniform reference, is actually translated to “T ′ (V) of T ′”, where, depending
whether V has type T or T ′, the overloaded function T ′ will be either a predefined conversion from
type T to T ′, or the predefined identity function defined over T ′.

7.13.9 List expressions

A list expression of the form “{V1, V2, ..., Vn}” is syntactically replaced by
“insert (V1, insert (V2, ... insert (Vn, nil)...))”. For example, {} is converted
to nil and {1, 2, 3} is converted to insert (1, insert (2, insert (3, nil))).

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

78 Chapter 7 : Function definitions in Lnt

It is worth noticing that this syntax notation is not restricted to list types. It can also be used for
sorted lists, sets, and even any Lnt type that has nil and insert operations with the right profiles.
Precisely, the following constraints must be satisfied:

(VL1) All the elements Vi must be of the same type T ′ and this type must be declared.

(VL2) The type T of the list expression result must be declared.

(VL3) The nil function must be declared (with the profile specified in Section 5.7).

(VL4) The insert function must be declared (with the profile specified in Section 5.7).

To improve the runtime performance, if “{V1, ..., Vn}” has a sorted list or set type, then it is
recommended to sort V1, ..., Vn such that if Vi < Vj holds and can be determined statically, then
i < j.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Chapter 8

Process definitions in Lnt

8.1 Notations

This chapter uses the BNF notations defined in Section 3.1 and the non-terminals defined in Chap-
ters 5, 6, and 7.

The following additional conventions are used:

• B is a behaviour

• E is an event identifier (which represents either an input/output communication gate or an
exception)

• O is an offer

• Π is a process identifier

8.2 Syntax

process definition ::= process Π [[formal events0,...,formal eventsm]]

[(formal parameters1,...,formal parametersn)] is

process pragma1...process pragma l

precondition1...precondition j

postcondition1...postconditionk

[B]

end process process definition

process pragma ::= !virtual virtual process

| !implementedby "LOTOS:name" Lotos name

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

80 Chapter 8 : Process definitions in Lnt

B ::= null no effect (with continuation)

| stop inaction (without continuation)

| B1 ; B2 sequential composition

| X := V deterministic assignment

| X := any T [where V] nondeterministic assignment

| [eval] X := F [[actual events]] (actual parameter1,..., procedure call with result

| eval F [[actual events]] (actual parameter 1,..., procedure call without result

actual parametern)

| X [V0] := V1 array element assignment

| var var declaration0,...,var declarationn in variable declaration

B0

end var

| case V1,...,Vℓ case behaviour

[var var declaration0,...,var declarationn] in

match clause0 -> B0

| ...

| match clausem -> Bm

end case

| [only] if V0 then B0 conditional behaviour

[elsif V1 then B1

...

elsif Vn then Bn]

[else Bn+1]

end if

| loop forever loop

B0

end loop

| loop L in breakable loop

B0

end loop

| while V loop while loop

B0

end loop

| while V loop L in breakable while loop

B0

end loop

| for B0 while V by B1 loop for loop

B2

end loop

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 8.3 : Resolution of syntactic ambiguities 81

| for B0 while V by B1 loop L in breakable for loop

B2

end loop

| break L loop break

| use X1,...,Xn variable use

| access E1,...,En event access

| raise E [(V1,...,Vn)] exception raise

| assert V [raise E [(V1,...,Vn)]] assertion

| Π [[actual events]] [(actual parameter1,...,actual parametern)] process call

| E [(O0,...,On)] [where V] communication

| alt nondeterministic choice

B0

[] ... []

Bn

end alt

| par [E0,...,En in] parallel composition

[E(0,0),...,E(0,n0) ->] B0

‖ ... ‖
[E(m,0),...,E(m,nm) ->] Bm

end par

| hide event declaration0,...,event declarationn in hiding

B

end hide

| disrupt B1 by B2 end disrupt disrupting

O ::= [X ->] V output offer

| [X ->] ?P input offer

8.3 Resolution of syntactic ambiguities

In a behaviour B, there can be a syntactic ambiguity between communications and process calls
without event parameters. Here are examples of such ambiguous behaviours:

Z

Z(1, 2)

Z(?X)

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

82 Chapter 8 : Process definitions in Lnt

This ambiguity is solved on the semantic level. If the identifier Z is declared as a gate identifier in
the current context, then the behaviour is considered to be a communication on gate Z. Otherwise,
the behaviour is assumed to be a call to some process named Z.

Thus, priority is given to gate identifiers, meaning that, in process definitions, a formal gate parameter
hides any process defined elsewhere with no event parameter.

8.4 Process definition

Lnt (like Lotos) allows a behaviour to be named using a process definition. A process is an object
that denotes a behaviour; it can be parameterised by a list of formal events and a list of formal
variables. Note that processes, like functions, cannot be parameters of processes: Lnt is a first-order
language.

A process definition consists of a process name, Π, optionally a list of formal
event parameters formal events0,...,formal eventsm, optionally a list of formal pa-
rameters formal parameter 1,...,formal parametern, optionally a list of preconditions
precondition1,...,precondition j , optionally a list of postconditions postcondition1,...,postconditionk,
and a behaviour B called the body of the process:

process definition ::= process Π [[formal events0,...,formal eventsm]]

[(formal parameters1,...,formal parametersn)] is

process pragma1...process pragma l

precondition1...precondition j

postcondition1...postconditionk

[B]

end process

A process can be defined without formal event parameters.

A process can be defined without formal value parameters.

The process names must be pairwise distinct. This means that (contrary to functions) overloading is
not supported, even for processes with different parameter lists.

Each Lnt process Π is translated into a Lotos process Π of functionality “exit (S1, ..., Sn)”, where
the S1, ..., Sn is the list of the sorts of the formal variable parameters of mode “out” or “in out”.

The preconditions and postconditions of a process have the same meaning as in functions, the only
difference being that the “result” keyword cannot occur in postconditions since there is no “return”
behaviour. The description of preconditions and postconditions in Section 7.10 is still valid when
replacing the word “function” by “process”.

8.5 Process pragmas

The pragma “!virtual” expresses that the process is not fully defined in the current module but in
another module that is not included (transitively) in the current module.

The pragma “!implementedby "LOTOS:Π′"” triggers the generation of a Lotos process Π′ with the

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 8.6 : Lists of formal events 83

same parameters and functionality as the Lotos process Π; the body of Π′ is always a call to the
Lotos process Π.

The following static semantics constraints apply to Π:

(PPG1) In the list process pragma1...process pragma l of each process definition, there should
be at most one pragma of each kind (i.e., there can neither be two “!implementedby
"LOTOS:. . ."” pragmas not two “!version” pragmas).

(PPG2) The names provided by pragmas “!implementedby "LOTOS:. . ."” for all processes should
be pairwise distinct.

(PPG3) To avoid name clashes in the generated Lotos code, the name provided by a pragma
“!implementedby "LOTOS:. . ."” should not be a name of another Lnt process defined by
the user. In particular, cyclic or self references such as “process P is !implementedby
"LOTOS:P" ...” are forbidden. [checked by Cæsar/Cæsar.adt]

(PPG4) If the body B0 is empty then the pragma “!virtual” must be present.

(PPG5) If the pragma “!virtual” is present, the body B0 should be either “null” or empty.

(PPG6) If the pragma “!virtual” is present, then P must not have any other pragma.

(PPG7) A process P may have at most one virtual definition (i.e., a definition with pragma
“!virtual”) and one actual definition (i.e., a definition without pragma “!virtual”).

(PPG8) If a process P has both a virtual and an actual definition, then those definitions should
be located in distinct modules, and the module defining the actual process should not be
included (transitively) in the module defining the virtual process.

(PPG9) If a process P has both a virtual and an actual definition, then those definitions should
have identical profiles, i.e., same event parameter names and channels, and same value
parameter modes, names, and types. As regards parameter modes, the following exception
holds: to an “in var” (resp. “out var”) parameter in the actual definition corresponds
an “in” (resp. “out”) parameter in the virtual definition, i.e., the virtual definition should
not contain “in var” and “out var” parameters.

In pragmas “!implementedby "LOTOS:. . ."”, the prefix “LOTOS:” is case-sensitive. Other forms, such
as “Lotos:” are rejected.

8.6 Lists of formal events

The rules governing formal event parameters for functions (see Section 7.7) also apply to formal event
parameters for processes.

The key difference is that in processes, formal event parameters are not necessarily exceptions. There-
fore, they may have a channel different from “exit” and they can even be untyped (i.e., be declared
with the channel “any”).

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

84 Chapter 8 : Process definitions in Lnt

When an event occurs in a routine, its value is the actual event passed as
argument to the routine. However, in the current version of Lnt2Lotos,
this general rule has practical limitations when applied to events declared as
exceptions.
Namely, if the root process is specified on the command line using the “-root”
option, and if this process has formal event parameters declared as exceptions,
then the value of each exception is the corresponding formal event parameter
instead of the actual event passed on the command line, which is ignored.
For instance, if one uses option “-root "P [E1]"” and P has formal event
parameter E2 declared as an exception, then the exception will be named E2

instead of E1.

8.7 Lists of formal parameters

The rules governing formal value parameters for functions (see Sections 7.8 and 7.9) apply also to
formal value parameters for processes.

8.8 Behaviours

The control part and the data part of Lnt are symmetrical: behaviours are extensions of statements
except on the following points:

• The “return” statement has no behaviour counterpart.

• It is not mandatory that every unbreakable “loop” construct be eventually interrupted, since
it is very common for a process to loop forever without exiting. Rule (UL1) is thus relaxed in
the control part.

As a general principle, the rules given for statements in Section 7.11 also apply to behaviours hav-
ing the same syntax as these statements. In order to avoid repetition, we only discuss here those
behaviours that do not exist as statements or are slightly different.

8.8.1 Stop

The “stop” behaviour terminates the execution of the enclosing process.

Note: The termination performed by “stop” is said to be unsuccessful, as it is impossible for any
other process to resume sequentially after “stop” (said differently, “stop” represents a deadlock).
This is quite different from the successful termination performed by the “null” operator, since “null”
offers a “δ” action (see Section 6.6) that allows sequential continuation.

8.8.2 Procedure call

Procedure calls are considered similar to assignments: they execute instantaneously, and do not
generate any transitions.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 8.8 : Behaviours 85

8.8.3 Only-if statement

Compared to the data part, the “if” construct is extended with the optional prefix “only” that is
useful to implement guarded commands. Precisely, the behaviour

only if V0 then I0
elsif V1 then I1
...
elsif Vn then In
end if

is syntactic sugar for

if V0 then I0
elsif V1 then I1
...
elsif Vn then In
else stop
end if

(OIF1) An only if behaviour must not have an else branch.

Notice that a missing “else” branch in an “if” statement is equivalent to “else null” and, thus,
non-blocking (i.e., if the conditions following “if” and “elsif” are all false, then the “else” can be
executed). To the contrary, a missing “else” branch in an “only if” statement is equivalent to
“else stop” and thus blocking. The “only if” statement is most useful as part of a “alt” statement.

8.8.4 Nondeterministic assignment

The behaviour “X := any T [where V]” assigns to variable X an arbitrary value of type T such
that the value of expression V is true; if variable X occurs in V , it refers to the candidate value, and
not to any prior value of X .

Note: Nondeterministic assignment can be used to express the choice of values, as in a Lotos choice
statement. For instance, the Lotos behaviour “choice X : T [] B” can be written as “X := any
T ; B”.

The following static semantics constraints apply to this behaviour:

(NA1) The assignment should be “useful”, i.e., there should exist at least one execution path on
which the new value of X is read before the execution completes and before X is modified
again (should it be).

8.8.5 Exception raise

The meaning of the “raise” construct in Lnt processes is similar to that in Lnt functions (see
Section 7.11.4).

8.8.6 Assertion

The meaning of the “assert” construct in Lnt processes is similar to that in Lnt functions (see
Section 7.11.5).

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

86 Chapter 8 : Process definitions in Lnt

8.8.7 Process call

A process call has the form:

Π [[actual events]] [(actual parameter 1,...,actual parametern)]

Process calls have many analogies with procedure calls (see Sectionr̃efsec:procedure-call).

The actual events can be written either in the “positional” style or in the “named” one. In the named
style:

• The notation “Eformal ,i -> Eactual ,i” means that the formal event parameter Eformal ,i of

process Π is instantiated with the actual event Eactual ,i.

• The notation “...” means that each formal event parameter E of Π that does not appear in
Eformal ,1, ..., Eformal ,n is instantiated with the actual event E.

The static semantics constraints (AG1) to (AG2) apply to the positional style
“E1,...,En”. The static semantics constraints (AG3) to (AG7) apply to the named style
“Eformal ,1 -> Eactual ,1,...,Eformal ,n -> Eactual ,n[,...]”. The remaining constraints (AG8) to

(AG9) apply to both positional and named styles.

(AG1) The number of actual event parameters of the process call must be equal to the number of
formal event parameters of the corresponding process definition.

(AG2) Each actual event parameter E1, ..., En must have been declared in the current context
(i.e., as a formal parameter of the process that contains the call to Π, or in an enclosing
“hide” statement), except for the predefined exception “unexpected”.

(AG3) The formal events Eformal ,1, ..., Eformal ,n must be formal events of Π and be pairwise

distinct.

(AG4) Each actual event parameter Eactual ,1, ..., Eactual ,n must have been declared in the current

context (i.e., as a formal parameter of the process that contains the call to Π, or in an
enclosing “hide” statement), except for the predefined exception “unexpected”.

(AG5) If the notation “...” is used in “Eformal ,1 -> Eactual ,1,...,Eformal ,n -> Eactual ,n,...”,
all the formal events of Π that do not appear in Eformal ,1, ..., Eformal ,n must correspond

to formal event parameters of the process that contains the call to Π.

(AG6) When “...” is omitted, all the formal events of Π must appear in Eformal ,1, ..., Eformal ,n.

(AG7) Process Π must be defined in the current module, meaning that the named style can only
be used to call processes defined in the same module (because, at present, Lnt2Lotos does
not do sophisticated inter-module analysis). [checked by Lnt2Lotos]

(AG8) In either named or positional style, each actual event must be compatible (as defined in
Section 6.7) with the corresponding formal event of the process definition.

(AG9) In either named or positional style, each actual event must be different from “i”. [checked
by Lnt2Lotos]

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 8.8 : Behaviours 87

The following constraints apply to variable parameters:

(PI1) The constraints concerning actual parameters of procedure calls, i.e. (PC1), (PC2), (PC3),
and (PC4), must be satisfied.

(PI2) A recursive process call must be terminal, i.e. must not be followed in sequence (meaning,
according to sequential composition) by any further statement (except, possibly, the “null”
statement). [checked by Cæsar/Cæsar.adt]

(PI3) For each recursive process call, the list of actual variable parameters of mode “out” or
“in out” of the called process must be equal to the list of the formal parameters of mode
“out” (or “out var”) or “in out” of the calling process.

(PI4) For each variable X passed as actual variable parameter (“?X” or “!?X”), there should
exist at least one execution path on which the new value assigned to X is read before the
execution completes and before X is modified again (should it be).

Note: if constraints (PI2) and (PI3) are not respected, Lnt2Lotos might generate Lotos code for
recursive process calls that does not respect a restriction of the Cæsar compiler, namely the absence
of recursion on the left hand side of an enable operator “>>”. To review all the possible cases, consider
the call of a process P in the body of a process P0:

• If the call of P is not terminal in P0 and if P may call P0 recursively (either directly or
transitively) — i.e., if constraint (PI2) is not satisfied —, Cæsar will not accept the Lotos
code generated by Lnt2Lotos.

• If the call of P is terminal in P0:

– If P does not call P0, Lnt2Lotos generates Lotos code that is accepted by Cæsar.

– If P may call P0 recursively (either directly or transitively):

∗ If constraint (PI3) is satisfied, Lnt2Lotos generates Lotos code that is accepted by
Cæsar.

∗ Otherwise, Lnt2Lotos generates Lotos code that is rejected by Cæsar.

The following examples illustrate these restrictions and show how to modify Lnt source code to meet
the above constraints (PI2) and (PI3):

• The recursive process:

process P [E:any] is
E; P [E];
stop

end process

violates constraint (PI2) because the call of P is followed by the non-null behaviour “stop”;
P can be written without the “stop” behaviour (which is never reached anyway) as:

process P [E:any] is
E; P [E]

end process

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

88 Chapter 8 : Process definitions in Lnt

Notice that replacing “stop” by “null” would also be correct:

process P [E:any] is
E; P [E];
null

end process

• The process:

process P [E:any] (out X :Nat) is
var Y :Nat in
E (?X); P [E] (?Y)

end var
end process

violates constraint (PI3) because the actual parameter (i.e., variable Y) given for the recursive
call of P is different from the formal parameter X ; P can be written without the unnecessary
local variable Y as:

process P [E:any] (out X :Nat) is
E (?X); P [E] (?X)

end process

• The process:

process P [E:any] (out X , Y : Nat) is
E (?X , ?Y); P [E] (?Y , ?X)

end process

violates constraint (PI3) because the order of the actual parameters in the call of P is not the
same as the order of the formal parameters; P can be written by explicitly inlining one call as:

process P [E:any] (out X , Y : Nat) is
E (?X , ?Y); E (?Y , ?X); P [E] (?Y , ?X)

end process

• The mutually recursive processes P and Q:

process P [E:any] (out var X , Y :Nat) is
E (?X , ?Y);
if (X < Y) then
Q [E] (?X , ?Y)

end if
end process
process Q [E:any] (out X , Y :Nat) is
P [E] (?Y , ?X)

end process

violate constraint (PI3) because the order of the actual parameters of the call of P is different
from the order of the formal parameters of Q; Q can be inlined in the body of P :

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 8.8 : Behaviours 89

process P [E:any] (out var X , Y :Nat) is
E (?X , ?Y);
if (X < Y) then
E (?Y , ?X);
if (Y < X) then
P [E] (?X , ?Y)

end if
end if

end process

• The mutually recursive processes P and Q:

process P [E:any] (out var X :Nat) is
var Y :Nat in
E (?X , ?Y);
if (X < Y) then
Q [E] (?X , ?Y)

end if
end var

end process
process Q [E:any] (out var X , Y :Nat) is
Y := 2;
P [E] (?X)

end process

violate constraint (PI3) because P and Q do not have the same number of parameters of mode
“out”; P and Q can be rewritten by adding “dummy” variables:

process P [E:any] (out var X :Nat, out dummy:Nat) is
var Y :Nat in
E (?X , ?Y);
if (X < Y) then
Q [E] (?X , ?dummy)

if (X < Y) then
dummy := 0

end if
end var

end process
process Q [E:any] (out X , Y :Nat) is
Y := 2;
var dummy:Nat in
P [E] (?X , ?dummy)

end var
end process

The execution of a process call begins with the simultaneous evaluation of the expressions corre-
sponding to the “in” parameters. For an “in out” parameter, the input value is the value of the
variable given as the parameter. Then the body of the process is executed, substituting formal event
parameters by actual event parameters. The body should assign all “out” parameters.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

90 Chapter 8 : Process definitions in Lnt

Note: each call of an Lnt process is translated into an call of a Lotos process of functionality “exit
(S1, ..., Sn)”, where the S1, ..., Sn is the list of the sorts of the actual variable parameters of mode
“out” or “in out”.

8.8.8 Communication

In Lnt, as in Lotos, behaviours communicate by rendezvous on gates.

In Lnt processes, gates are declared either as formal event parameters or using the “hide” operator.

The behaviour “E [(O0,...,On)] [where V]” waits for a rendezvous on gate E. The offers O0, ...,
On describe the data exchanged during the rendezvous. An offer “V ” corresponds to an emission
(output) of value expression V . An offer “?P” corresponds to a reception (input) of a value matching
pattern P ; the variables of P must be already declared. A rendezvous takes place only if the value
expression in the condition “[V]” evaluates to true; condition V can use values received by the offers
O0, ..., On.

The communication is blocked by both sending and receiving values: the behaviour waiting for a
rendezvous is suspended and terminates immediately after the rendezvous takes place.

The internal gate “i” (see Section 6.6) specifies a non-observable action of the behaviour and termi-
nates successfully.

In Lnt, as in Lotos, a rendezvous is symmetrical: there is no difference between the sender and the
receiver. The rendezvous on a gate may allow several sending and receiving offers at the same time.

For gates that are not untyped, the list of offers must match one of the profiles of the channel with
which E was declared. In this case, the variable names “X” can be specified; if specified, they must
be identical to the variable names of the channel profile.

(COM1) Variables used in all receptions “?P” of the same communication must be pairwise distinct
across all receptions.

(COM2) The variables bound in the reception patterns “?P” should be used afterwards; see
rule (PA4).

(COM3) The predefined gate “i” cannot be used with offers.

(COM4) If E is typed, then its channel may not be the exit channel.

8.8.9 Nondeterministic choice (alternative)

The behaviour “alt B0 [] ... [] Bn end alt” (which was formerly written “select B0 [] ... []

Bn end select” until March 2024) may execute either B0, or B1, ..., or Bn (where n ≥ 0). The
first action (e.g., rendezvous, internal action, or successful termination action) executed by any Bi

resolves the choice in favor of Bi.

8.8.10 Parallel composition

A parallel composition has the form:

par [E0,...,En in]

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ 8.8 : Behaviours 91

[E(0,0),...,E(0,n0) ->] B0

‖ ... ‖
[E(m,0),...,E(m,nm) ->] Bm

end par

The set of events “{E0, . . . , En}” is called the global synchronisation set. Each event in this set must
have been declared as a gate. If “{E0, . . . , En}” is omitted, then the global synchronisation set is
empty. If a behaviour among B0, . . . , Bm is waiting for a communication whose gate belongs to the
global synchronisation set, then this communication can happen only if all behaviours B0, . . . , Bm

can make this communication simultaneously.

For all i in 0..m, the set of events “{E(i,0), . . . , E(i,ni)}” is called the local synchronisation set of
Bi. Each event in this set must have been declared as a gate. If “E(i,0), . . . , E(i,ni)” is omitted,
then the local synchronisation set of Bi is empty. If a behaviour among B0, . . . , Bm is waiting for
a communication whose gate belongs to its local synchronisation set, then this communication can
happen only if all behaviours B0, . . . , Bm that contain this gate in their local synchronisation set can
make this communication simultaneously.

If a behaviour among B0, . . . , Bm is waiting for a communication whose gate does not belong to its
local synchronisation set nor to the global synchronisation set, then this communication can happen
without restriction.

(PAR1) Events that belong either to the global synchronisation set or to a local synchronisation
set must be different from “i”.

(PAR2) Events E0, ..., En must not appear in E(0,0), ..., E(0,n0), ..., E(m,0), ..., E(m,nm). [checked
by Lnt2Lotos]

(PAR3) Every event that belongs to some Bi but does not belong to the corresponding
{E(i,0), ..., E(i,ni)} must not belong to {E(0,0), ..., E(0,n0), ..., E(m,0), ..., E(m,nm)}. [checked
by Lnt2Lotos]

(PAR4) If a Bi assigns a value to a variable or parameter, every Bj such that i 6= j must neither
assign a value to that variable or parameter, nor read its value.

(PAR5) Behaviours B0, . . . , Bn must not contain a recursive call (either direct or indirect) to the
current process. [checked by Cæsar]

(PAR6) Behaviours B0, . . . , Bn must not contain a statement “break L” if the corresponding loop
L is not defined by one of the behaviours B0, . . . , Bn, i.e., if the par statement is inside
the body of the loop L. [checked by Lnt2Lotos]

(PAR7) Events that belong either to the global synchronisation set or to a local synchronisation
set must be different from “unexpected”.

(PAR8) Events that belong either to the global synchronisation set or to a local synchronisation
set must have been declared as gates.

8.8.11 Hiding

hide event declaration0,...,event declarationn in

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

92 Chapter 8 : Process definitions in Lnt

B

end hide

The hiding operator declares a list of events E0, ..., En, which are gates. Such gates are not observable
from the environment of the behaviour: each communication (possibly with input/output offers) on
a hidden gate Ei is externally equivalent to the internal action “i”.

(H1) The hidden events E0, ..., En must be pairwise distinct.

(H2) Each hidden event Ei must be different from “i”.

(H3) Each hidden event Ei must be different from “unexpected”.

(H4) The hidden events E0, ..., En may not be declared with the channel exit.

8.8.12 Disruption

disrupt B1 by B2 end disrupt

The disrupt behaviour starts behaviour “B1”, which executes normally. However, at any moment,
“B1” can be interrupted, in which case the execution of “B2” starts and “B1” is terminated. Yet, if
“B1” successfully terminates before any action has taken place in “B2”, the disrupt behaviour (as a
whole) terminates, meaning that the possibility to be interrupted by “B2” disappears.

(DIS1) Behaviour B1 should not contain a recursive call (neither direct nor indirect) to the current
process. [checked by Cæsar]

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Appendix A

Syntax summary of the Lnt
language (version 7.5)

A.1 Extended BNF notation used in this appendix

Notation Meaning
[y] optional operator (0 or 1 instance of y)
y1|y2 choice of either y1 or y2
y0...yn concatenation of one or more y’s
y1...yn concatenation of zero or more y’s
y0, ..., yn concatenation of one or more y’s separated by commas
y1, ..., yn concatenation of zero or more y’s separated by commas

A.2 Identifiers

Identifier (terminal symbol) Meaning
M module
T type
C type constructor
X variable
F function
L loop label
Γ channel
E event
Π process

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

94 Appendix A : Syntax summary of the Lnt language (version 7.5)

NOTE: The following are not identifiers but are non-terminal symbols, and are defined below.

Non-terminal symbol Meaning
I statement
V expression
P pattern
B behaviour
O offer

A.3 Modules

lnt file ::= module M [(M0, ...,Mm)] module

[with predefined function0, ..., predefined functionn] is

module pragma1...module pragmap

definition0...definitionq

end module

predefined function ::= == | = equality

| <> | != inequality

| < less than

| <= less than or equal to

| > greater than

| >= greater than or equal to

| append tail insertion

| card set cardinality

| delete element deletion

| diff asymmetric difference

| element indexed access

| empty emptyness test

| first first element

| get field selection

| head first element

| insert insertion

| inter intersection

| last last element

| length list length

| member membership test

| minus symmetric difference

| ord ordinal

| remove element removal

| reverse reversal

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ A.4 : Types 95

| set field update

| subset subset test

| tail next elements

| union union

| val value

module pragma ::= !nat bits nat number of bits for type Nat

| !nat inf nat lowest value of type Nat

| !nat sup nat highest value of type Nat

| !nat check bit check for Nat overflows/underflows

| !int bits nat number of bits for type Int

| !int inf int lowest value of type Int

| !int sup int highest value of type Int

| !int check bit check for Int overflows/underflows

| !num bits nat number of bits for numeral types

| !num card nat maximal cardinality for numeral types

| !string card nat maximal cardinality for type String

| !update string update tag

| !version string version tag

where nat denotes a natural number constant (in decimal notation without underscores), int denotes
an integer number constant (in decimal notation without underscores), and bit denotes 0 or 1.

definition ::= type definition type definition

| function definition function definition

| channel definition channel definition

| process definition process definition

A.4 Types

type definition ::= type T is type pragma1...type pragman type

type expression

[with predefined function declaration0, ..., predefined function declarationm]

end type

type pragma ::= !external external type

| !implementedby "[C:]name" C type name

| !comparedby "[C:]name" C equality function

| !printedby "[C:]name" C printing function

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

96 Appendix A : Syntax summary of the Lnt language (version 7.5)

| !list print as list

| !iteratedby "[C:]name1" , "[C:]name2" C iterator functions

| !pointer C pointer implementation

| !nopointer C unboxed implementation

| !bits nat number of bits for the C type

| !card nat maximal cardinality for the C type

string ::= “character*”

type expression ::= constructor definition0, ..., constructor definitionn constructed type

| set of T set

| list of T list

| sorted list of T sorted list

| array [m..n] of T array

| range m..n of T ′ range

| X:T ′ [where V] predicate

| empty (external type only)

constructor definition ::= C [(constructor parameters1, ..., constructor parametersn)]

constructor pragma1...constructor pragmam

constructor parameters ::= X0, ..., Xn : T constructor parameters

constructor pragma ::= !implementedby "[C:]name" C operator name

predefined function declaration ::= predefined function

[predefined function pragma1...predefined function pragman]

predefined function pragma ::= !external external function

!implementedby "[(C | LOTOS):]name" C/Lotos name scheme

A.5 Channels

channel definition ::= channel Γ is [raise] channel definition

channel profile0,

...,

channel profilen

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ A.6 : Functions 97

end channel

channel profile ::= (profile parameters1,...,profile parametersn) channel profile

profile parameters ::= X0,...,Xn:T profile parameter list

A.6 Functions

function definition ::= function F [[formal events0,...,formal eventsm]]

[(formal parameters1,...,formal parametersn)] [:T] is

function pragma1...function pragma l

precondition1...precondition j

postcondition1...postconditionk

[I0]

end function function definition

formal events ::= event declaration formal events

event declaration ::= E0,...,En:Γ typed event declaration

| E0,...,En: any untyped event declaration

formal parameters ::= parameter mode X0,...,Xn:T formal parameters

parameter mode ::= [in] input formal parameter

| in var input formal parameter used as local variable

| out output formal parameter

| out var output formal parameter used as local variable

| in out input / output formal parameter

precondition ::= require V [raise E [()]]; precondition

postcondition ::= ensure V [raise E [()]]; postcondition

function pragma ::= !external external function

| !implementedby "[(C | LOTOS):]name" C or Lotos name scheme

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

98 Appendix A : Syntax summary of the Lnt language (version 7.5)

A.7 Instructions and statements

I ::= null no effect

| I1 ; I2 sequential composition

| return [V] return

| raise E [()] exception raise

| assert V [raise E [()]] assertion

| X := V assignment

| X[V0] := V1 array element assignment

| [eval] [X :=] F [[actual events]] (actual parameter1,..., procedure call

actual parametern)

| var var declaration0,...,var declarationn in variable declaration

I0

end var

| case V0,...,Vℓ case statement

[var var declaration0,...,var declarationn] in

match clause0 -> I0

| ...

| match clausem -> Im

end case

| if V0 then I0 conditional statement

[elsif V1 then I1

...

elsif Vn then In]

[else In+1]

end if

| loop forever loop

I0

end loop

| loop L in breakable loop

I0

end loop

| while V loop while loop

I0

end loop

| while V loop L in breakable while loop

I0

end loop

| for I0 while V by I1 loop for loop

I2

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ A.8 : Patterns 99

end loop

| for I0 while V by I1 loop L in breakable for loop

I2

end loop

| break L loop break

| use X0,...,Xn variable use

| access E0,...,En event access

var declaration ::= X0,...,Xn:T variable list

actual events ::= E1,...,En positional style

| Eformal ,1 -> Eactual ,1,...,Eformal ,n -> Eactual ,n [,...] named style

actual parameter ::= V actual parameter “in”

| ?X actual parameter “out”

| !?X actual parameter “in out”

match clause ::= P0,...,Pℓ [where V0] | ... | Pn [where Vn] match clause

| any,...,any [where V] wildcard

A.8 Patterns

P ::= X variable

| any T wildcard

| X as P0 aliasing

| C [(P0,...,Pn)] constructed pattern

| P1 C P2 infix constructed pattern

| F [(P0,...,Pn)] constant pattern

| P1 F P2 infix constant pattern

| P0 of T type coercion

| (P) parenthesized pattern

| {P1,...,Pn} list pattern

A.9 Value expressions

V ::= X variable

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

100 Appendix A : Syntax summary of the Lnt language (version 7.5)

| X.in input parameter value (in postcondition only)

| X.out output parameter value (in postcondition only)

| result function result (in postcondition only)

| C [(V1,...,Vn)] constructor call

| V1 C V2 infix constructor call

| F [[actual events]] [(V1,...,Vn)] function call

| V1 F [[actual events]] V2 infix function call

| V .[[E]] field field selection

| V .[[E]] {field0->V0,...,fieldn->Vn} field update

| V0 [V1] array element access

| V of T type coercion

| (V) parenthesized expression

| {V1,...,Vn} list expression

A.10 Processes

process definition ::= process Π [[formal events0,...,formal eventsm]]

[(formal parameters1,...,formal parametersn)] is

process pragma1...process pragma l

precondition1...precondition j

postcondition1...postconditionk

[B]

end process process definition

process pragma ::= !virtual virtual process

| !implementedby "LOTOS:name" Lotos name

A.11 Behaviours

B ::= null no effect (with continuation)

| stop inaction (without continuation)

| B1 ; B2 sequential composition

| X := V deterministic assignment

| X := any T [where V] nondeterministic assignment

| [eval] X := F [[actual events]] (actual parameter1,..., procedure call with result

| eval F [[actual events]] (actual parameter 1,..., procedure call without result

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ A.11 : Behaviours 101

actual parametern)

| X [V0] := V1 array element assignment

| var var declaration0,...,var declarationn in variable declaration

B0

end var

| case V1,...,Vℓ case behaviour

[var var declaration0,...,var declarationn] in

match clause0 -> B0

| ...

| match clausem -> Bm

end case

| [only] if V0 then B0 conditional behaviour

[elsif V1 then B1

...

elsif Vn then Bn]

[else Bn+1]

end if

| loop forever loop

B0

end loop

| loop L in breakable loop

B0

end loop

| while V loop while loop

B0

end loop

| while V loop L in breakable while loop

B0

end loop

| for B0 while V by B1 loop for loop

B2

end loop

| for B0 while V by B1 loop L in breakable for loop

B2

end loop

| break L loop break

| use X1,...,Xn variable use

| access E1,...,En event access

| raise E [(V1,...,Vn)] exception raise

| assert V [raise E [(V1,...,Vn)]] assertion

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

102 Appendix A : Syntax summary of the Lnt language (version 7.5)

| Π [[actual events]] [(actual parameter1,...,actual parametern)] process call

| E [(O0,...,On)] [where V] communication

| alt nondeterministic choice

B0

[] ... []

Bn

end alt

| par [E0,...,En in] parallel composition

[E(0,0),...,E(0,n0) ->] B0

‖ ... ‖
[E(m,0),...,E(m,nm) ->] Bm

end par

| hide event declaration0,...,event declarationn in hiding

B

end hide

| disrupt B1 by B2 end disrupt disrupting

O ::= [X ->] V output offer

| [X ->] ?P input offer

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Appendix B

Formal semantics of the Lnt
language (version 7.5)

B.1 Preliminaries

We define the dynamic semantics of Lnt programs, using formal Sos (Structural Operational Se-
mantics) rules. Programs are assumed to have successfully passed all static analysis phases, such
as parsing, syntactic sugar expansion, binding analysis, typing analysis, and variable initialisation
analysis, thus enabling a simplified abstract syntax, which is also precisely defined in this annex.

B.1.1 SOS rules

We give here a (partial) definition of Sos rules to fix the notations. The general goal of a set of Sos
rules is to define an n-ary relation R(e1, . . . , en) between elements ei (i ∈ 1..n) of different sorts. In
the sequel, the term Boolean statement denotes either a Boolean predicate in first-order logic, or an
expression of the form R (e1, . . . , en). Each Sos rule has the following form:

Premise1 . . . Premisem

Conclusion

for some m ≥ 0. The upper part “Premise1 . . . Premisem” denotes a set of m Boolean statements,
and the lower part “Conclusion” denotes a single Boolean statement of the form R (e1, . . . , en). The
meaning is that the conclusion R (e1, . . . , en) holds if each Premisei (for all i ranging in the interval
1..m) itself holds, either logically if Premisei is a Boolean predicate, or by repetitive application of
the Sos rules otherwise. All variables which occur free in some Premisei and/or in Conclusion are
(implicitly) quantified universally over the whole rule.

In this appendix, we may use the concise notation “Premise [i] (i ∈ 1..m)”, where Premise [i] is any
Boolean statement that may depend on i, as a shorthand notation for the developed set of premises
“Premise [1] . . . Premise [m]”, where each Premise [k] (for any k ∈ 1..m) denotes Premise [i] in which
i is replaced by k.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

104 Appendix B : Formal semantics of the Lnt language (version 7.5)

We may also use the following notation for sets of Sos rules:

Premise1 [j] . . . Premisen [j]

Conclusion [j]

(j ∈ 1..p)

where both Conclusion [j] and each Premisei [j] (i ∈ 1..m) are Boolean statements that may depend
on j. This notation is equivalent to the set of p rules obtained by replacing j by numbers in the
interval 1..p, namely:

Premise1 [1] . . . Premisen [1]

Conclusion [1]

. . .

Premise1 [p] . . . Premisen [p]

Conclusion [p]

B.1.2 Values and stores

The following notions of value and store are used in the Sos rules:

• A value is a ground term (i.e., a term without variables) containing only constructors. We write
V for the set of all values and v, v0, v1, . . . for individual values.

• A store is a partial function from variables to values. We write σ, σ0, σ1, . . . for stores. The
notation “[X1 ← v1, . . . , Xn ← vn]” (where n ≥ 0, and i 6= j =⇒ Xi 6= Xj) represents the store
σ such that σ(X1) = v1, . . . , σ(Xn) = vn and σ(X) is undefined for any X /∈ X1, . . . , Xn. In
particular, “[]” represents the empty store.

• Given two stores σ1 and σ2, we write “σ1 � σ2” for the update of σ1 with respect to σ2, which
consists of σ2 plus the part of σ1 corresponding to variables not overwritten by σ2. Store update
is formally defined as follows:

(σ1 � σ2)(X) =

σ2(X) if σ2(X) is defined
σ1(X) if σ2(X) is not defined and σ1(X) is defined
undefined otherwise

• Given two stores σ1 and σ2, we write “σ1 ⊕ σ2” for the disjoint union of σ1 and σ2. Formally,
σ1 ⊕ σ2 is defined as σ1 � σ2 only if the sets of variables defined in σ1 and σ2 are disjoint, and
it is undefined otherwise.

• Given two stores σ1 and σ2, we write “σ1 ⊖ σ2” for the difference between σ1 and σ2, which
consists of the part of σ1 corresponding to variables that are either not defined or defined with
a different value in σ2. Store difference is formally defined as follows:

(σ1⊖σ2)(X) =

{

σ1(X) if σ1(X) is defined and either σ2(X) is not defined or σ2(X) 6= σ1(X)
undefined otherwise

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.2 : Dynamic semantics of expressions 105

B.2 Dynamic semantics of expressions

B.2.1 Definitions

The dynamic semantics of expressions are defined as a relation of the form “〈V, σ〉 →e v”, where V
is an expression, σ is a store, and v is a value. This relation means that in store σ, the expression V
evaluates to the value v. We assume the following:

• After parsing, parenthesized expressions have been eliminated.

• After syntactic sugar elimination, infix function (respectively, constructor) calls have been re-
placed by prefix function (respectively, constructor) calls; field selections, field updates, and
array selections have been replaced by built-in functions (whose semantics are standard and
not defined explicitly here); and list expressions have been replaced by appropriate constructor
calls.

• After typing analysis, type coercions have been removed.

• After binding analysis, named parameter passing has been replaced by positional parameter
passing.

We thus consider the following abstract syntax of expressions:

V ::= X
| C (V1, . . . , Vn)

| F (V1, . . ., Vn)

B.2.2 Variable

The value of a variable X is that recorded in the current store.

〈X,σ〉 →e σ(X)

B.2.3 Constructor call

The value of “C (V1, . . ., Vn)” is C applied to the values of V1, . . . , Vn.

〈Vi, σ〉 →e vi (i ∈ 1..n)

〈C (V1, . . . , Vn), σ〉 →e C (v1, . . . , vn)

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

106 Appendix B : Formal semantics of the Lnt language (version 7.5)

B.2.4 Built-in function call

The value of “F (V1, . . . , Vn)” is F applied to the values of V1, . . . , Vn. Here, F is understood as a
mathematical function, i.e., F applied to values is itself a value defined mathematically.

〈Vi, σ〉 →e vi (i ∈ 1..n)

〈F (V1, . . . , Vn), σ〉 →e F (v1, . . . , vn)

B.2.5 User-defined function call

When F is used in an expression, the static semantics ensure that it contains neither “out” nor “in
out” formal parameters. We thus assume that it is defined (omitting formal parameter types) as
follows:

function F (in X1, . . ., Xm) : T is I end function

The value of “F (V1, . . . , Vm)” is the value returned after executing the body I of F in a store
associating the value of Vi to each formal parameter Xi (i ∈ 1..n). Note that the Sos rule below

anticipates on the dynamic semantics of statements (relation −→s), defined in Section B.5.

〈Vi, σ〉 →e vi (i ∈ 1..n) 〈I, [X1 ← v1, . . . , Xm ← vm]〉 ret(v)−→s σ′

〈F (V1, . . . , Vm), σ〉 →e v

B.3 Dynamic semantics of patterns

B.3.1 Definitions

Given a pattern P , a value v, and a store σ, the dynamic semantics of patterns are defined as a
relation that has two possible forms:

• “〈P ♯ v, σ〉 →p σ
′”, where σ′ is a store, means that in store σ, the pattern P matches the value

v, producing the updated store σ′.

• “〈P ♯ v, σ〉 →p fail” means that in store σ, the pattern P does not match the value v.

We assume the following:

• After parsing, parenthesized patterns have been eliminated.

• After syntactic sugar elimination, infix constant (respectively constructor) patterns have been
replaced by prefix constant (respectively constructor) patterns, and list patterns have been
replaced by appropriate constructed patterns.

• After typing analysis, type coercions have been removed.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.3 : Dynamic semantics of patterns 107

• After binding analysis, named parameter passing has been replaced by positional parameter
passing.

We thus consider the following abstract syntax of patterns, which also merges the definition of
match clause:

P ::= X
| any
| X as P0

| C (P1, . . . , Pn)

| F (V1, . . ., Vn)

| P0 where V
| P1 | P2

B.3.2 Variable

A variable X always matches any value v, which becomes the new value of X .

〈X ♯ v, σ〉 →p σ � [X ← v]

B.3.3 Wildcard

The wildcard any always matches any value v, the store being left unchanged.

〈any ♯ v, σ〉 →p σ

B.3.4 Aliasing

A pattern “X as P0” matches a value v if and only if P0 matches v. In this case, v becomes the new
value of X .

〈P0 ♯ v, σ〉 →p σ′

〈X as P0 ♯ v, σ〉 →p σ′
� [X ← v]

〈P0 ♯ v, σ〉 →p fail

〈X as P0 ♯ v, σ〉 →p fail

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

108 Appendix B : Formal semantics of the Lnt language (version 7.5)

B.3.5 Constructed pattern

A pattern “C (P1, . . ., Pn)” matches a value v if and only if v has the form “C (v1, . . . , vn)” and
every pattern Pi matches the corresponding value vi (i ∈ 1..n).

σ0 = σ 〈Pi ♯ vi, σi−1〉 →p σi (i ∈ 1..n)

〈C (P1, . . . , Pn) ♯ C (v1, . . . , vn), σ〉 →p σn

σ0 = σ 〈Pi ♯ vi, σi−1〉 →p σi (i ∈ 1..j − 1) 〈Pj ♯ vj , σj−1〉 →p fail

〈C (P1, . . . , Pn) ♯ C (v1, . . . , vn), σ〉 →p fail

(j ∈ 1..n)

The above rules ensure that patterns are evaluated from left to right. Theoretically, this would allow
a variable bound in a pattern to be used in an expression (e.g., a Boolean condition) located further
to the right, although for practical reasons, this is not currently allowed by the static semantics.

(C 6= C′) ∨ (n 6= m)

〈C (P1, . . . , Pn) ♯ C′ (v1, . . . , vm), σ〉 →p fail

B.3.6 Constant pattern

A constant pattern of the form “F (V1, . . . , Vn)” matches a value v if and only if the expression
“F (V1, . . . , Vn)” (which contains no variable and can thus be evaluated in the empty store)
evaluates to v. The store is left unchanged.

〈F (V1, . . . , Vn), []〉 →e v

〈F (V1, . . . , Vn) ♯ v, σ〉 →p σ

〈F (V1, . . . , Vn), []〉 →e v
′ v′ 6= v

〈F (V1, . . . , Vn) ♯ v, σ〉 →p fail

B.3.7 Conditional pattern

A conditional pattern “P0 where V ” matches a value v if and only if P0 matches v and V evaluates
to true in the resulting store.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.4 : Dynamic semantics of offers 109

〈P0 ♯ v, σ〉 →p σ′ 〈V, σ′〉 →e true

〈P0 where V ♯ v, σ〉 →p σ
′

〈P0 ♯ v, σ〉 →p σ′ 〈V, σ′〉 →e false

〈P0 where V ♯ v, σ〉 →p fail

〈P0 ♯ v, σ〉 →p fail

〈P0 where V ♯ v, σ〉 →p fail

B.3.8 Alternative

An alternative “P1 | P2” matches a value v if and only if P1 matches v or else P2 matches v. The
patterns are evaluated from left to right, so that the resulting store is defined non-ambiguously if
both patterns match v.

〈P1 ♯ v, σ〉 →p σ1

〈P1 | P2 ♯ v, σ〉 →p σ1

〈P1 ♯ v, σ〉 →p fail 〈P2 ♯ v, σ〉 →p σ2

〈P1 | P2 ♯ v, σ〉 →p σ2

〈P1 ♯ v, σ〉 →p fail 〈P2 ♯ v, σ〉 →p fail

〈P1 | P2 ♯ v, σ〉 →p fail

B.4 Dynamic semantics of offers

B.4.1 Definitions

The dynamic semantics of offers are defined as a relation of the form “〈O ♯ v, σ〉 →o σ
′”, where O is

an offer, v is a value, and σ, σ′ are stores. This relation means that in store σ, the offer O matches
the value v, producing the updated store σ′.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

110 Appendix B : Formal semantics of the Lnt language (version 7.5)

We assume that after binding analysis, named offers have been replaced by positional offers. We thus
consider the following abstract syntax of offers:

O ::= V
| ?P

B.4.2 Send offer

A send offer “V ” matches a value v only if v is the value of V .

〈V, σ〉 →e v

〈V ♯ v, σ〉 →o σ

B.4.3 Receive offer

A receive offer “?P” matches a value v only if the pattern P matches v.

〈P ♯ v, σ〉 →p σ′

〈?P ♯ v, σ〉 →o σ
′

B.5 Dynamic semantics of statements

B.5.1 Definitions

The dynamic semantics of statements are defined as a relation of the form “〈I, σ〉 a−→s σ
′”, where I is

a statement, σ and σ′ are stores, and a is a label. This relation means that in store σ, the statement
I terminates, σ′ being the store obtained after execution of I. The label a has one of the following
forms:

• “
√
” means that I has terminated normally. The execution must continue at the next instruc-

tion.

• “brk(L)”, where L is the label of a loop, means that I has terminated on a “break L” statement.
The execution must continue at the instruction that follows immediately the loop identified by
L.

• “ret(v)” (respectively ret), where v ∈ V , means that I has terminated on a “return v”
(respectively return) statement. The execution must continue at the instruction that follows
immediately the call to the current function or procedure.

Note that non-terminating statements (e.g., infinite loops or non well-founded recursive functions or
procedures) must be considered as incorrect. However, the static semantics cannot guarantee the

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.5 : Dynamic semantics of statements 111

termination of statements (this problem being undecidable), although it can detect particular cases
in which non-termination is certain (see for instance the static semantics rules for the “loop L”
statement in Section 7.11.11). In general, it is the user’s responsibility to make sure that statements
terminate.

We assume the following:

• After syntactic sugar elimination, array element assignments have been replaced by normal
assignment using built-in functions (whose semantics are standard and not given explicitly
here) for array update; conditional statements have been replaced by case statements; and all
kinds of loops have been replaced by breakable loops.

• After binding analysis, each local variable has been assigned a distinct name, thus enabling
local variable declarations to be removed, and named parameter passing has been replaced by
positional parameter passing. In addition, for simplicity, we assume that parameters occur in
the following order: “in” parameters, then “out” parameters, then “in out” parameters.

• Also, since Lnt exceptions are not catchable (for the time being), we do not give rules for
exception raising. In practice, raising an exception triggers a runtime error that halts the
execution of the Lnt specification.

• The Lnt construct “assert V [raise E (...)]” is semantically equivalent to “if V then null
else raise E (...) end if”. If the “raise” clause is missing, then E is taken to be the predefined
exception ξ (see Section 6.6) that is implicitly declared at the top level.

We thus consider the following abstract syntax of statements:

I ::= null
| I1 ; I2
| return [V]
| X := V
| [X :=] F (V1, . . . , Vm, ?Y1, . . . , ?Yp, !?Z1, . . ., !?Zq)

| case V in P1 -> I1 | . . . | Pm -> Im end case
| break L
| loop L in I0 end loop

B.5.2 Null

The null statement terminates normally and keeps the store unchanged.

〈null, σ〉
√
−→s σ

B.5.3 Sequential composition

The statement “I1 ; I2” starts by executing I1.

If I1 terminates normally, then I2 is executed in the store updated by I1.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

112 Appendix B : Formal semantics of the Lnt language (version 7.5)

〈I1, σ〉
√
−→s σ

′ 〈I2, σ′〉 a−→s σ
′′

〈I1 ; I2, σ〉 a−→s σ
′′

If I1 terminates on a break statement or on a return statement, then “I1 ; I2” also terminates on
that statement.

〈I1, σ〉 a−→s σ
′ a 6= √

〈I1 ; I2, σ〉 a−→s σ
′

B.5.4 Return

A return statement terminates, passing a return label to its context.

〈return, σ〉 ret−→s σ

〈V, σ〉 →e v

〈return V, σ〉 ret(v)−→s σ

B.5.5 Assignment

An assignment statement terminates normally after updating the store by associating the value of its
right-hand side to the assigned variable.

〈V, σ〉 →e v

〈X := V, σ〉
√
−→s σ � [X ← v]

B.5.6 Procedure call that returns a value

Let F be a procedure defined (omitting formal parameter types) as follows:

function F (in X1, . . . , Xm, out Y1, . . . , Yp, in out Z1, . . . , Zq) : T is I end function

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.5 : Dynamic semantics of statements 113

A procedure call first evaluates the procedure body I in a store that associates the value of each “in”
and “in out” actual parameter to its respective formal parameter, waiting for a return value v and
an updated store σ′. The execution then terminates normally after updating the initial store, so that
the value of each “out” and “in out” formal parameter in σ′ is associated to its respective actual
parameter, and the return value v is associated to the assigned variable. In the rule below, we use
the following abbreviation1:

σ′′ ∆
= σ � [Y ′

1 ← σ′(Y1), . . . , Y
′

p ← σ′(Yp), Z
′

1 ← σ′(Z1), . . . , Z
′

q ← σ′(Zq), X ← v]

〈Vi, σ〉 →e vi (i ∈ 1..m)
〈

I, [X1 ← v1, . . . , Xm ← vm, Z1 ← σ(Z′
1), . . . , Zq ← σ(Z′

q)]
〉 ret(v)−→s σ′

〈

X := F (V1, . . . , Vm, ?Y ′
1, . . . , ?Y ′

p, !?Z′
1, . . . , !?Z′

q), σ
〉

√
−→s σ

′′

B.5.7 Procedure call that does not return a value

The definition of F has the following form:

function F (in X1, . . . , Xm, out Y1, . . . , Yp, in out Z1, . . . , Zq) is I end function

We assume that I necessarily ends with a return statement (possibly added by the compiler). In
the rule below, we use the following abbreviation:

σ′′ ∆
= σ � [Y ′

1 ← σ′(Y1), . . . , Y
′

p ← σ′(Yp), Z
′

1 ← σ′(Z1), . . . , Z
′

q ← σ′(Zq)]

〈Vi, σ〉 →e vi (i ∈ 1..m)
〈

I, [X1 ← v1, . . . , Xm ← vm, Z1 ← σ(Z′
1), . . . , Zq ← σ(Z′

q)]
〉 ret−→s σ

′

〈

F (V1, . . . , Vm, ?Y ′
1, . . . , ?Y ′

p, !?Z′
1, . . . , !?Z′

q), σ
〉

√
−→s σ

′′

B.5.8 Case statement

A case statement “case V in P1 -> I1 | . . . | Pm -> Im end case” first evaluates the value v of the
expression V . It then executes the first (from left to right) statement Ii, whose pattern Pi matches
v (if any).

〈V, σ〉 →e v 〈Pi ♯ v, σ〉 →p fail (i ∈ 1..j − 1) 〈Pj ♯ v, σ〉 →p σj 〈Ij , σj〉 a−→s σ
′
j

〈case V in P1 -> I1 | . . . | Pm -> Im end case, σ〉 a−→s σ
′
j

(j ∈ 1..m)

If none of the patterns P1, ..., Pm matches v, then a runtime error (unexpected exception) occurs.
This is not explicit in the above rule.

Such a situation may happen because the static semantics do not require case statements to be
exhaustive, i.e., P1, ..., Pm to cover all possible values in the type of V . Using non-exhaustive case
statements is however unsafe, and signalled at compile-time by a warning message.

1The symbol
∆
= should read as equals by definition.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

114 Appendix B : Formal semantics of the Lnt language (version 7.5)

B.5.9 Loop break

A break statement terminates, passing the loop label to its context.

〈break L, σ〉 brk(L)−→s σ

B.5.10 Breakable loop

A breakable loop first executes its body I0.

If I0 terminates normally, then the loop is executed once more in the updated store.

〈I0, σ〉
√
−→s σ

′ 〈loop L in I0 end loop, σ′〉 a−→s σ
′′

〈loop L in I0 end loop, σ〉 a−→s σ
′′

If I0 terminates on a “break L” statement, L being the label of the current loop, then the loop
terminates normally.

〈I0, σ〉 brk(L)−→s σ′

〈loop L in I0 end loop, σ〉
√
−→s σ

′

If I0 terminates on a return statement or on a “break L′” statement, L′ not being the label of the
current loop, then the loop terminates on that statement.

〈I0, σ〉 a−→s σ
′ a /∈ CV a 6= brk(L)

〈loop L in I0 end loop, σ〉 a−→s σ
′

B.6 Dynamic semantics of behaviours

B.6.1 Definitions

The dynamic semantics of behaviours are defined as an Lts (Labeled Transition System), whose states
are couples, often called configurations in the literature, of the form “〈B, σ〉”, where B is a behaviour
and σ is a store. The initial state of an Lnt program B0 is “〈B0, []〉”. The transitions of the Lts, of

the form “〈B, σ〉 a−→b 〈B′, σ′〉”, are defined by the Sos rules below, where the label a has one of the
following forms:

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.6 : Dynamic semantics of behaviours 115

• “
√
” (similar to the semantics of statements) is a special label that denotes normal termination.

Invariantly, if a =
√

then B′ = stop, i.e., all transitions labeled by
√

necessarily lead to a
deadlock state.

• “brk(L)” (similar to the semantics of statements) is a special label that denotes termination
on a “break L” behaviour. Note that transitions labeled by “brk(L)” can only occur in
intermediate Sos steps, and not in the Lts corresponding to the main behaviour of an Lnt
program.

• A communication label has either the form i or “E (v1, . . . , vn)”, where E is a gate and v1, . . . , vn
are values. We write C for the set of communication labels. For a communication label a, the
function gate (a) returns the gate of a as follows:

gate (i) = i
gate (E (v1, . . . , vn)) = E

Note that, unlike statements, behaviours that do not terminate are correct. In general, a non-
terminating behaviour produces a potentially infinite sequence of transitions labeled by the commu-
nication actions executed along the behaviour execution. As a particular case, a non-terminating
behaviour that never reaches any communication action is equivalent to the “stop” statement, as it
does not produce any transition.

A gate substitution is a list of the form “[E′

1/E1, . . . , E
′

n/En]”, where E1, . . . , En, E
′

1, . . . , E
′

n are
gates. We write γ, γ0, γ1, . . . for gate subtitutions. A gate substitution γ = [E′

1/E1, . . . , E
′

n/En] can
be applied to a behaviour B, which is written “Bγ” or “B[E′

1/E1, . . . , E
′

n/En]”, resulting in the
behaviour B in which every occurrence of a gate Ei is replaced by E′

i (i ∈ 1..n). A substitution can
alternatively be applied to a label a, which is written “aγ” or “a[E′

1/E1, . . . , E
′

n/En]”, resulting in
the label a whose gate (if any) has been substituted as defined by γ.

We make the same assumptions as for statements (see Section B.5), and we thus consider the following
abstract syntax of behaviours:

B ::= stop
| null
| B1 ; B2

| X := V
| X := any T where V
| [X :=] F (V1, . . . , Vm, ?Y1, . . . , ?Yp, !?Z1, . . ., !?Zq)

| case V in P1 -> B1 | . . . | Pm -> Bm end case
| break L
| loop L in B0 end loop
| Π [E1, . . . , En] (V1, . . . , Vm, ?Y1, . . . , ?Yp, !?Z1, . . ., !?Zq)

| E (O1, . . . , On) where V
| alt B1 [] . . .[] Bn end alt
| par E0, . . . , En in

E(1,0), . . . , E(1,n1) -> B1 || . . . || E(m,0), . . . , E(m,nm) -> Bm

end par
| hide E1, . . ., En in B0 end hide
| disrupt B1 by B2 end disrupt

B.6.2 Stop

No Sos rule is associated to 〈stop, σ〉, which represents process inaction.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

116 Appendix B : Formal semantics of the Lnt language (version 7.5)

B.6.3 Null

The null statement terminates normally and keeps the store unchanged.

〈null, σ〉
√
−→b 〈stop, σ〉

B.6.4 Sequential composition

The behaviour “B1 ; B2” starts by executing B1.

If B1 terminates normally, then B2 is executed in the store updated by B1.

〈B1, σ〉
√
−→b 〈B′

1, σ
′〉 〈B2, σ

′〉 a−→b 〈B′
2, σ

′′〉

〈B1 ; B2, σ〉 a−→b 〈B′
2, σ

′′〉

If B1 terminates on a break statement, then “B1 ; B2” also terminates on that statement.

〈B1, σ〉
brk(L)−→b 〈B′

1, σ
′〉

〈B1 ; B2, σ〉 brk(L)−→b 〈B′
1, σ

′〉

If B1 offers a communication label, then the execution of B1 must continue until termination.

〈B1, σ〉 a−→b 〈B′
1, σ

′〉 a ∈ C

〈B1 ; B2, σ〉 a−→b 〈B′
1 ; B2, σ

′〉

B.6.5 Deterministic assignment

A deterministic assignment terminates normally after updating the store by associating the value of
its right-hand side to the assigned variable.

〈V, σ〉 →e v

〈X := V, σ〉
√
−→b 〈stop, σ � [X ← v]〉

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.6 : Dynamic semantics of behaviours 117

B.6.6 Nondeterministic assignment

A nondeterministic assignment terminates normally after updating the store by associating a value
to the assigned variable, provided the condition of the assignment evaluates to true in the updated
store.

v ∈ T σ′ = σ � [X ← v] 〈V, σ′〉 →e true

〈X := any T where V, σ〉
√
−→b 〈stop, σ′〉

B.6.7 Procedure call that returns a value

The behaviour semantics of such a procedure call are directly derived from its statement semantics.

〈X := F (V1, . . . , Vm, ?Y1, . . . , ?Yp, !?Z1, . . . , !?Zq), σ〉
√
−→s σ

′

〈X := F (V1, . . . , Vm, ?Y1, . . . , ?Yp, !?Z1, . . . , !?Zq), σ〉
√
−→b 〈stop, σ′〉

B.6.8 Procedure that does not return a value

The behaviour semantics of such a procedure call are directly derived from its statement semantics.

〈F (V1, . . . , Vm, ?Y1, . . . , ?Yp, !?Z1, . . . , !?Zq), σ〉
√
−→s σ

′

〈F (V1, . . . , Vm, ?Y1, . . . , ?Yp, !?Z1, . . . , !?Zq), σ〉
√
−→b 〈stop, σ′〉

Note that in both rules above,
√

is the only label that can possibly be obtained from the statement
semantics of a procedure call.

B.6.9 Case behaviour

The dynamic semantics of a case behaviour are similar to the dynamic semantics of a case statement.

〈V, σ〉 →e v 〈Pi ♯ v, σ〉 →p fail (i ∈ 1..j − 1) 〈Pj ♯ v, σ〉 →p σj 〈Bj , σj〉 a−→b

〈

B′
j , σ

′
j

〉

〈case V in P1 -> B1 | . . . | Pm -> Bm end case, σ〉 a−→b

〈

B′
j , σ

′
j

〉

(j ∈ 1..m)

If none of the patterns P1, ..., Pm matches v, then a runtime error (unexpected exception) occurs.
This is not explicit in the above rule. See discussion about case exhaustivity in Section B.5.8.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

118 Appendix B : Formal semantics of the Lnt language (version 7.5)

B.6.10 Loop break

A break behaviour terminates, passing the loop label to its context.

〈break L, σ〉 brk(L)−→b 〈stop, σ〉

B.6.11 Breakable loop

The dynamic semantics of a breakable loop behaviour are slightly more complicated than those of
a breakable loop statement, because of the possible occurrence of an unknown number of communi-
cations in the loop body before termination. The introduction of an intermediate construct written
“loop (L,B1, B2)” is necessary. Its semantics are defined as follows.

The behaviour “loop (L,B1, B2)” starts by executing B1.

If B1 offers a communication label then loop (L,B1, B2) offers this communication label.

〈B1, σ〉 a−→b 〈B′
1, σ

′〉 a ∈ C

〈loop (L,B1, B2), σ〉 a−→b 〈loop (L,B′
1, B2), σ

′〉

If B1 terminates on a “break L” statement, then loop (L,B1, B2) terminates normally.

〈B1, σ〉 brk(L)−→b 〈B′
1, σ

′〉

〈loop (L,B1, B2), σ〉
√
−→b 〈B′

1, σ
′〉

If B1 terminates on a “break L′” statement, where L′ 6= L, then loop (L,B1, B2) terminates on that
statement.

〈B1, σ〉
brk(L′)−→b 〈B′

1, σ
′〉 L′ 6= L

〈loop (L,B1, B2), σ〉 brk(L′)−→b 〈B′
1, σ

′〉

If B1 terminates normally (without a break), then B2 is executed in the store updated by B1.

〈B1, σ〉
√
−→b 〈B′

1, σ
′〉 〈B2, σ

′〉 a−→b 〈B′
2, σ

′′〉

〈loop (L,B1, B2), σ〉 a−→b 〈B′
2, σ

′′〉

The Sos for a breakable loop are therefore given by the following single rule.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.6 : Dynamic semantics of behaviours 119

〈loop (L,B0, loop L in B0 end loop), σ〉 a−→b 〈B′
0, σ

′〉

〈loop L in B0 end loop, σ〉 a−→b 〈B′
0, σ

′〉

B.6.12 Process call

Although the static semantics currently restrict process recursion to tail recursion, the following Sos
rules encompass the case of general recursion, which might become available in future versions of
Lnt. To this end, we introduce an intermediate behaviour construct called a closure, denoted by
“call (B, I, γ, σ)”, where B is a behaviour, I is a (possibly empty) sequence of assignments of the form
“X ′

1 := X1 ; . . . ; X ′

m := Xm” (m ≥ 0), γ is a gate substitution of the form “[E′

1/E1, . . . , E
′

n/En]”
(n ≥ 0), and σ is a store.

We assume that Π is a process defined (omitting formal parameter types) as follows:

process Π [E1, . . . , En] (in X1, . . . , Xm, out Y1, . . . , Yp, in out Z1, . . . , Zq) is
B

end process

When calling process Π, a closure is created, containing the process body B, a sequence of assignments
I implementing the update of “out” and “in out” parameters, a gate substitution γ implementing
gate parameter passing, and the current store σ, which is the store of the caller. At the same
time, a local store σ′ is created, assigning the values of “in” and “in out” actual parameters to the
corresponding formal parameters. The closure is then executed in the local store σ′, which is the
store of the callee. In the rule below, we use the following abbreviations:

γ
∆
= [E′

1/E1, . . . , E
′

n/En]

I
∆
= Y ′

1 := Y1 ; . . . ; Y ′

p := Yp ; Z ′

1 := Z1 ; . . . ; Z ′

q := Zq

σ′ ∆
= [X1 ← v1, . . . , Xm ← vm, Z1 ← σ(Z ′

1), . . . , Zq ← σ(Z ′

q)]

〈Vi, σ〉 →e vi (i ∈ 1..m) 〈call (B, I, γ, σ), σ′〉 a−→b 〈B′′, σ′′〉
〈

Π [E′
1, . . . , E′

n] (V1, . . . , Vm, ?Y ′
1, . . . , ?Y ′

p, !?Z′
1, . . . , !?Z′

q), σ
〉 a−→b 〈B′′, σ′′〉

If the body of the process offers a communication label, then the communication label is renamed
according to gate parameters. The execution then continues normally.

〈B, σ〉 a−→b 〈B′, σ′〉 a ∈ C

〈call (B, I, γ, σ0), σ〉 aγ−→b 〈call (B′, I, γ, σ0), σ
′〉

If the body of the process terminates normally, then the process call also terminates normally after
restoring the store of the caller and updating the “out” and “in out” actual parameters.

〈B, σ〉
√
−→b 〈B′, σ′〉

〈call (B, {X ′
1 := X1 ; . . . ; X ′

n := Xn}, γ, σ0), σ〉
√
−→b 〈B′, σ0 � [X ′

1 ← σ′(X1), . . . , X
′
n ← σ′(Xn)]〉

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

120 Appendix B : Formal semantics of the Lnt language (version 7.5)

Note that the static semantics ensure that no transition labeled by “brk(L)” can be derived from a
closure, because a break behaviour can only interrupt a loop that belongs to the process body.

B.6.13 Communication

If v1, . . . , vn are (nondeterministic) values matching the offers O1, . . . , On in such a way that the
guard V evaluates to true, then the communication behaviour “E (O1, . . . , On) where V ” offers
the communication label “E (v1, . . . , vn)” and then behaves like null, so as to enable execution of
the next behaviour.

σ0 = σ 〈Oi ♯ vi, σi−1〉 →o σi (i ∈ 1..n) 〈V, σ′〉 →e true

〈E (O1, . . . , On) where V, σ〉 E (v1,...,vn)−→b 〈null, σn〉

The above rule ensure that offers are evaluated from left to right. Theoretically, this would allow a
variable bound in an offer to be used in an expression (e.g., a Boolean condition) located further to
the right, although for practical reasons, this is not currently allowed by the static semantics.

B.6.14 Nondeterministic choice

A nondeterministic choice between behaviours B1, . . . , Bn behaves as any of the Bi behaviours.

〈Bi, σ〉 a−→b 〈B′
i, σ

′〉

〈alt B1 [] . . . [] Bn end alt, σ〉 a−→b 〈B′
i, σ

′〉
(i ∈ 1..n)

B.6.15 Parallel composition

In the first Sos rule below, for a communication label a ∈ C, sync (a) denotes a set of subsets of
1..m, each such subset (called a synchronization set) denoting the indices of the behaviours among
B1, . . . , Bm that synchronize on a. It is defined as follows:

sync (a) =

{{1..m}} if gate (a) ∈ {E0, . . . , En}
{

{i | i ∈ 1..m ∧ gate (a) ∈ {E(i,0), . . . , E(i,ni)}}
}

if gate (a) ∈ ⋃

i∈1..m{E(i,0), . . . , E(i,ni)}
{

{i} | i ∈ 1..m
}

otherwise

Note that the static semantics ensure that all three cases in the definition above are exclusive.

If S is a synchronization set for a communication label a, and if each behaviour in S offers a while
the behaviours outside S remain idle, then the parallel composition offers a. In the rule below, we
use the following abbreviation:

σ′ ∆
= σ � ((σ1 ⊖ σ)⊕ . . .⊕ (σm ⊖ σ))

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.6 : Dynamic semantics of behaviours 121

a ∈ C S ∈ sync (a) 〈Bi, σ〉 a−→b 〈B′
i, σi〉 (i ∈ S)

〈

B′
j , σj

〉

= 〈Bj , σ〉 (j ∈ 1..m \ S)

〈

par E0, . . . , En in

E(1,0), . . . , E(1,n1) -> B1

|| . . . ||

E(m,0), . . . , E(m,nm) -> Bm

end par

, σ

〉

a−→b

〈

par E0, . . . , En in

E(1,0), . . . , E(1,n1) -> B′
1

|| . . . ||

E(m,0), . . . , E(m,nm) -> B′
m

end par

, σ′

〉

If all parallel behaviours terminate normally, then the parallel composition terminates normally.
Again in the rule below, we use the following abbreviation:

σ′ ∆
= σ � ((σ1 ⊖ σ)⊕ . . .⊕ (σm ⊖ σ))

〈Bi, σ〉
√
−→b 〈B′

i, σi〉 (i ∈ 1..m)

〈

par E0, . . . , En in

E(1,0), . . . , E(1,n1) -> B1

|| . . . ||

E(m,0), . . . , E(m,nm) -> Bm

end par

, σ

〉

√
−→b 〈stop, σ′〉

In both rules above, the resulting store σ′ is the initial store updated with respect to the union of
store updates performed locally in the parallel branches. Note that the static semantics ensure that
the sets of variables on which the stores σ1, . . . , σm are defined are mutually disjoint, because each
variable can be updated in at most one parallel branch. Hence, the store (σ1 ⊖ σ)⊕ . . .⊕ (σm ⊖ σ) is
well-defined. Also, the order of B1, . . . , Bm in the parallel composition has no effect on the resulting
store as disjoint union is associative and commutative.

Sos rules for parallel behaviours terminating on a break behaviour are unnecessary because the static
semantics ensure that if one of the parallel behaviours executes a break then the broken loop also
occurs in the same parallel behaviour. Therefore, every label of the form “brk(L)” has necessarily
already been turned into a

√
by the Sos rule for breakable loops.

B.6.16 Hiding

If the body of a hide behaviour offers a communication label whose gate belongs to the set of gates
to be hidden, then the communication label offered by the hide behaviour is the internal action “i”.

〈B0, σ〉 a−→b 〈B′
0, σ

′〉 a ∈ C gate (a) ∈ {E1, . . . , En}

〈hide E1, . . . , En in B0 end hide, σ〉 i−→b 〈hide E1, . . . , En in B′
0 end hide, σ′〉

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

122 Appendix B : Formal semantics of the Lnt language (version 7.5)

If the body of the hide behaviour offers a communication label whose gate does not belong to the
set of gates to be hidden, then the hide behaviour offers this communication label.

〈B0, σ〉 a−→b 〈B′
0, σ

′〉 a ∈ C gate (a) /∈ {E1, . . . , En}

〈hide E1, . . . , En in B0 end hide, σ〉 a−→b 〈hide E1, . . . , En in B′
0 end hide, σ′〉

If the body of the hide behaviour terminates, then the hide behaviour also terminates.

〈B0, σ〉 a−→b 〈B′
0, σ

′〉 a /∈ C

〈hide E1, . . . , En in B0 end hide, σ〉 a−→b 〈B′
0, σ

′〉

B.6.17 Disrupting

If the left-hand behaviour of a disrupt behaviour offers a communication label, then the disrupt
behaviour also offers this communication label, without disabling its right-hand behaviour.

〈B1, σ〉 a−→b 〈B′
1, σ

′〉 a ∈ C

〈disrupt B1 by B2 end disrupt, σ〉 a−→b 〈disrupt B′
1 by B2 end disrupt, σ′〉

If the left-hand behaviour of the disrupt behaviour terminates normally or on a break behaviour,
then the disrupt behaviour also terminates.

〈B1, σ〉 a−→b 〈B′
1, σ

′〉 a /∈ C

〈disrupt B1 by B2 end disrupt, σ〉 a−→b 〈B′
1, σ

′〉

Finally, at any time, the disrupt behaviour may behave as its right-hand behaviour, thus disabling
its left-hand behaviour.

〈B2, σ〉 a−→b 〈B′
2, σ

′〉

〈disrupt B1 by B2 end disrupt, σ〉 a−→b 〈B′
2, σ

′〉

B.7 Discussion on the dynamics semantics

Lnt dynamic semantics are defined formally in Appendix B. Note that Lnt relies on a notion of
semantic equivalence (namely, strong bisimulation) that gives an account of the branching structure of

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ B.7 : Discussion on the dynamics semantics 123

programs. This implies that behaviour executions must be thought of as trees rather than traces, i.e.,
the locations where nondeterministic choices are resolved during program execution are meaningful.
Therefore, reasoning about Lnt program equivalences is more subtle than standard (generally trace-
based) program equivalences.

To illustrate this, consider a sequential composition “B1; B2; B3”, such that communication occurs
in B1 and B3 but not in B2. If every variable used in B1 is not modified in B2 and conversely, one
might think that “B1; B2; B3” and “B2; B1; B3” denote equivalent behaviours. In fact, this is
not true if B2 is nondeterministic.

More concretely, let B1 be “E0” (communication on gate E0 without offers), B2 be the nondetermin-
istic assignment “b := any bool”, and B3 be defined by “if b then E1 else E2 end if”. Then, the
programs “B1; B2; B3” and “B2; B1; B3” are not equivalent:

• In “B1; B2; B3” (i.e., “E0; b := any bool; if b then E1 else E2 end if”), E0 is first ex-
ecuted deterministically, leading the program to a state in which there is a nondeterministic
choice between E1 and E2.

• In “B2; B1; B3” (i.e., “b := any bool; E0; if b then E1 else E2 end if”), there is a non-
deterministic choice on E0 initially: the program may either execute E0 then E1 (if b is true),
or execute E0 then E2 (otherwise), but there is no state in which the program has a choice
between E1 and E2.

In general, it is recommended to think carefully about the order in which communications and
nondeterministic behaviours should be combined.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

124 Appendix B : Formal semantics of the Lnt language (version 7.5)

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Appendix C

Predefined functions

This appendix lists the predefined functions that can be used in an Lnt program over the six basic
types (Booleans, natural numbers, integers, real numbers, characters, and strings). The Lotos code
for these functions is defined in the “LNT V1.lib” file and the files it includes.

Every predefined Lnt function named F is implemented in “LNT V1.lib” by a Lotos operation
that is also named F , except = (which is implemented by ==) and != (which is implemented by /=),
because = and != are not valid Lotos operation names.

In each section, the table shows the predefined functions. Binary functions can be used in either
prefix or infix mode, whereas other functions can be used in infix mode only.

The predefined functions over non-basic types (e.g., list, sorted list, and set types) are defined in
Chapter 5.

In addition to these predefined functions, a set of predefined libraries can be found in the directory
“$LNT_LOCATION/lib” (look for files having the “.lnt” extension). The data types and associated
functions provided by these libraries can be consulted by reading the corresponding LNT code.

C.1 Functions on Booleans

Functions Profile
and, and then, or, or else, xor, =>, <=> Bool, Bool → Bool
==, =, <>, !=, <, <=, >, >= Bool, Bool → Bool
false, true → Bool
not Bool → Bool
Succ, Pred Bool → Bool
String Bool → String

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

126 Appendix C : Predefined functions

C.2 Functions on natural numbers

Functions Profile
+, -, *, **, div, mod, min, max, gcd, scm Nat, Nat → Nat
==, =, <>, !=, <, <=, >, >= Nat, Nat → Bool
Succ, Pred Nat → Nat
Char Nat → Char
Int Nat → Int
Real Nat → Real
String Nat → String

C.3 Functions on integer numbers

Functions Profile
+, - (minus), *, div, rem, mod Int, Int → Int
** Int, Nat → Int
==, =, <>, !=, <, <=, >, >= Int, Int → Bool
min, max Int, Int → Int
Pos, Neg Nat → Int
+ (opposite), - (opposite) Int → Int
Succ, Pred, sign, abs Int → Int
Nat Int → Nat
Real Int → Real
String Int → String

Note: Functions rem and mod denote respectively the remainder and the modulo of two integer
numbers:

• The definition of rem is consistent with the mathematical definition of remainder in Euclidian
division, satisfying the law x rem y = x - (y * (x div y)). The result is equal to zero or
has the same sign as the left operand.

• The definition of mod is consistent with the mathematical definition of the modulo operator in
modulo arithmetic, satisfying the law (x+n) mod n = x mod n. The result is equal to zero or
has the same sign as the right operand.

Both functions coincide if both operands have the same sign or if the left operand is a multiple of the
right operand. They may yield different results in all other cases.

C.4 Functions on real numbers

Functions Profile
==, =, <>, !=, <, <=, >, >= Real, Real → Bool
+, - (minus), *, /, ** Real, Real → Real
- (opposite) Real → Real
abs Real → Real
Int Real → Int
String Real → String

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ C.5 : Functions on characters 127

C.5 Functions on characters

Functions Profile
==, =, <>, !=, <, <=, >, >= Char, Char → Bool
IsLower, IsUpper, IsAlpha, IsAlnum, IsDigit, IsXDigit Char → Bool
ToLower, ToUpper Char → Char
Succ, Pred Char → Char
Nat Char → Nat
String Char → String

C.6 Functions on strings

Functions Profile
&, ~ String, String → String
prefix, suffix String, Nat → String
element String, Nat → Char
index, rindex String, String → Nat
==, =, <>, !=, <, <=, >, >= String, String → Bool
length String → Nat
empty String → Bool
substr String, Nat, Nat → String
Char String → Char
Nat String → Nat
Int String → Int
Real String → Real
String String → String

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

128 Appendix C : Predefined functions

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Appendix D

Examples

D.1 Lnt types

D.1.1 Enumerated type

Here is an example which defines a simple enumerated Lnt data type WEEK_DAY:

module DAY is

type WEEK_DAY is

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY
with ==, !=

end type

end module

The definition of the Lnt type takes only 6 lines. If the same type had been written in Lotos, it
would have taken 20 lines. Here is an idea of the Lotos code generated by Lnt2Lotos for this
example:

type DAY is

sorts WEEK_DAY

opns

MONDAY (∗! constructor ∗) : −> WEEK_DAY

TUESDAY (∗! constructor ∗) : −> WEEK_DAY

WEDNESDAY (∗! constructor ∗) : −> WEEK_DAY

THURSDAY (∗! constructor ∗) : −> WEEK_DAY

FRIDAY (∗! constructor ∗) : −> WEEK_DAY

SATURDAY (∗! constructor ∗) : −> WEEK_DAY

SUNDAY (∗! constructor ∗) : −> WEEK_DAY

== : WEEK_DAY, WEEK_DAY −> BOOL

/= : WEEK_DAY, WEEK_DAY −> BOOL

eqns

forall x, y : WEEK_DAY

ofsort BOOL

x == x = true;
x == y = false;

ofsort BOOL

x /= y = not (x == y);

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

130 Appendix D : Examples

endtype

D.1.2 Record type

This section gives an example of a record type. The PERSON type stores information about a person.

The type NAT is assumed to be defined in a module called NATURAL and represents the natural numbers.
The type STRING is defined in a module called STRING and represents character strings.

module PERSON (NATURAL, STRING) is
type GENDER is

F, M

end type

type PERSON is

PERSON (NAME : STRING, SURNAME : STRING, AGE : NAT, SEX : GENDER)
end type

end module

The corresponding generated Lotos code is:

type PERSON is NATURAL, STRING
sorts

GENDER,
PERSON

opns

(∗ constructors for sort ”GENDER” ∗)
F (∗! constructor ∗) : −> GENDER

M (∗! constructor ∗) : −> GENDER

(∗ constructors for sort ”PERSON” ∗)
PERSON (∗! constructor ∗) : STRING, STRING, NAT, GENDER −> PERSON

endtype

D.1.3 List type

A list of booleans could be defined as follows:

module BOOLEAN_LIST (BOOLEAN) is
type BOOLEAN_LIST is

list of BOOL

end type

end module

This is a shorthand notation to define a type with two constructors CONS and NIL. The following
piece of Lnt code defines exactly the same type:

module BOOLEAN_LIST (BOOLEAN) is
type BOOLEAN_LIST is

NIL,
CONS (HEAD : BOOL, TAIL : BOOLEAN_LIST)

end type

end module

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ D.2 : Lnt functions 131

The corresponding generated Lotos code is:

type BOOLEAN_LIST is BOOLEAN

sorts BOOLEAN_LIST

opns

NIL (∗! constructor ∗) : −> BOOLEAN_LIST

CONS (∗! constructor ∗) : BOOL, BOOLEAN_LIST −> BOOLEAN_LIST

endtype

D.1.4 Array types

An array of three natural numbers could be defined as follows:

type Nat_Array is

array [0 .. 2] of Nat

end type

An array of a records containing a pair of natural numbers could be defined as follows:

type Record is

Record (n, m: Nat)
with get, set
end type

type Record_Array is

array [0 .. 1] of Record

end type

An array of arrays of natural numbers could be defined as follows:

type Nat_Array is

array [0 .. 1] of Nat

end type

type Nat_Array_Array is

array [0 .. 1] of Nat_Array

end type

D.2 Lnt functions

D.2.1 Manipulating record fields

Consider the following nested record types:

module PERSON (NATURAL, STRING) with get, set is

type GENDER is

F, M

end type

type NAME is

NAME (FIRST_NAME, LAST_NAME : STRING)
end type

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

132 Appendix D : Examples

type PERSON is

PERSON (NAME: NAME, AGE: NAT, SEX: GENDER)
end type

end module

The following two functions illustrate the use of field updates (see Section 7.13.6) to change fields of
a (nested) record:

function CHANGE_AGE (in out P: PERSON, NEW_AGE: NAT) is
P := P.{AGE −> NEW_AGE}

end function

function CHANGE_LAST_NAME (in out P: PERSON, NEW_LAST_NAME: STRING) is
P := P.{NAME −> P.NAME.{LAST_NAME −> NEW_LAST_NAME}}

end function

D.2.2 The factorial function

The following example gives several implementations of the factorial function, and shows how to use
the main Lnt features.

module FACT (NATURAL) is
(∗ while loop ∗)
function FACT1 (N : NAT) : NAT is

var RESULT : NAT := 1,
I : NAT := 1

in

while I <= N loop

RESULT := RESULT ∗ I;
I := I + 1

end loop;
return RESULT

end var

end function

(∗ for loop ∗)
function FACT2 (N : NAT) : NAT is

var RESULT, I : NAT in

RESULT := 1;
for I := 1 while I <= N by I := I + 1 loop

RESULT := RESULT ∗ I;
end loop;
return RESULT

end var

end function

(∗ breakable loop ∗)
function FACT3 (N : NAT) : NAT is

var RESULT, I : NAT in

RESULT := 1;
I := 1;
loop L in

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ D.2 : Lnt functions 133

if I > N then

break L

end if;
RESULT := RESULT ∗ I;
I := I + 1

end loop;
return RESULT

end var

end function

(∗ recursive ∗)
function FACT4 (N : NAT) : NAT is

if N == 0 then

return 1
else

return N ∗ FACT4 (N − 1)
end if

end function

(∗ another recursive ∗)
function FACT5 (N : NAT) : NAT is

case N of NAT

var I : NAT in

0 −> return 1
| I −> return I ∗ FACT5 (I − 1)

end case

end function

(∗ tail−recursive ∗)
function FACT6 (N : NAT) : NAT is

return FACT6 (N, 1)
end function

function FACT6 (N, ACC : NAT) : NAT is

if N == 0 then

return ACC

else

return FACT6 (N − 1, ACC ∗ N)
end if

end function

(∗ another tail−recursive ∗)
function FACT7 (N : NAT) : NAT is

return FACT7 (N, 1)
end function

function FACT7 (N, ACC : NAT) : NAT is

case N of NAT

var I : NAT in

0 −> return ACC

| I −> return FACT7 (I − 1, ACC ∗ I)
end case

end function

end module

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

134 Appendix D : Examples

D.3 Lnt processes

D.3.1 Hello World program

module Test is

process Main [Output: any] is
Output (”Hello World!”)

end process

end module

D.3.2 Pattern matching in a rendezvous

In contrast to Lotos, offers in an Lnt rendezvous can use pattern matching. Consider the type T

and channel C, defined as follows:

type T is

Request (x: Nat),
Response (y: Bool)

end type

channel C is (T) end channel

The following process repeatedly accepts rendezvous on gate G (of type C) if the offer is a request
with a value equal to either 3 or 4:

process P [G: C] is

var x: Nat in

loop

G (?Request(x) of T) where (x > 2 and x < 5)
end loop

end var

end process

D.3.3 Array types

The following three processes illustrate the initialization, access and modification of array (see also
the definition of array types in Section D.1.4).

Simple array

type Nat_Array is

array [0 .. 2] of Nat

end type

process main [G: any] is
var a: Nat_Array, x: Nat in

G (?x);
−− initialisation of all elements to x
a := Nat_Array (x);
G (a [0], a [1], a [2]);

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ D.3 : Lnt processes 135

G (?x);
−− set element 1 to the new value x
a [1] := x;
G (a [0], a [1], a [2]);

...
end var

end process

Array of records

type Record is

Record (n, m: Nat)
with get, set
end type

type Record_Array is

array [0 .. 1] of Record

end type

process main [G: any] is
var a: Record_Array, x, y, z: Nat in

−− initialisation of all fields to zero
a := Record_Array (Record (0, 0));
G (a [0]. n, a [0]. m, a [1]. n, a [1]. m);

G (?x, ?y, ?z) where (x < 2);
−− set element x to the record (y, z)
a[x] := a[x].{n −> y, m −> z};
G (a [0]. n, a [0]. m, a [1]. n, a [1]. m);

...
end var

end process

Two-dimensional array type

type Nat_Array is

array [0 .. 1] of Nat

end type

type Nat_Array_Array is

array [0 .. 1] of Nat_Array

end type

process main [G: any] is
var a: Nat_Array_Array, x, y, z: Nat in

G (?x, ?y);
−− simultaneous initialisation of both lines
a := Nat_Array_Array (Nat_Array (x), Nat_Array (y));

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

136 Appendix D : Examples

G (a [0][0], a [0][1], a [1][0], a [1][1]);

G (?x, ?y, ?z) where (x < 2) and (y < 2);
−− set of element (x, y) to the new value z
var b: Nat_Array in

b := a[x];
b[y] := z;
a[x] := b

end var;
G (a [0][0], a [0][1], a [1][0], a [1][1]);

...
end var

end process

D.3.4 The Alternating Bit protocol

This example is a variant of the alternating bit protocol.

Channel definitions

The protocol uses four different kinds of channel:

• Channels connected to the environment: these channels carry a message, i.e, value of type Msg:

channel C is (Msg) end channel

• Channels carrying pairs of a message and a bit, i.e., one value of type Msg and one of type Bit:

channel M is (Msg, Bit) end channel

• Channels carrying a bit, i.e., a value of type Bit:

channel A is (Bit) end channel

The root process MAIN

The complete system of the alternating bit protocol is described by the following parallel composition
of four processes, encapsulated inside the root process MAIN.

process MAIN [GET, PUT: C] is

hide SDT, RDT: M, RACK, SACK: A, RDTe, SACKe: none in

par SDT, RDT, RDTe, RACK, SACK, SACKe in

par

TRANSMITTER [PUT, SDT, SACK, SACKe] (0 of Bit)
||

RECEIVER [GET, RDT, RACK, RDTe] (0 of Bit)
end par

||
par

MEDIUM1 [SDT, RDT, RDTe]

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ D.3 : Lnt processes 137

||
MEDIUM2 [RACK, SACK, SACKe]

end par

end par

end hide

end process

The process TRANSMITTER

process TRANSMITTER [PUT: C, SDT: M, SACK: A, SACKe: none] (in var b: Bit) is

var m: Msg in

loop

PUT (?m); (∗ receive a message ∗)
loop L in

SDT (m, b); (∗ send a message ∗)
alt

SACK (b); (∗ control bit correct ∗)
b := not(b);
break L

[]
SACK (not(b)) (∗ control bit incorrect => resend ∗)

[]
SACKe (∗ indication of loss => resend ∗)

[]
i (∗ timeout => resend ∗)

end alt

end loop

end loop

end var

end process

The process RECEIVER

process RECEIVER [GET: C, RDT: M, RACK: A, RDTe: none] (in var b: Bit) is

var m: Msg in

loop

alt

RDT (?m, b); (∗ control bit correct ∗)
GET (m); (∗ delivery of message ∗)
RACK (b); (∗ receipt acknowledgement send correct ∗)
b := not(b)

[]
RDT (?any Msg, not(b)); (∗ control bit incorrect => ∗)
RACK (not(b)) (∗ receipt acknowledgement send incorrect ∗)

[]
RDTe; (∗ indication of loss => ∗)
RACK (not(b)) (∗ receipt acknowledgement send incorrect ∗)

[]
i; (∗ timeout => ∗)
RACK (not(b)) (∗ receipt acknowledgement send incorrect ∗)

end alt

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

138 Appendix D : Examples

end loop

end var

end process

The processes MEDIUM1 and MEDIUM2

process MEDIUM1 [SDT, RDT: M, RDTe: none] is
var m: Msg, b:Bit in

loop

SDT (?m, ?b); (∗ receive a message ∗)
alt

RDT (m, b) (∗ transmission correct ∗)
[]

RDTe (∗ loss with indication ∗)
[]

i (∗ silent loss ∗)
end alt

end loop

end var

end process

process MEDIUM2 [RACK, SACK: A, SACKe: none] is
var b: Bit in

loop

RACK (?b); (∗ receive receipt acknowledgement ∗)
alt

SACK (b) (∗ transmission correct ∗)
[]

SACKe (∗ loss with indication ∗)
[]

i (∗ silent loss ∗)
end alt

end loop

end var

end process

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Appendix E

Differences between Lnt2Lotos
and Traian

E.1 Introduction

This appendix lists the differences between:

• the Lnt language defined in this reference manual, and

• the Lnt language accepted by the Traian compiler and described in [SCC+24] (or its more
recent versions).

Since 2020, with the advent of Traian 3.*, a deep convergence has been undertaken to make
Lnt2Lotos and Traian fully compatible. There still remain a few differences, which are listed
in the present Annex.

E.2 Keywords

The “library” keyword is recognized by Traian but not by Lnt2Lotos. See Section 3.3 for the
list of keywords recognized by Lnt2Lotos.

E.3 Module definitions

• Traian currently supports a “library ... end library” syntax, which is not supported by
Lnt2Lotos, to split a module into several files.

E.4 Type definitions

• The predefined library of Traian and the predefined functions available with Lnt2Lotos
(See appendix C) are globally compatible. Should some Traian function not be supported

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

140 Appendix E : Differences between Lnt2Lotos and Traian

by Lnt2Lotos, it is always possible to write it using Lnt, and possibly implement it as an
external C function.

• Arrays, predicate types, range types, sets, and sorted lists are not yet fully implemented in
Traian, which accepts them, performs the appropriate checks, but does not generate C code
for them.

• The Lotos code generated by Lnt2Lotos may assume function dependencies that are not
checked (neither by Lnt2Lotos itself, nor by Traian), triggering errors when compiled with
Cæsar.adt and Cæsar. For instance, the “first” (resp. “last”) function generated by
Lnt2LOTOS for a constructed type T whose fields have types Ti (i ∈ 1..n) requires the existence
of “first” (resp. “last”) for each type Ti. Also, the “pred” (resp. “succ”) function requires
the existence of “pred” (resp. “succ”), “first”, “last” and “==” for each type Ti.

E.5 Channel definitions

• Lnt2Lotos does not yet support the definition of raise channels. The only “raise” channel
is the predefined channel “exit”.

E.6 Function definitions

• When invoking a constructor or a function (in a pattern or an expression) or a process (in a
behaviour), Lnt2Lotos supports neither parameters passed in the “named style”, e.g., “F
(X1 -> V1, ... Xn -> Vn)”, nor wildcards (“...”), whereas Traian suppports both of them.

• Contrary to Traian, which accepts either “any” or “any T ” in patterns, Lnt2Lotos (which
performs only a limited form of type checking) only accepts “any” in simple contexts where
the type can be inferred easily; in other contexts, it requires the use of “any T ” instead.

• The “trap” operator is recognized by Traian, but not yet supported by Lnt2Lotos, because
it cannot be implemented easily in the target language Lotos. Consequently, with Lnt2Lotos,
exceptions can be raised, but not trapped. If a program raises an exception (either explicitly
using the “raise” operator, or implicitly, e.g., because of a division by zero or selection of an
improper field), the execution stops.

E.7 Process definitions

Processes and behaviours are not yet fully implemented in Traian, which accepts them, performs
the appropriate checks, but does not generate code for them.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Appendix F

Translation of Lnt constants

This appendix provides detailed examples showing how Lnt constants are translated to Lotos by
Lnt2Lotos.

The generated Lotos code relies on the LNT V1 library, which provides useful auxiliary definitions.
This library defines an LntExtensions type that contains all the types defined in the X ACTION,
X BOOLEAN, X NATURAL, X INTEGER, X REAL, X CHARACTER, and X STRING libraries and defines the
minimal set of operators that support the translation into Lotos of the Lnt notations.

F.1 Translation of Lnt natural numbers to Lotos

The following table shows how Lnt natural numbers (see Section 3.5) are translated to Lotos:

Lnt notation Lotos translation
0 (0)

9 (9)

123 (1 DecNum 2 DecNum 3)

0x4 (4)

0xf (Hex__F)

0xAD (Hex__A HexNum Hex__D)

0xF9D8 (Hex__F HexNum 9 HexNum Hex__D HexNum 8)

0o5 (5)

0o76 (7 OctNum 6)

0o746 (7 OctNum 4 OctNum 6)

0b1 (1)

0b1011 (1 BinNum 0 BinNum 1 BinNum 1)

0b110 (1 BinNum 1 BinNum 0)

The translation to Lotos of the natural numbers is easily readable. Since infix operators are left-
associative, we get the following expression:

(((1 DecNum 2) DecNum 3) DecNum 4)

from the 1234 number that we could also have manually written:

1 DecNum 2 DecNum 3 DecNum 4

One must be careful not to write strange Lotos numbers such as 3 BinNum 2 or f DecNum 8. They

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

142 Appendix F : Translation of Lnt constants

will be interpreted as 3*2+2 and 15*10+8 by the Cadp tools, but they are not valid notations of
binary and decimal numbers.

In the context of hexadecimal numbers (“0x...” strings) the digits a to f are respectively translated
to the constants Hex__A to Hex__F.

F.2 Translation of Lnt integer numbers to Lotos

The following table shows how Lnt integer numbers (see Section 3.6) are translated to Lotos:

Lnt notation Lotos translation
0 (0)

000 (0)

12 (1 DecNum 2)

123 (1 DecNum 2 DecNum 3)

0123 (1 DecNum 2 DecNum 3)

1_2_3 (1 DecNum 2 DecNum 3)

+0 (Pos (0))

+00000 (Pos (0))

+12 (Pos (1 DecNum 2))

+123 (Pos (1 DecNum 2 DecNum 3))

+1_2_3 (Pos (1 DecNum 2 DecNum 3))

+0123 (Pos (1 DecNum 2 DecNum 3))

-0 (Pos (0))

-000 (Pos (0))

-1 (Neg (0))

-9 (Neg (8))

-12 (Neg (0) DecNum -(2))

-00012 (Neg (0) DecNum -(2))

-123 (Neg (0) DecNum -(2) DecNum -(3))

0x4 (4)

0x4f (4 HexNum Hex__F)

0xab (Hex__A HexNum Hex__B)

0xa_b (Hex__A HexNum Hex__B)

+0xab (Pos (HexNum__A HexNum Hex__B))

+0xa_b (Pos (HexNum__A HexNum Hex__B))

-0xa (Neg (9))

-0xb (Neg (Hex__A))

-0x0003 (Neg (2))

-0xFD (Neg (e) HexNum -(Hex__D))

-0x000789a (Neg (6) HexNum -(8) HexNum -(9) HexNum -(Hex__A))

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ F.3 : Translation of Lnt real numbers to Lotos 143

Lnt notation Lotos translation
0o12 (1 OctNum 2)

0o1_2 (1 OctNum 2)

+0o12 (Pos (1 OctNum 2))

+0o1_2 (Pos (1 OctNum 2))

-0o76 (Neg (6) OctNum -(6))

-0o002 (Neg (1))

-0o00234 (Neg (1) OctNum -(3) OctNum -(4))

0b11 (1 BinNum 1)

0b1_1 (1 BinNum 1)

+0b11 (Pos (1 BinNum 1))

+0b1_1 (Pos (1 BinNum 1))

-0b001 (Neg (0))

-0b00101 (Neg (0) BinNum -(0) BinNum -(1))

-0b1011 (Neg (0) BinNum -(0) BinNum -(1) BinNum -(1))

The translation to LOTOS adds surrounding parentheses to all numerical constants and removes
leading zeros (following the prefix indicating the base, if any). To avoid overflows1, a negative
constant (i.e., a number preceded by a unary minus operator “-”) is translated using the constructor
“Neg()” for the first digit. Notice that because “Neg(X)” is defined as “-X-1”, it is necessary to
decrement the first digit and to treat “0” as a special case. The unary plus operator “+” is translated
by the constructor “Pos()”.

Note that the use of the use of explicit prefixes “+” and “-” generates expressions using the construc-
tors “Pos()” and “Neg()”, avoiding the need for explicit type annotations (e.g., “ of Int”).

Input Lnt sequence Lotos translation
n - 1 n - (1)

n-1 n-(1)

m - 1 + n m - (1) + n

n == -1 n == -(1)

return-1 return-(1)

| -1 -> | -(1) ->

When natural numbers and integer numbers need to be used in the same specification, number
notations have to be explicitly cast:

• 12 of Nat will be translated to (1 DecNum 2) of Nat

• 12 of Int will be translated to (1 DecNum 2) of Int

F.3 Translation of Lnt real numbers to Lotos

This section explains how Lnt floating-point numbers (see Section 3.7) are translated to Lotos.

Floating-point numbers are translated into a call to the Lotos operation “Real()” that takes a
character string as argument and is implemented by a call to “strtod()”.

1Using n bits, the constant 2n−1 cannot be represented.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

144 Appendix F : Translation of Lnt constants

Lnt notation Lotos translation
0.1 Real (Real__0 ~ Real__Dot ~ Real__1)

0.2 Real (Real__0 ~ Real__Dot ~ Real__2)

3.0e-1 Real (Real__3 ~ Real_Dot ~ Real__0 ~ Real_Exp ~ Real_Neg ~ Real__1)

4.e0 Real (Real__4 ~ Real_Dot ~ Real_Exp ~ Real__0)

5.0 Real (Real__5 ~ Real_Dot ~ Real__0)

F.4 Translation of Lnt characters to Lotos

This section explains how Lnt characters (see Section 3.8) are translated to Lotos.

Each character is translated into Char__iii, where iii is the decimal ASCII code of the character
written with 3 digits (iii ≤ 255).

The character constants can also be written using these operators. The following example shows the
translation into Lotos of some character constants:

Lnt notation Lotos translation
’Z’ Char__090

’0’ Char__048

’\0’ Char__000

’\n’ Char__010

’\’’ Char__039

’\"’ Char__034

’\x5A’ Char__090

’\132’ Char__090

F.5 Translation of Lnt strings to Lotos

This section explains how Lnt strings (see Section 3.9) are translated to Lotos.

Each string literal constant is translated into the concatenation of predefined strings made of one
character only. The concatenation operator ~ is an internal one that must be used only to concatenate
string literal constants. All string literal constants of one character are implemented by operators
String__iii where iii is the decimal ASCII code of the character written with 3 digits (code less
than or equal to 255). Each string ends with String__000.

The string constants can also be written using these operators. The translation into Lotos of the
strings of the previous example is:

String (String__000 (* "" *))

String (String__233 ~ String__234 ~ String__232 ~ String__000 (* "éêè" *))

String (String__050 ~ String__010 ~ String__108 ~ String__105 ~ String__110

~ String__101 ~ String__115 ~ String__000 (* "2\nlines" *)) ;

String (String__034 ~ String__000 (* "\"" *)) ;

String (String__039 ~ String__000 (* "’" *)) ;

String (String__039 ~ String__000 (* "\’" *)) ;

String (String__092 ~ String__000 (* "\\" *)) ;

String (String__065 ~ String__090 ~ String__069 ~ String__082 ~ String__084

~ String__089 ~ String__000 (* "AZERTY" *)) ;

String (String__065 ~ String__090 ~ String__069 ~ String__082 ~ String__084

~ String__089 ~ String__000 (* "A\x5AERTY" *)) ;

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

§ F.5 : Translation of Lnt strings to Lotos 145

String (String__065 ~ String__090 ~ String__069 ~ String__082 ~ String__084

~ String__089 ~ String__000 (* "A\132ERTY" *)) ;

This translation uses the fact that the C pre-compilers support string literal constants constructed
from contiguous shorter strings separated by simple spaces:

printf ("H" "e" "ll" "o") ;

The "ABC" String constant that is translated to the expression (String__065 ~ ... ~ String__000)

is then compiled to Lotos with the following result:

... = (((STRING__065 ~ STRING__066) ~ STRING__067) ~ STRING__000) OF STRING;

This equation is then compiled by Cæsar and Cæsar.adt to generate the following C code:

return ADT_CONCAT_CONST_STRING (

ADT_CONCAT_CONST_STRING (

ADT_CONCAT_CONST_STRING (ADT_STRING_065 (),

ADT_STRING_066 ()),

ADT_STRING_067 ()),

ADT_STRING_000 ());

The C macro definitions of ADT_CONCAT_CONST_STRING and ADT_STRING_iii finally generate:

return "A" "B" "C" "\x00";

which is equal to:

return "ABC\0";

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

146 Appendix F : Translation of Lnt constants

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Appendix G

Change history

In May 2014, the contents of this appendix have been moved to the $CADP/HISTORY file, as a logical
consequence of the fact that since January 2010, Lnt2Lotos and related tools are integral part of
the Cadp toobox.

The following table gives the mapping between the versions of Lnt2Lotos and the corresponding
items in the $CADP/HISTORY file.

Version Release date $CADP/HISTORY item(s)

1A Jul. 8, 2005 #1457 part 1
1B Sep. 16, 2005 #1457 part 2
1C Sep. 29, 2005 #1457 part 3
1D Oct. 20, 2005 #1457 part 4
1E Feb. 24, 2006 #1457 part 5
1F Mar. 15, 2006 #1457 part 6
2A Apr. 21, 2006 #1457 part 7
2D Jun. 1, 2006 #1457 part 8
2F Feb. 5, 2007 #1457 part 9
2G Jun. 5, 2007 #1457 part 10
3A Jun. 8, 2007 #1457 part 11
3B Apr. 7, 2008 #1457 part 12
3C May 19, 2008 #1457 part 13
4A Jun. 19, 2008 #1457 part 14
4B Jul. 18, 2008 #1457 part 15
4C Aug. 1st, 2008 #1457 part 16
4D Sep. 8, 2008 #1457 part 17
4E Sep. 11, 2008 #1457 part 18
4F Oct. 15, 2008 #1457 part 19
4G Jan. 14, 2009 #1457 part 20
4H Apr. 10, 2009 #1457 part 21
4I Jun. 24 2009 #1457 part 22
4J Sep. 28, 2009 #1457 part 23
4K Dec. 4, 2009 #1457 part 24

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

148 Appendix G : Change history

Ver. Release date $CADP/HISTORY item(s)

5.0 Sep. 14, 2010 #1571 part 1
5.1 Feb. 13, 2011 #1571 part 2
5.2 May 17, 2011 #1571 part 3
5.3 Jul. 5, 2011 #1571 part 4
5.4 Sep. 12, 2011 #1571 part 5
5.5 Feb. 20, 2012 #1591

5.6 Jul. 5, 2012 #1594, #1609, #1610, #1619, #1620, #1622, #1623
5.7 Jan. 11, 2013 #1640, #1641, #1642, #1643, #1645, #1646, #1647, #1648, #1649, #1650,

#1653, #1654, #1655
5.8 Dec. 13, 2013 #1661, #1662, #1663, #1667, #1668, #1669, #1670, #1677, #1681, #1683,

#1685, #1686, #1687, #1688, #1689, #1697, #1698, #1699, #1700, #1707,
#1708, #1723, #1725, #1734, #1739, #1741, #1750, #1751, #1752, #1760

5.9 Jan. 13, 2014 #1766, #1767, #1770, #1771
6.0 May 13, 2014 #1776, #1777, #1778, #1784, #1786, #1787, #1788, #1790, #1792, #1794,

#1796, #1798, #1799, #1800, #1805, #1810, #1811, #1813, #1824, #1825,
#1826, #1830, #1831, #1834, #1836, #1837, #1838, #1839, #1843, #1845,
#1846, #1847, #1850, #1851, #1852, #1853, #1854, #1856, #1857, #1858,
#1859, #1861, #1862, #1863, #1865, #1872, #1875, #1878, #1881

6.1 Aug. 26, 2014 #1887, #1939, #2007
6.2 Feb. 26, 2015 #2018, #2024, #2026, #2032, #2034, #2036, #2043, #2045, #2047, #2049,

#2053, #2060, #2064
6.3 Jul. 26, 2015 #2075, #2076, #2087, #2088, #2098, #2100, #2103, #2109, #2110, #2111,

#2112, #2113, #2117, #2119, #2122, #2124, #2126, #2129, #2131, #2132,
#2134, #2138, #2139

6.4 Jan. 13, 2016 #2141, #2147, #2149, #2150, #2152, #2154, #2156, #2166, #2170, #2173,
#2201, #2217, #2218, #2219, #2221, #2225, #2228, #2230, #2234, #2235

6.5 Sep. 13, 2016 #2239, #2241, #2242, #2245, #2251, #2269, #2270, #2271, #2275, #2276,
#2278, #2279, #2281, #2283

6.6 Mar. 26, 2017 #2286, #2288, #2289
6.7 Jul. 13, 2017 #2291, #2292, #2295, #2300, #2310, #2314
6.8 Jan. 13, 2019 #2317, #2319, #2321, #2322, #2323, #2325, #2327, #2332, #2342, #2343,

#2346, #2347, #2350, #2352, #2354, #2361, #2390, #2450, #2462, #2478
6.9 to be completed

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

Bibliography

[Gar95] Hubert Garavel. On the Introduction of Gate Typing in E-LOTOS. In Piotr Dembinski
and Marek Sredniawa, editors, Proceedings of the 15th IFIP International Workshop on
Protocol Specification, Testing and Verification (PSTV’95), Warsaw, Poland, pages 283–
298. Chapman & Hall, June 1995.

[Gar15] Hubert Garavel. Revisiting Sequential Composition in Process Calculi. Journal of Logical
and Algebraic Methods in Programming, 84(6):742–762, November 2015.

[GLS17] Hubert Garavel, Frédéric Lang, and Wendelin Serwe. From LOTOS to LNT. In Joost-
Pieter Katoen, Rom Langerak, and Arend Rensink, editors, ModelEd, TestEd, TrustEd
– Essays Dedicated to Ed Brinksma on the Occasion of His 60th Birthday, volume 10500
of Lecture Notes in Computer Science, pages 3–26. Springer, October 2017.

[GS96] Hubert Garavel and Mihaela Sighireanu. On the Introduction of Exceptions in LOTOS.
In Reinhard Gotzhein and Jan Bredereke, editors, Proceedings of the IFIP Joint Interna-
tional Conference on Formal Description Techniques for Distributed Systems and Com-
munication Protocols, and Protocol Specification, Testing, and Verification (FORTE/P-
STV’96), Kaiserslautern, Germany, pages 469–484. Chapman & Hall, October 1996.

[GS99] Hubert Garavel and Mihaela Sighireanu. A Graphical Parallel Composition Operator for
Process Algebras. In Jianping Wu, Qiang Gao, and Samuel T. Chanson, editors, Proceed-
ings of the IFIP Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols, and Protocol Specification, Testing,
and Verification (FORTE/PSTV’99), Beijing, China, pages 185–202. Kluwer Academic
Publishers, October 1999.

[ISO89] ISO/IEC. LOTOS – A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. International Standard 8807, International Organization
for Standardization – Information Processing Systems – Open Systems Interconnection,
Geneva, September 1989.

[ISO01] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, In-
ternational Organization for Standardization – Information Technology, Geneva, Septem-
ber 2001.

[SCC+24] Mihaela Sighireanu, Alban Catry, David Champelovier, Hubert Garavel, Frédéric
Lang, Guillaume Schaeffer, Wendelin Serwe, and Jan Stoecker. LOTOS
NT User’s Manual (Version 3.14). INRIA/CONVECS, Grenoble, France,
https://vasy.inria.fr/ftp/traian/manual.pdf, 88 pages, June 2024.

© INRIA 2005-2024 – All rights reserved – Tous droits réservés

https://vasy.inria.fr/ftp/traian/manual.pdf

	Introduction
	Goals
	A brief history of Lotos and E-Lotos
	The Lnt (formerly Lotos NT) language
	Lnt-to-Lotos translation

	Document structure

	Overview of the translation from Lnt to Lotos
	Modules and principal module
	Root process
	Tools for translation of Lnt into Lotos
	File types and extensions
	Including external C code
	Lnt modularity and file separation
	Naming translation rules
	Environment variables
	Semantic checks

	Notations and lexical elements
	Meta-language
	Comments
	Keywords
	Identifiers
	Natural numbers
	Integer numbers
	Real numbers
	Characters
	Strings
	Prefix and infix calls of constructors and functions

	Module definitions in Lnt
	Notations
	Syntax
	Module definitions
	Module pragmas
	Constructors, functions, procedures, and processes

	Type definitions in Lnt
	Notations
	Syntax
	Type definitions
	Type expressions
	Constructor definitions
	Type pragmas and constructor pragmas
	Predefined function declarations
	Predefined function pragmas
	Module ``with'' clauses

	Channel definitions in Lnt
	Notations
	Syntax
	Channels
	Channel profiles
	Gate and exception events
	Predefined events
	Compatible events

	Function definitions in Lnt
	Notations
	Syntax
	Resolution of syntactic ambiguities
	Variables
	Function definitions
	Function pragmas
	Lists of formal events
	Lists of formal parameters
	Modes of formal parameters
	Preconditions and postconditions
	Statements
	Null statement
	Sequential composition
	Return statement
	Exception raise
	Assertion
	Array element assignment
	Procedure call
	Variable declaration
	Case statement
	If statement
	Breakable loop statement
	Unbreakable loop statement
	Breakable while statement
	Unbreakable while statement
	Breakable for statement
	Unbreakable for statement
	Break statement
	Use statement
	Access statement

	Patterns
	Variable binding
	Pattern matching
	List patterns

	Value expressions
	Variable
	Result
	Constructor call
	Function call
	Field selection
	Field update
	Array element access
	Type coercion
	List expressions

	Process definitions in Lnt
	Notations
	Syntax
	Resolution of syntactic ambiguities
	Process definition
	Process pragmas
	Lists of formal events
	Lists of formal parameters
	Behaviours
	Stop
	Procedure call
	Only-if statement
	Nondeterministic assignment
	Exception raise
	Assertion
	Process call
	Communication
	Nondeterministic choice (alternative)
	Parallel composition
	Hiding
	Disruption

	Syntax summary of the Lnt language (version 7.5)
	Extended BNF notation used in this appendix
	Identifiers
	Modules
	Types
	Channels
	Functions
	Instructions and statements
	Patterns
	Value expressions
	Processes
	Behaviours

	Formal semantics of the Lnt language (version 7.5)
	Preliminaries
	SOS rules
	Values and stores

	Dynamic semantics of expressions
	Definitions
	Variable
	Constructor call
	Built-in function call
	User-defined function call

	Dynamic semantics of patterns
	Definitions
	Variable
	Wildcard
	Aliasing
	Constructed pattern
	Constant pattern
	Conditional pattern
	Alternative

	Dynamic semantics of offers
	Definitions
	Send offer
	Receive offer

	Dynamic semantics of statements
	Definitions
	Null
	Sequential composition
	Return
	Assignment
	Procedure call that returns a value
	Procedure call that does not return a value
	Case statement
	Loop break
	Breakable loop

	Dynamic semantics of behaviours
	Definitions
	Stop
	Null
	Sequential composition
	Deterministic assignment
	Nondeterministic assignment
	Procedure call that returns a value
	Procedure that does not return a value
	Case behaviour
	Loop break
	Breakable loop
	Process call
	Communication
	Nondeterministic choice
	Parallel composition
	Hiding
	Disrupting

	Discussion on the dynamics semantics

	Predefined functions
	Functions on Booleans
	Functions on natural numbers
	Functions on integer numbers
	Functions on real numbers
	Functions on characters
	Functions on strings

	Examples
	Lnt types
	Enumerated type
	Record type
	List type
	Array types

	Lnt functions
	Manipulating record fields
	The factorial function

	Lnt processes
	Hello World program
	Pattern matching in a rendezvous
	Array types
	The Alternating Bit protocol

	Differences between Lnt2Lotos and Traian
	Introduction
	Keywords
	Module definitions
	Type definitions
	Channel definitions
	Function definitions
	Process definitions

	Translation of Lnt constants
	Translation of Lnt natural numbers to Lotos
	Translation of Lnt integer numbers to Lotos
	Translation of Lnt real numbers to Lotos
	Translation of Lnt characters to Lotos
	Translation of Lnt strings to Lotos

	Change history
	Bibliography

