
Aldébaran: A Tool for Verification of Communicating

Processes

Jean-Claude Fernandez ∗

Abstract

Aldébaran is a tool for verifying communicating systems, represented as labeled tran-
sition systems. Verification techniques are based on the comparison of two labeled tran-
sition systems according to an equivalence relation. Strong bisimulation, weak bisimula-
tion, acceptance model equivalence and safety equivalence are supported by Aldébaran.
Communicating systems are described hierarchically by parallel composition of processes.
Synchronization (or communications) between labeled transition systems set in parallel
are determined by a synchronization algebra. To allow partial synchrony, a restriction
operator is defined. To verify external specification, an abstract mechanism is used. A
major goal of the tool is to provide different equivalence relations and efficient algorithms
implementing these.

1 Introduction

Aldébaran is a tool for verifying communicating processes, represented by labeled transition
system. It is intended to be useful in the verification of communicating finite state processes
by model checking or by means of equivalence relations. In the first case, one check that a
given program, viewed as a labeled transition system over which a temporal logic formula is
interpreted, satisfies it. In the second one, semantics of process algebra is usually given as a
transition relation on terms together with a congruence relation on terms that is preserved
by a transition relation. Aldébaran allows the reduction and the comparison of labeled tran-
sition systems with respect to the following equivalence: strong bisimulation [12], [15], weak
bisimulation (or observational equivalence) [12], acceptance model equivalence [9] and safety
equivalence [16]. Let ∼R be one of these equivalences. For each labeled transition system, a
normal form with respect to ∼R may be obtained by applying a set of transformations on the
labeled transition system. Thus, two labeled transition systems are equivalents, with respect
to ∼R, if and only if they have the same normal form. Since these equivalences are weaker
than the strong bisimulation, the normal form may be chosen minimal in number of states.

∗
Tel : 76 51 49 15 e-mail fernand@imag.imag.fr

1

Thus, an efficient algorithm computing strong bisimulation reveals itself quite useful. It is
an adapted version of Paige & Tarjan algorithm that refines a partition until it is preserved
by transition relation. For example, initial partition may be determined by state predicates.
Another feature of Aldébaran is an attempt for controlling state explosion that occurs in
parallelism. We propose a method for minimizing space requirement translating a program
into a labeled transition system.

Let States be a set of states, A a set of names, τ a particular name, not in A, which represents
an internal or hidden action. Aτ denotes the set A ∪ {τ}. A labeled transition system is a
quadruple S = (Q,Aτ , T, q0) where Q is the subset of States reachable from q0 with respect
to T (i.e if q is reachable from q0 with respect to T and (q, a, q′) ∈ T then q’ is reachable from
q0 with respect to T). T ⊆ Q × Aτ × Q the transition relation and q0 the initial state. For
each label a and each state q, we consider the image set Ta[q] = {q′ ∈ Q | (q, a, q′) ∈ T}.
We extend this notation for sets of states: Ta[B] = ∪{Ta[q] | q ∈ B}. T−1 denotes the
inverse relation T−1 = {(q′, a, q) | (q, a, q′) ∈ T}. T−1

a [q] and T−1
a [B] denotes respectively

the image set of q by T−1
a and the image set of B by T−1

a . We also use the notation p
a

−→T q
for (p, a, q) ∈ T . We consider a particular class of labeled transition systems: the regular
labeled transition systems.

This paper is organized as follows: in part 2, we describe the set of transformations on the la-
beled transition systems for strong bisimulation, observational equivalence, acceptance model
equivalence and safety equivalence in order to obtain normal form. In part 3, we present our
adaptation of the Paige & Tarjan Algorithm that computes the relational coarsest partition
problem for a labeled transition system. In part 4, three operators on the labeled transition
systems are defined: parallel composition, restriction [12] and abstraction [3] for designing
communicating systems. A communicating system is defined as an expression whose con-
structors are labeled transition systems, parallel composition, restriction and abstraction. In
part 5, we presents functionalities of Aldébaran.

2 Equivalences on Labeled Transitions Systems

We recall the definitions of four equivalences on regular labeled transition systems: strong
bisimulation, observational equivalence, acceptance model equivalence and safety equiva-
lence. For each of them, a set of transformations may be defined in order to obtain a normal
form, which is a canonical element of an equivalence class. Each equivalence relation ∼R

defined on a labeled transition system may be extended to an equivalence relation between
labeled transition systems in the following manner: let Si = (Qi, Aτ , Ti, qi), for i = 1, 2 be
two labeled transition systems such that Q1 ∩ Q2 = ∅ (if it is not the case, this condition
may be easily obtained by renaming the set of the states of one labeled transition system).
S = (Q1 ∪ Q2 ∪ {q0}, Aτ , T1 ∪ T2, q0) is the labeled transition system obtained from the union
of S1 and S2. If q1 ∼R q2 then S1 ∼R S2. Furthermore, we have the following property:
if NF∼R

(S) denotes the normal form of S with respect to ∼R then S1 ∼R S2 if and only if

2

NF∼R
(S1) ∼ NF∼R

(S2) where ∼ denotes the strong bisimulation (see definition latter). In
fact, ∼R and ∼ agree on normal forms.

Before defining these equivalences, we give some notations and a definition. Let S =
(Q,Aτ , T, q0) be a labeled transition system, P be a subset of Q and B be a subset of
Aτ

• For a set X, | X | denotes the number of elements of X,

• for a set X, 2X denotes the set of subsets of X,

• B∗ denotes the set of strings over B,

• p
a1...an−→ T q abbreviates that there exist p1...pn such that p = p0, pi

ai+1
−→T pi+1, 0 ≤ i < n

and pn = q,

• p
ε

=⇒T q abbreviates p
τn

−→T q, for n ≤ 0,

• p
a

=⇒T q abbreviates p
ε

=⇒T p1

a
−→T q1

ε
=⇒T q,

• init(p, T) = {a ∈ A | ∃q ∈ Q ∧ p
a

−→T q},

• init τ (p, T) = {a ∈ Aτ | ∃q ∈ Q ∧ p
a

−→T q},

• init(P, T) = ∪p∈P{init(p, T)},

• c(p, T) = {q | p
ε

=⇒T q}.

Definition 2.1 Let ρ and ρ′ be partition of Q. ρ′ is a refinement of ρ, ρ′ ⊆ ρ if and only if
∀B′ ∈ ρ′ . ∃B ∈ ρ . (B ′ ⊆ B).

For each equivalence, we recall its definition, characteristic property in order to obtain the
normal form of a labeled transition system, its extension to labeled transition systems and
the definition of the normal form.

2.1 Strong Bisimulation

Intuitively, two states p and q are bisimilars if for each state p′ reachable from p by execution
of an action a there is a state q′, reachable from q by execution of the action a such that p′

and q′ are bisimilars.

Definition 2.2 Given a labeled transition system S = (Q,Aτ , T, q0),a binary relation ρ ⊆
Q × Q is a bisimulation if and only if:
∀(p1, p2) ∈ ρ . ∀a ∈ Aτ .
∀r1 . (p1

a
−→T r1 ⇒ ∃r2 . (p2

a
−→T r2 ∧ (r1, r2) ∈ ρ)) ∧

∀r2 . (p2

a
−→T r2 ⇒ ∃r1 . (p1

a
−→T r1 ∧ (r1, r2) ∈ ρ))

3

The set of bisimulations on Q, ordered by inclusion has a maximal element denoted by ∼
which may be obtained as the limit of a decreasing sequence of relations ∼i, for i ∈ N [12]
(∼= ∩i∈N ∼i):

• ∀p, q ∈ Q . p ∼0 q,

• p1 ∼i+1 p2 if and only if ∀a ∈ Aτ .
∀r1 . (p1

a
−→T r1 ⇒ ∃r2 . (p2

a
−→T r2 ∧ r1 ∼i r2)) ∧

∀r2 . (p2

a
−→T r2 ⇒ ∃r1 . (p1

a
−→T r1 ∧ r1 ∼i r2))}.

Proposition 2.1 ∼ is an equivalence relation on (or a partition of) Q.

Proof. By the fact that if ∼i is an equivalence relation then ∼i+1 is an equivalence relation.
2

The connection with the relational coarsest partition problem was established in [4], [6] and
[11]. Let ρ be a partition of Q. ρ is compatible with T if and only if the following property
π holds:
π(ρ) : ∀a ∈ Aτ . ∀B,B′ ∈ ρ . (B′ ⊆ T−1

a [B] ∨ B′ ∩ T−1
a [B] = ∅).

Given an initial partition ρ0, the set of partition ordered by refinement as a maximal element,
which may be obtained as the maximal fixed-point of an operator Φ [6]:
Φ(ρ0) = ∪{ρ | ρ ⊆ ρ0 ∧ π(ρ)}. Thus, ∼= Φ(∼0).

Definition 2.3 Let S = (Q,Aτ , T, q0) be a labeled transition system and ρ an equivalence
relation which is a bisimution, the quotient labeled transition system denoted by S/ρ is defined
as follows:
S/ρ = (Q/ρ,AτT/ρ, q0) where:

• Q/ρ is the set of equivalence classes, Q/ρ = {B |⊆ Q,∀p, q ∈ B . (p, q) ∈ ρ)

• (B′, a, B) ∈ T/ρ if and only if T−1
a [B] ∩ B′ 6= ∅

• [q0] is the equivalence class of q0.

The T/ρ definition is correct by the fact that ρ is compatible with T .

Definition 2.4 Let S = (Q,Aτ , T, q0) be a labeled transition system. The normal form
NF∼(S) of S with respect to ∼ is S/ ∼.

Proposition 2.2 Let Si = (Qi, Aτ , Ti, qi), for i = 1, 2 be two labeled transition systems.

4

S1 ∼ S2 if and only if NF∼(S1) ∼ NF∼(S2).

Proof : By transitivity of ∼. 2

2.2 Observational Equivalence

Observational Equivalence is based on the idea of unobservable (or internal) action [12],
labeled by τ . From the notion of bisimulation, we can derive a weaker bisimulation in the
following manner [12]:

Definition 2.5 Given a labeled transition system S = (Q,Aτ , T, q0), a binary relation ρ ⊆
Q × Q is a weak bisimulation if and only if:
∀(p1, p2) ∈ ρ . ∀a ∈ A∗

τ .
∀r1 . (p1

a
=⇒T r1 ⇒ ∃r2 . (p2

a
=⇒T r2 ∧ (r1, r2) ∈ ρ)) ∧

∀r2 . (p2

a
=⇒T r2 ⇒ ∃r1 . (p1

a
=⇒T r1 ∧ (r1, r2) ∈ ρ))

As in the case of strong bisimulation equivalence, the observational equivalence ≈ may be
obtained as the limit of a decreasing sequences of relations ≈i, for i ∈ N [12] (≈= ∩i∈N ≈ i)
by replacing in the definition

a
−→T by

a
=⇒T , for a ∈ A∗

τ :

• ∀p, q ∈ Q . p ≈0 q,

• p1 ≈i+1 p2 if and only if ∀a ∈ A∗
τ .

∀r1 . (p1

a
=⇒T r1 ⇒ ∃r2 . (p2

a
=⇒T r2 ∧ r1 ≈i r2)) ∧

∀r2 . (p2

a
=⇒T r2 ⇒ ∃r1 . (p1

a
=⇒T r1 ∧ r1 ≈i r2))}.

We introduce now the notion of pre-normal form from which the normal form is obtained
by minimizing the number of states.

Definition 2.6 (Pre-normal form) Let S = (Q,Aτ , T, q0) be a labeled transition system. A
pre-normal form of S with respect to ≈, PNF≈(S), may be obtained in the following manner:
PNF≈(S) = (Q,Aτ , T ′, q0) where

q
a

−→T ′ q′ if and only if q
a

=⇒T q′

Proposition 2.3 S ≈ PNF≈(S).

Proof By definition of ≈. 2

5

Proposition 2.4 PNF≈(S1) ∼ PNF≈(S2) if and only if S1 ≈ S2.

Proof ⇒:
By the fact that ≈⊆∼ [12] we have S1 ≈ PNF≈(S1) ≈ PNF≈(S2) ≈ S2.
⇐:
Conversely, we have to prove that q1 ≈ q2, where q1 and q2 are considered respectively as
initial state of S1 and S2, implies q1 ∼ q2 where q1 and q2 are considered respectively as
initial state of PNF≈(S1) and PNF≈(S2). By induction on i ∈ N : suppose that p1 ≈i p2,
where p1 and p2 are considered respectively as states of S1 and S2, implies p1 ∼i p2, where
p1 and p2 are considered respectively as states of PNF≈(S1) and PNF≈(S2), and suppose
that p1 ≈i+1 p2, where p1 and p2 are considered respectively as states of S1 and S2. We have
to prove that p1 ∼i+1 p2, where p1 and p2 are considered respectively as states of PNF≈(S1)
and PNF≈(S2). By definition of ≈i+1, we have ∀a ∈ A∗

τ .
∀r1 . (p1

a
=⇒T1

r1 ⇒ ∃r2 . (p2

a
=⇒T2

r2 ∧ r1 ≈i r2)) ∧
∀r2 . (p2

a
=⇒T2

r2 ⇒ ∃r1 . (p1

a
=⇒T1

r1 ∧ r1 ≈i r2)).
By induction hypothesis and definition of pre-normal form we have ∀a ∈ A∗

τ .
∀r1 . (p1

a
−→T ′

1
r1 ⇒ ∃r2 . (p2

a
−→T ′

2
r2 ∧ r1 ∼i r2)) ∧

∀r2 . (p2

a
−→T ′

2
r2 ⇒ ∃r1 . (p1

a
−→T ′

1
r1 ∧ r1 ∼i r2)). 2

We define the normal form with respect to observational equivalence just as the composition
of pre-normal form and normal form with respect to strong bisimulation.

Definition 2.7 (normal form) Let S = (Q,Aτ , T, q0) be a labeled transition system. A
normal form of S with respect to ≈ is given by NF≈(S) = (NF∼ o PNF≈)(S).

We obtain the key property for observational equivalence: two labeled transition systems
are equivalent with respect to observational equivalence if and only if their normal form are
equivalent with respect to strong bisimulation.

Proposition 2.5 NF≈(S1) ∼ NF≈(S2) if and only if S1 ≈ S2

Proof By proposition 2.4 and transitivity of ∼. 2

2.3 Acceptance model equivalence

In this section, we present acceptance model [9],[10]. These model are used as a semantic
domain for Theorical CSP [5].

Definition 2.8 An acceptance model [10] is a subset of A × 2Aτ satisfying the following
properties (denote by ms the acceptance set ms = {X | (s,X) ∈ m}).

6

• ∀(s,X) ∈ A × 2Aτ . ∀a ∈ . X[(s,X) ∈ m ⇒ ∃Y ∈ 2Aτ ∧ (sa, Y) ∈ m],

• ∀a ∈ A . ∀s ∈ A∗ . ∀Y ∈ 2Aτ . [(sa, Y) ∈ m ⇒ ∃X ∈ 2Act . [a ∈ X ∧ (s,X) ∈ m]],

• ∀s ∈ A∗ . ms is finite,

• if s 6= ε then ∀X . (X ∈ ms ⇒ τ 6∈ X),

• | {X ∈ mε | τ 6∈ X} |≤ 1,

• if ∃X ∈ mετ ∈ X then ∅ 6∈ mε.

We can associate an acceptance model to a state of a labeled transition system.

Definition 2.9 Let S = (Q,Aτ , T, q0) be a labeled transition system and p a state of Q. An
acceptance model m may be obtained in the following manner:
m(p, T) = {(s,X) | ∃q ∈ Q ∧ p

s
=⇒T q ∧

(init(q, T) 6= ∅ ∨ init(c(q, T), T) = ∅) ∧ X = init(q, T)} ∪ {(ε, initτ (p, T))}

The acceptance model associated with S is m(q0, T). Thus, two labeled transition systems
Si = (Qi, Aτ , Ti, qi) for i = 1, 2 are equivalent with respect to acceptance model if and only if
m(q1, T1) = m(q2, T2).

It is well known that acceptance model equivalence is not a (weak) bisimulation. We can
characterize acceptance model equivalence as the limit of a decreasing sequence.

Definition 2.10 Let S = (Q,Aτ , T, q0) be a labeled transition system. For i ∈ N , we define
relation ≈ac

i by

• ∀p, q ∈ Q . p ≈ac
0 q,

• p1 ≈ac
i p2 if and only if ∀s ∈ A∗ . | s |< i ⇒

[(∀r1 . (p1

s
=⇒T r1 ∧ (init(r1, T) 6= ∅ ∨ init(c(r1, T), T) = ∅)) ⇒

∃r2 . (p2

s
=⇒T r2 ∧ init(r1, T) = init(r2, T))) ∧

(∀r2 . (p2

s
=⇒T r2 ∧ (init(r2, T) 6= ∅ ∨ init(c(r2, T), T) = ∅)) ⇒

∃r1 . (p1

s
=⇒T r1 ∧ init(r1, T) = init(r2, T)))].

• ≈ac= ∩i∈N ≈ac
i

Proposition 2.6 Let S = (Q,Aτ , T, q0) be a labeled transition system and p, q ∈ Q.

7

m(p, T) = m(q, T) if and only if p ≈ac q.

Proof By definition of m(p, T) and ≈ac. 2

As for the observational equivalence, we introduce a pre-normal form from which the normal
form is obtained by minimizing the number of states.

Definition 2.11 Let S = (Q,Aτ , T, q0) be a labeled transition system. A pre-normal form
of S with respect to ≈ac, PNF≈ac(S), may be obtained in the following manner:
PNF≈(S) = (Q′, Aτ , T

′, q′) where

• τ ∈ initτ (q0, T) if and only if q′ 6∈ Q ∧ q′ ∈ Q′ ∧ Q′ ⊆ Q ∪ {q′},

• τ 6∈ initτ (q0, T) if and only if q′ = q0 ∧ Q′ ⊆ Q,

• initτ (q
′, T ′) = initτ (q0, T),

• q ∈ c(q0, T) ∧ (init(q0, T) 6= ∅ ∨ init(c(q0, T), T) = ∅) if and only if q′
τ

−→T ′ q,

• q
a

−→T ′ q1 if and only if q
aτ∗

−→T q1 ∧ (init(q1, T) 6= ∅ ∨ init(c(q1, T) = ∅),

• (q′
τ

−→T ′ q1 ∧ q1

a
−→T ′ q2 ∧ q′

a
−→T ′ q3) if and only if q1

a
−→T ′ q3 ∧ q′

a
−→T ′ q2),

• (p
a1−→T ′ p1 ∧ p1

a2−→T ′ p2 ∧ p
a1−→T ′ q1 ∧ q1

a2−→T ′ q2) if and only if
p1

a2−→T ′ q2 ∧ q1

a2−→T ′ p2).

Lemma 2.1 Let S = (Q,Aτ , T, q0) be a labeled transition system and PNF≈ac(S) =
(Q′, Aτ , T ′, q′) its pre-normal form. Then, ∀q ∈ Q′ . [q 6= q′ ⇒ init(q, T) = init(q, T ′)].

Proof First, we have by definition of pre-normal form : init(q, T ′) ⊆ init(q, T).

Conversely, let a ∈ init(q, T). ∃q1 ∈ Q such that q
aτ∗

−→T q1.
If init(q1, T) 6= ∅ ∨ init(c(q1, T), T) = ∅ then q

a
−→T ′ q1 and consequently, a ∈ init(q, T ′).

If init(q1, T) = ∅ ∧ init(c(q1, T), T) 6= ∅ then ∃q2 such that init(q2, T) 6= ∅ ∧ q1

τ∗

−→T q2.
Thus q

a
−→T ′ q2 and consequently, a ∈ init(q, T ′).

2

Proposition 2.7 S ≈ac PNF≈ac(S).

Proof By definition of ≈ac and pre-normal form.
2

8

Proposition 2.8 Let Si = (Qi, Aτ , Ti, qi), for i = 1, 2 be two labeled transition systems and
PNF≈ac(Si) = (Q′

i, A, T ′
i , q

′
i) for i = 1, 2.

PNF≈ac(S1) ∼ PNF≈ac(S2) if and only if S1 ≈ac S2.

Proof
⇒ : By transitivity of ≈ac.
⇐: By induction on N , we prove that q′1 ≈ac q′2 ⇒ q′1 ∼i q′2.

• if initτ (q
′
1, T

′
1) = initτ (q

′
2, T

′
2) = ∅ then they are no transitions from q ′1 and q′2. Thus,

S1 ≈ac S2.

• For i = 0, the proof is obvious.

• Suppose that i > 0. By definition of the normal form, we have init τ (q
′
1, T

′
1) =

init τ (q
′
2, T

′
2). Let a ∈ Aτ and p1 ∈ Q′

1 such that q′1
a

−→T ′

1
p1. We want to prove

that ∃p2 ∈ Q′
2 such that q′2

a
−→T ′

2
p2 and p1 ≈ac p2. Indeed, if a such p2 exists, then

from induction hypothesis we deduce that p1 ∼i p2. Similarly, we prove the symmet-
rical condition and we obtain that q ′1 ∼i+1 q′2.

• We prove that ∃p2 such that q′2
a

−→T ′

2
p2 and p1 ≈ac p2. From q′1 ≈ac q′2 and

q′1
a

−→T ′

1
p1 we deduce that ∃p2 such that q′2

a
−→T ′

2
p2 and init(p1, T

′
1) = init(p2, T

′
2).

If init(p1, T
′
1) = ∅, then init(p2, T

′
2) = ∅. In this case, we have p1 ≈ac p2.

If init(p1, T
′
1) 6= ∅ then ∃s ∈ A+ and r1 ∈ Q′

1 such that p1

s
−→T ′

1
r1. Thus, ∃r2 ∈ Q′

2

such that q′2
as
−→T ′

2
r2 and init(r1, T

′
1) = init(r2, T

′
2). Let p′2 ∈ Q′

2 such that q′2
a

−→T ′

2
p′2

and p′2
s

−→T ′

2
r2. Since init(p1, T

′
1) = init(p2, T

′
2), by construction of pre-normal form,

we have p2

s
−→T ′

2
r2. Thus, p1 ≈ac p2.

2

Definition 2.12 (normal form) Let S = (Q,Aτ , T, q0) be a labeled transition system. A
normal form of S with respect to ≈ac PNF≈ac(S) = NF∼ o PNF≈ac

Proposition 2.9 NF≈ac(S1) ∼ NF≈ac(S2) if and only if S1 ≈ac S2

Proof Obvious. 2

2.4 Safety equivalence

Safety equivalence was introduced in [16] and is an equivalence relation that preserves the
safety property. This equivalence is interesting in connection with a temporal logic.

9

Definition 2.13 Let S = (Q,Aτ , T, q0) be a labeled transition system and let ρ ⊆ Q × Q.
Then ρ is a safety preorder if ρ satisfies the following property:
∀(p1, p2) ∈ ρ . ∀a ∈ A .

∀r1 . (p1

τ∗a
−→T r1 ⇒ ∃r2 . (p2

τ∗a
−→T r2 ∧ (r1, r2) ∈ ρ)) ∧

∀r1 . (p1

ε
=⇒T r1 ⇒ (r1, p2) ∈ ρ)

The set of safety-preorder on Q, ordered by inclusion has a maximal element denoted by
vsaf which may be obtained as the limit of a decreasing sequence of relation vsaf

i , for i ∈ N
[16]:

• ∀p, q ∈ Q . p vsaf
0 q,

• p1 vsaf
i+1

p2 if and only if ∀a ∈ Aτ .

∀r1 . (p1

τ∗a
−→T r1 ⇒ ∃r2 . (p2

τ∗a
−→T r2 ∧ r1 vsaf

i r2)) ∧

∀r1 . (p1

ε
=⇒T r1 ⇒ r1 vsaf

i r2).

Proposition 2.10 Let S = (Q,Aτ , T, q0) be a labeled transition system. Then

p
τ∗

−→T q ⇒ q vsaf p.

Proof By induction on i ∈ N . Suppose that p
τ∗

−→T q ⇒ q vsaf
i p, for i > 0 (the case i = 0

is obvious). If p
τ∗

−→T q then ∀a ∈ Aτ . ∀r ∈ Q . q
τ∗a
−→T r ⇒ p

τ∗a
−→T r. Furthermore, we

have r vsaf
i r. If q

τ∗

−→T r then p
τ∗

−→T r and r vsaf
i p, by induction hypothesis. Thus, by

definition of vsaf
i+1

we deduce that q vsaf
i+1

p. 2

The relation vsaf may be characterized as a weak simulation:

Proposition 2.11 Let S = (Q,Aτ , T, q0) be a labeled transition system and let p1, p2 be two
states of Q. Then

p1 vsaf p2 if and only if ∀a ∈ Aτ . ∀r1 . (p1

τ∗a
−→T r1 ⇒ ∃r2 . (p2

τ∗a
−→T r2 ∧ r1 vsaf r2)).

Proof We denote by � the following relation :

p1 � p2 if and only if ∀a ∈ Aτ .

∀r1 . (p1

τ∗a
−→T r1 ⇒ ∃r2 . (p2

τ∗a
−→T r2 ∧ r1 � r2)).

Obviously, we have vsaf⊆�. Conversely, by induction on i ∈ N , we prove that

10

p1 � p2 ⇒ p1 vsaf
i p2 This property if true for i = 0. If p1 � p2 and p1

τ∗

−→T r1, we have

to prove that r1 vsaf
i p2. We have r1 vsaf

i p1 by the above proposition and p1 vsaf
i p2 by

induction hypothesis. Thus, by transitivity of vsaf
i , we have r1 vsaf

i p2. 2

Definition 2.14 Let S = (Q,Aτ , T, q0) be a labeled transition system and p, q ∈ Q. We
define safety equivalence:

p ≈saf q if and only if p vsaf q ∧ q vsaf p.

We introduce a pre-normal form for safety equivalence:

Definition 2.15 Let S = (Q,Aτ , T, q0) be a labeled transition system. A pre-normal form
of S, PNF≈saf (S), with respect to ≈saf may be obtained in the following manner:
PNF≈saf (S) = (Q′, Aτ , T ′, q′) where

• q′ = c(q0, T)

• [p1

τ∗a
−→T p2 ∧ ∀p3 . (p1

τ∗a
−→T p3 ⇒ p2 6vsaf p3)] if and only if c(p1, T)

a
−→T ′ c(p2, T).

Proposition 2.12 Let S = (Q,Aτ , T, q0) be a labeled transition system and PNF≈saf (S) =
(Q′, Aτ , T ′, q′) its pre-normal form. Then

c(p, T) ∈ Q′ ⇒ p ≈saf c(p, T).

Proof Suppose that c(p, T) ∈ Q′.
- It is easy to see that c(p, T) vsaf p.

- Conversely, we prove that p vsaf
i c(p, T) by induction on i ∈ N .

if p
τ∗a
−→T p2 ∧ c(p, T)

a
−→T ′ c(p2, T) then p2 vsaf

i c(p2, T) since c(p2, T) ∈ Q′. If p
τ∗a
−→T

p2 ∧ ¬(c(p, T)
a

−→T ′ c(p2, T)) then ∃p3(p
τ∗a
−→T p3 ∧ p2 vsaf

i p3 ∧ (c(p, T)
a

−→T ′ c(p3, T).

Thus, by transitivity and by induction hypothesis, we have p2 vsaf
i c(p3, T). 2

From this proposition, we deduce:

Proposition 2.13 Let S = (Q,Aτ , T, q0) be a labeled transition system. Then

S ≈saf PNFsaf (S).

Proposition 2.14 Let Si = (Qi, Aτ , Ti, qi), for i = 1, 2 be two labeled transition systems
and PNF≈saf (Si) = (Q′

i, A, T ′
i , q

′
i) for i = 1, 2.

PNF≈saf (S1) ∼ PNF≈saf (S2) if and only if S1 ≈saf S2.

11

Proof ⇒ : By transitivity of ≈saf .
⇐:We prove that c(p1, T) ≈saf c(p2, T) if and only if c(p1, T) ∼ c(p2, T) . Suppose that
c(p1, T) ≈saf c(p2, T) and p1

a
−→T ′

1
r1, for some a ∈ A and some q ∈ Q. Then From

c(p1, T) vsaf c(p2, T) , we deduce ∃r2(p2

a
−→T ′

2
r2 ∧ r1 vsaf r2)). From c(p2, T) vsaf

c(p1, T) , we deduce ∃r3(p1

a
−→T ′

1
r3 ∧ r1 vsaf r3)). Thus, we have r1 vsaf r2 vsaf r3 and

by definition of pre-normal form, we have r1 ≈saf r3. We can conclude:
∀a ∈ A .
∀r1 . (p1

a
−→T ′

1
r1 ⇒ ∃r2 . (p2

a
−→T ′

2
r2 ∧ r1 ≈saf r2)) ∧

∀r2 . (p2

a
−→T ′

2
r2 ⇒ ∃r1 . (p1

a
−→T ′

1
r1 ∧ r1 vsaf r2)).

Since ∼ is the greatest relation satisfying the previous requirement we conclude that
c(p1, T) ∼ c(p2, T) . 2

3 Efficient algorithm for strong bisimulation equivalence

Efficient algorithm for deciding strong bisimulation equivalence are based on the Relational
Coarsest Partition Problem [11], [14]. Paige & Tarjan [14] proposed an algorithm that
computes the Relational Coarsest Partition Problem in O(m log n) time and O(m) space.
We present an adapted version of the Paige & Tarjan algorithm by considering a family of
relation instead of one relation.

3.1 Relational Coarsest Partition Problem

In this section, we consider a labeled transition system S = (Q,Aτ , T, q0)where Q is finite.
We represent an equivalence relation ρ on the set Q as a partition ρ = {B1, ..., Bn} where
the Bi represent its equivalence classes.

An equivalence relation ρ on Q is compatible with T if and only if
∀a ∈ Aτ . ∀B,B′ ∈ ρ . (B′ ⊆ T−1

a [B] ∨ B′ ∩ T−1
a [B] = ∅). We consider the relational

coarsest partition problem [14]:

Given a partition ρ of a finite set Q and a family of binary relations (Ta)a∈Aτ

over Q, find the coarsest refinement ρ′ of ρ such that ρ′ is compatible with (Ta)
for each a ∈ Aτ .

We adapt the Paige & Tarjan algorithm on the following manner. For a partition ρ and subset
X ⊆ Q, let split(B, ρ) be the refinement of ρ obtained by replacing, for each a in A, each
block X ∈ ρ such that X 6⊆ T−1

a [B] ∧ X ∩ T−1
a [B] 6= ∅} by the blocks X1 = X ∩ T−1

a [B]
and X2 = X − T−1

a [B]. Note that if | A |= 1, we obtain the same definition of the Paige &
Tarjan function split . A set B ⊆ Q is called a splitter if and only if ρ 6= split(B, ρ). When

12

ρ = split(B, ρ) ρ is stable with respect to B. We state properties of function split without
proof. For more details, see [6].

(i) split is monotone in its second argument; that is, ρ1 ⊆ ρ2 ⇒
split(B, ρ1) ⊆ split(B, ρ2),

(ii) split(B, ρ) is a refinement of ρ

(iii) split(B1, split(B2, ρ)) = split(B2, split(B1, ρ)),

(iv) ∀a ∈ Aτ . ∀X ∈ split(B, ρ) . (X ∩ T−1
a [B] = ∅ ∨ X ⊆ T−1

a [B])

(v) split(B1, split(B2, split(B1 ∪ B2, ρ))) = split(B2, split(B1, ρ)),

3.2 Solution

The adapted algorithm has the same complexity that the original one. The major difference
between the two algorithms lies on the fact that a refinement step, i.e. the computation of
split , is made with only one element of A in the original one. We present data structures
for our algorithm, as they are implemented in Aldébaran. Their selection is application-
dependent: we have designed our algorithm to be the basis of a verification tool for concurrent
systems, in which a state has generally a few number of successors. In particular we take
this fact into account for the implementation of infoB (see definition latter). Let S =
(Q,Aτ , T, q0) be a labeled transition system, ρ be a partition of Q, n = | Q |, and m = | T |.
We suppose that for all a in Aτ , the image set sizes | Ta[p] | are uniformly bounded by a
constant c.

Let us consider the case in which | Aτ | = 1. Paige & Tarjan presented an algorithm that
compute the coarsest refinement of ρ in O(m log n) time and in O(m) space [14]. Three basic
ideas are behind their approach:

• we can compute split(B, ρ) in | T−1
a [B] | time,

• if ρ is stable with respect to B , B1 ⊆ B and B1 ∈ ρ, then Hopcroft’s “process the
smaller half” idea may be exploited in order to perform a refinement step with respect
to B1 and B − B1. From property (iv) of operator split each set X is either a subset
of T−1

a [B] or disjoint from it. The refinement step consists of adding in split(B, ρ), for
each X ∈ ρ, the following sets:

X1 = (X ∩ T−1
a [B1]) − T−1

a [B − B1]
X2 = (X ∩ T−1

a [B − B1]) − T−1
a [B1]

X3 = X ∩ T−1
a [B1] ∩ T−1

a [B − B1]
(1)

13

This decomposition may be obtained by searching through only one of the sets –
actually, the smaller –, B1 say, and using the map infoB(a, p) = | Ta[p] ∩ B |, for all
p ∈ Q. X1, X2, X3, infoB1

and infoB2
can be computed in time | T−1

a [B1] |.

The sets X1, X2 and X3 are computed by applying one of the three following rules:

(i) if infoB1
(a, p) = infoB(a, p) then X1 := X1 ∪ {p}

(ii) if infoB1
(a, p) = 0 then X2 := X2 ∪ {p}

(iii) if 0 < infoB1
(a, p) < infoB(a, p) then X3 := X3 ∪ {p}

• if ρ is unstable with respect to B then a refinement step with respect to B consists of
adding in split(B, ρ), for each X ∈ ρ, the following sets:

X1 = X ∩ T−1
a [B1]

X2 = X − T−1
a [B1]

(2)

For the general case, a refinement step consists in repeating the previous one for each a ∈ A.

3.3 Algorithm

Several data structures are required to represent states, classes and splitters. Each state
p points to a list of couples (a, T−1

a [p]), where T−1
a [p] is a list of its elements. This allows

scanning of the set T−1
a [p] in time proportional to its size. Each class of ρ has an associated

integer giving its size and points to a list its elements. Each state points to its predecessor
in its class (this allows deletion in O(1) time) and to the class containing it. We maintain a
set W of splitters. A splitter is a subset B of Q which is either a class (simple splitter) or a
union of classes (compound splitter) such that ρ is stable with respect to B. The refinement
step with respect to B is performed according to (2) in the first case whereas it is performed
according to (1) in the second one. A compound splitter B is represented as a binary tree
with the infoB map associated with the root, and has B1 and B2 as children if B = B1 ∪ B2.
For each class, we maintain an information which indicates whether it is in W or it is a
leaf of a compound splitter. For each p ∈ Q and each a ∈ A, we maintain a list of couples
(B, infoB) which has at most c elements. The space needed for the data structures is O(m).
The algorithm consists of repeating the refinement step with respect to B until W = ∅.

Case 1: B is a class
A refinement step is performed as follows:
Step 1 Remove the element B from W .
Step 2 (compute the set I = {X1 | ∃X ∈ ρ ∧ X1 = X ∩ T−1

a [B] 6= ∅}). Copy the elements
of B into a temporary set B ′. For each state p in T−1

a [B] move p into a new class. (The
elements of a same class are moved into the same new class.) Make each new class points to
its associated old class. During the scan of B ′, compute the list infoB .
Step 3 (update ρ and W). After the step 2, each old class X contains the elements

14

X − T−1
a [B]. For each X1 in I perform the following statements:

If X = X1 (this is performed in O(1) time by the comparison between the numbers of the
elements of the old and new classes) make X point to X1.
For the case X 6= X1, make each element of the new class point to X1 by scanning X1, add
X1 to ρ and update W in the following manner: if X is in W then add X1 to W . If X is a
leaf of a compound splitter, create a new node X12 and make it point to X and X1. Make
X and X1 point back to X12 and make X12 the new leaf in place of X. (This is performed
in O(1) time since the old class points to its father). If X is not in W and X is not a leaf
then create a new node X12 as previously and add it i W .
Case 2: B is a compound splitter B1 ∪ B2 (suppose that | X1 ≤ X2 |)
A refinement step is performed as follows:
Step 1 Remove B from W .
Step 2 Compute the maps infoB1

by scanning the leaves of B1. During the same scanning,
decrement infoB , compute the set I = {X | X ∈ ρ ∧ X ⊆ T−1

a [B]} and copy elements of
the leaves in a temporary file B ′. Make infoB2

points to infoB . If B1 or B2 are nodes, add
them in W .
Step 3 For each X in I, perform the following statement:
split X in X1, X2 and X3 by using infoB and infoB1

. If X = Xi for some i = 1, 2, 3, then
make X points to Xi else add the non-null classes Xi in ρ. Update W in same manner that
in the case simple except that two nodes X123 and X23 may be created such that X123 is the
father of X1 and X23 and X23 is the father of X2 and X3.

4 Composition

Communicating systems are described as a hierarchical set of sequential processes inter-
connected through communication ports. We consider a labeled transition systems algebra
with three operators: parallel composition, restriction and abstraction. Communications are
described by structuring Aτ with a synchronization product, parametrizing parallel compo-
sition [17]. So, synchrony, asynchrony, communication by “rendez-vous” and broadcasting
are expressible with the same operator. To allow partial synchrony, a restriction operator
\a, [12], is introduced on the labeled transition systems to hide port names labeled by a. To
verify external specifications, an abstract mechanism τI , [3], is used to rename by τ the arcs
labeled by an action a ∈ I.

We consider the problem of minimizing space requirement when translating of a term into a
labeled transition system. Let us consider a the abstract tree of a term: each node which is
not a leaf represents an operator and each leaf represents a labeled transition system. The
result of the translation (at the root) is obtained by elaborating partial result associated
with each node. Variation of space requirement depends on the order in which the partial
results associated with the nodes are elaborated. We present a method for improving space
requirement:

15

1. compute inherited and synthesized attributes for each node,

2. construct a graph of communications. Vertices of the graph are the leaves and there
is an edge between two vertices if and only if the two associated labeled transition
systems communicate. Each edge is labeled by an action set.

3. reduce the graph of communications by applying iteratively the following procedure
until only one vertex remains in the graph:

(a) select and compose two vertices,

(b) minimize the result by applying some equivalence transformation,

(c) replace in the graph the result of this composition.

We can derive several methods from this one by defining criteria to select, in the reduction
procedure, the two labeled transition system to compose. In this section, we point out
several algebraic properties of operators, used for constructing graph of communications.
We define background for graphs of communications and we shortly describe algorithms for
constructing a graph of communications from a term. We define a criterion for the select
procedure in the graph of communications reduction.

4.1 Composition, restriction, abstraction

We define composition of two labeled transition systems with a synchronization algebra and
a product of labeled transition systems. A synchronization algebra [17] is given by a binary,
commutative and associative operation • on Aτ with extra distinguished elements 0 and
χ. The binary operation • describes communication or synchronization between labeled
transition systems. 0 and χ have been introduced in order to obtain a complete operation
rather than a partial one. a • b = 0 when no synchronization is possible between an action a
and an action b. χ is introduced to allow definition of synchrony or asynchrony. We extend
the set Aτ in Aχ

τ = Aτ ∪ {0, χ}.

Definition 4.1 A synchronization algebra L = (Aχ
τ , •) satisfies:

1. • is associative and commutative,

2. ∀a ∈ Aτ . a • 0 = 0,

3. χ • χ = χ and a • b = χ ⇒ a = χ ∨ b = χ, for a, b ∈ Aτ

4. ∀a ∈ Aτ . a • τ = 0,

5. χ • τ = τ ,

16

6. ∀a ∈ Aτ . a • χ = 0 or a • χ = a

Condition (3) expresses that synchronization between internal and external actions is im-
possible. Condition (4) expresses that internal actions occur asynchronously. Condition
(5) defines a synchronous or asynchronous product. In [17], parallel composition is de-
fined by means of Cartesian product on labeled transition systems and synchronization al-
gebra. We extend transition relation in order to define directly parallel composition: let
S = (Q,Aτ , T, q0) be a labeled transition system

Tχ = T ∪ {(q, χ, q) | q ∈ Q}.

Definition 4.2 (Parallel composition) Let Si = (Qi, Aτ , Ti, qi) for i = 1, 2 be two labeled
transition systems, let L be a synchronous algebra and <,>: States × States → States a
partial bijection. We can define parallel composition of S1 and S2, as follows:
S1‖LS2 = (Q,Aτ , T, q0) where:
q0 =< q1, q2 >
Q and T are defined by induction:
(i) < q1, q2 >∈ Q

(ii) < p1, p2 >∈ Q ∧ p1

a
−→T

χ
1

p′1 ∧ p2

b
−→T

χ
2

p′2 ∧ a • b 6= 0 ⇒











< p′1, p
′
2 >∈ Q

and

< p1, p2 >
a•b
−→T < p′1, p

′
2 >

Proposition 4.1 Let L be a synchronous algebra, then ‖L is associative and commutative.

Proof. By associativity and commutativity of synchronous product. 2

Example A synchronization algebra for CCS, [12], without passing value.
For each label a, there is a complementary label ā such that a • ā = τ . The following condi-
tions are added to conditions of definition 4.1:
a • b = 0 if and only if b 6= ā (for a ∈ A, only a and ā can be synchronized)
a • χ = a (asynchrony).
We define a restriction operator on labeled transition systems \a such that all transitions
labeled by a is removed.

Definition 4.3 Let S = (Q,Aτ , T, q0) be a labeled transition system and let a ∈ A. We
define S\a = (Q′, Aτ , T ′, q0) where:
T ′ = T \ {(p, a, q) | (p, a, q) ∈ T}
Q′ is the set of states reachable from q0 via T ′.

17

An abstraction operator τI is defined in order to rename in τ the arcs labeled by a ∈ I. This
definition is similar to the definition of abstraction in ACP .

Definition 4.4 Let S = (Q,Aτ , T, q0) be a labeled transition system and let I ⊆ A. We
define τI(S) = (Q,Aτ , T ′, q0) where:
T ′ = {(p, τ, q) | (p, a, q) ∈ T ∧ a ∈ I} ∪ {(p, a, q) | (p, a, q) ∈ T ∧ a /∈ I}
Q′ is the set of states reachable from q0 via T ′.

We exhibit properties of these operators on labeled transition systems in order to construct
a graph of communications.

Notation 1 Let S = (Q,Aτ , T, q0) be a labeled transition system. Let L be a synchronization
algebra, A,B ⊆ A and a, a1 and a2 elements of A.

1. The synchronization product is extended to subsets of A:
A • B = {a • b | a ∈ A ∧ b ∈ B ∧ a • b 6= τ ∧ a • b 6= 0}

2. Restriction operator is extended to subsets of A:
(S\a1)\a2 = S\{a1, a2}

3. A(S) = {a ∈| ∃p, q ∈ Q ∧ p
a

−→T q}.

4. Com(a) = {b | b ∈ A ∧ a • b 6= 0}

5. Com(A) =
⋃

a∈A

Com(a)

Proposition 4.2 Let Si = (Qi, Aτ , Ti, qi) for i = 1, 2 be two labeled transition systems, let
L be a synchronous algebra and let I1, I2 be subsets of A.

1. (S1\I1)\I2 = S1\(I1 ∪ I2)

2. (S1\I1) = S1 if I1 ∩A(S1) = ∅

3. (S1‖LS2)\a = (S1\a)‖LS2 if
(a 6∈ A(S1) • A(S2) ∧ a 6∈ A(S2) ∧ (a ∈ A(S1) ⇒ Com(a) ∩A(S2) = ∅)) ∨
(a ∈ A(S1) • A(S2) ∧ ((a = b • c) ⇒ a = b = c))

4. (S1‖LS2)\a = (S1\a)‖L(S2\a) if
(a 6∈ A(S1) • A(S2) ∧ (a ∈ A(S1) ⇒ Com(a) ∩A(S2) = ∅)

∧ (a ∈ A(S2) ⇒ Com(a) ∩A(S1) = ∅))∨

(a ∈ A(S1) • A(S2) ∧ ((a = b • c) ⇒ a = b = c)).

18

5. Properties (1) - (iv) hold when abstraction operator is substituted for restriction oper-
ator,

6. (τ{a}(S))\{b} = τ{a}(S\{b}),

7. (τ{a}(S))\{a} = (τ{a}(S))

8. τ{a}(S\{a}) = S\{a}.

Proof. By set properties. 2

4.2 From a term to labeled transition system

We consider in this section a congruence relation ∼R and an abstract syntax for terms:

t ::= S | t‖Lt | t\I | τI

where S, t, I ranges over respectively labeled transition systems, terms, subsets of A.

4.2.1 Computing attributes

Each node is decorated with two inherited attributes hid ad rel , denoting respectively the set
of hidden labels and the set of labels renamed in τ , and by two synthesized attributes ste, vis,
denoting respectively the set of labeled transition systems on the leaves and the set of visible
labels. The following table summarizes the semantic rules computing each attribute:

19

production rules semantic rules

t → S = (A,Aτ , T, q0) t.vis := calA
t.ste := {S}

t → τI(t1) t.vis := (t1.vis) − I
t.ste := t1.ste
t.hid := (t.hid) − I
t1.hid := t.hid
t.rel := (t.rel) ∪ I
t1.rel := t.rel

t → t1\I t.vis := (t1.vis) − I
t.ste := t1.ste
t.hid := (t.hid) ∪ I
t1.hid := t.hid
t.rel := (t.rel) − I
t1.rel := t.rel

t → t1‖Lt2 t.vis := (t1.vis) ∪ (t2.vis) ∪ (t1.vis • t2.vis)
t.ste := (t1.ste) ∪ (t2.ste)
t1.hid := t.hid
t2.hid := t.hid
t1.rel := t.rel
t2.rel := t.rel

4.2.2 Transforming the tree

Rules of proposition 4.1 are used in order to transform the abstract tree. Rules 1 and 2 are
oriented left to right whereas rules 3 and 4 are oriented right to left. When one of the rules 3
or 4 fails, a graph of communications is associated with the nodes restriction or abstraction.

4.2.3 Generating the graph of communications

A Graph of communications is an undirected graph (E, V,→) associated with each node \,
τI and with the root. E ⊆ A is the set of hidden actions associated with the node. v is the
set of vertices. A vertex is a leaf of abstract tree and there is an edge between two vertices
vi and vj if and only if:

∃a ∈ vi.vis ∧ ∃b ∈ vj.vis ∧ a • b 6= 0.

This edge is labeled by the set vij (i.e., visible actions after composition of v = vi and vj),
subset of vi ∪ vj ∪ (vi • vj). vij is obtained by removing from v the elements a of E occurring
only in the communication of vi and vj.

20

4.2.4 Reducing the graph of communications

This reduction is made by removing two vertices vi and vj and inserting the result of the
composition of vi and vj , minimized with respect to ∼R. Several criteria may be implemented
in order to choose this vertex. The criterion adopted here takes into account the three
following idea:

• first, we choose labeled transition systems in the same connected component.

• Second, we determine, in the same component, the set of vertices with smallest degree
(i.e. the number of vertices adjacent to a vertex).

• Third, among this set we select two vertices such that vij is minimal according to the
number of elements.

5 Aldébaran

The tool has been implemented in order to verify labeled transition systems. The main
characteristics of Aldébaran is efficiency, extensibility, portability and reusability.

efficiency Algorithm which computes the largest bisimulation is an adaptation of the Paige
& Tarjan algorithm that solves the coarsest partition problem. This algorithm is
required in the minimization procedures and the decision procedures with respect to
an equivalence relation.

extensibility The algorithms to transform the labeled transition systems to allow the com-
putation of normal form with respect to an equivalence relation are based on algorithms
on the graph: depth first search (for example transitive closure for the τ relation) and
breath first search (for example cross operation in acceptance model equivalence). Thus
reduction algorithms for new equivalence relations may be easyly implemented.

portability Aldébaran is written in C and runs on Unix system.

reusability Aldébaran may be interfaced with other systems which manipulate labeled
transition systems. For instance, Aldébaran is interfaced with a LOTOS compiler
[8] and Xesar system. Is is a part of Ocmin, a minimizer of a common object code
produced by LUSTRE and ESTEREL compilers [2].

5.1 Objects

Actions They consist of strings. The string i denotes the invisible action τ .

21

Labeled transition system Non-deterministic sequential processes are described as la-
beled transition systems. A labeled transition system consist of a descriptor and a list
of edges. The descriptor contains the initial state, the number of transitions, the num-
ber of states. A state is a natural number ranging into 0 .. number of states -1.
Parallel composition, restriction and abstraction are used for building networks (i.e.,
terms) and scope of action visibility. A network must be bound to a name using the
comp command. We give hereafter the concrete syntax of terms in Yacc input-like.

net : net ’&’ sub_net /* Parallel composition */

| sub_net

;

subnet : subnet ’#’ ’[’Actionslist’]’ /* Restriction */

| subnet ’$’ ’[’Actionslist’]’ /* Abstraction */

| lts-identifier

| ’(’ net ’)’

;

Initial partition All the reductions (i.e., computation of a normal form) with respect to
an equivalence relation are carried out according to an initial partition. It may be
the universal partition or a partition obtained from basic predicates on the analyzed
system. In this case, this allows reduction according to basic properties on the systems.

Synchronization algebra Parallel composition may be defined in different ways. Synchro-
nization algebra is a very nice construct for defining various kinds of communications.
A synchronization algebra must be defined, using the def com command, before pars-
ing a term.

5.2 Input/output commands

There are two kinds of input files: those which contain labeled transition system or initial
partition and whose contain a network description.

Synopsis of the Aldébaran command:
aldebaran [options] name1 ... namei.
Aldébaran accepts two input file format : ASCII file and binary file (option -bin). Files
whose names end with “.aut” (resp. “.gra”), are taken to be ASCII files (resp. binary files)
containing a labeled transition system whereas files whose names end with “.cls” are taken
to be files containing an initial partition. In this case, the file contains a list of integers. The
ith element denotes the class containing the state i. There are two representations for the
edges: direct or inverse (option -inv). The following twelves options inhibit the interactive
use of Aldébaran.

22

bmin, omin, amin, smin The labeled transition system contained in the file namei is
minimized with respect to strong bisimulation, observational equivalence, acceptance
model equivalence or safety equivalence according to an initial partition if there is a
file namei.cls.

bequ, oequ, aequ, sequ The equality of the two labeled transition system contained re-
spectively in name1 and name2 is tested with respect tostrong bisimulation, obser-
vational equivalence, acceptance model equivalence or safety equivalence. The result
TRUE or FALSE is displayed.

bcla, ocla, acla, scla For each labeled transition system contained in namei, equivalence
classes with respect to strong bisimulation, observational equivalence, acceptance
model equivalence or safety equivalence are displayed.

5.3 System functionalities

The major interest of using interactively the systems lies on the experimentation of network
description. However, reduction and comparison functions are available interactively.

def com int int [Tripleslist] Defines the synchronization algebra. The first integer must
be 0, for synchronous product, or 1, for asynchronous product. The second integer
must takes it values in {0, 1, 2, 3}.

0 (synchronization product of CCS):
a • b = τ for b = naora = nb
a • b = 0 otherwise.

1 a • a = a
a • b = 0 for b 6= a.

2 a • a = τ
a • b = 0 for b 6= a.

3 The third parameter is supplied from the user. The synchronization product is
defined extensively. This parameter obeys the syntax:

Tripleslist : ’[’ triple_list ’]’

;

triple_list : triple

| triple_list ’;’ triple

;

triple : aj ’,’ bj, ’,’ cj

and defines the following synchronization product: iai • bj = cj.

pr com Displays the synchronization relation.

23

comp int int idf term Translates the term of the labeled transition systems algebra into
a labeled transition system. The first integer 0, 1, 2 or 3 denotes respectively the
following equivalence relation none. strong bisimulation, observational equivalence.
The second integer denotes the strategy for translating a term:

0 none

1 The term is evaluated from left to right. After each sub-term evaluation, the result
is minimized according to the equivalence relation.

2 A graph of communications is associated with each node restriction, abstraction
and with the root after the transformation of abstract tree. Then each graph
of communications is reduced and he result in substituted in the tree for the
corresponding node.

help Displays the list of available commands.

ls ste Displays the list of labeled transition systems.

pr ste name Displays the labeled transition system bounded to name.

open in stream name, open out stream name The file name is respectively used as
standard input or standard output.

close all The input stream (resp. output stream) is stdin (resp. stdout).

def tau string string are used as τ .

stat Displays some statistics for each command.

unstat Cancels alls statistics.

time

notime These are analogous to statistics on calls.

5.4 Example

We give an example of reduction carried out by Aldébaran. The reduction is based on
observational equivalence. Reduction with respect to observational equivalence consists of
transforming the labeled transition system by computing transitive closure of the transition
relation labeled by τ and finding the coarsest partition with respect to the transition relation
and the universal partition. The example is Milner’s problem of scheduling (see [12], page
33). This example is interesting for evaluation purposes because the numbers of states,
transitions and equivalence classes grow in the same proportion. We give two specifications
in Lotos [8]. We consider a ring of n elementary identical components, called cyclers. A
cycler specification in Lotos is:

24

process CYCLER[gi, ai, bi, gi+1] : noexit :=

gi ; ai ;

((bi ; gi+1 ; CYCLER[gi, ai, bi, gi+1])

[]

(gi+1 ; bi ; CYCLER[gi, ai, bi, gi+1]))

endproc

A cycler should cycle endlessly as follows: (i) Be enabled by predecessor at gi, (ii) Receive
initiation request at ai (iii) Receive termination signal at bi and enable successor at gi + 1
in either order. We give two specifications of scheduler: the first one is such that the ai and
bi are visible ; in the second one only the ai are visibles. (This last specification expresses
that the scheduler is observationally equivalent to (a1...an)ω). In both cases, we give a table
that summarizes the time (in seconds) spent to find the coarsest partition compatible with
the transition relation and the universal partition.

5.5 First specification

specification SCHEDULER [a1, ..., an, b1, ..., bn] : noexit behaviour

hide g1, ..., gn in

(cycler[g1, a1, b1, g2]

|[g1, g2]|

(

...

cycler[gi, ai, bi, gi+1]

|[gi+1]|

...

(cycler[gn, an, bn, g1] ||| g1; stop)

...

))

where library cycler endlib

endspec

numbers of cyclers number of states number of transitions number of classes time

2 13 35 9 0.017s

3 37 139 25 0.05s

4 97 453 65 0.26s

5 241 1321 161 0.88s

6 577 3595 385 2.6s

7 1345 9339 897 7.28

8 3073 23465 2049 20.5s

9 6913 57687 4663 56.3s

10 15361 138111 10241 159.8s

25

5.6 Second specification

specification SCHEDULER [a1, ..., an] : noexit behaviour

hide g1, ..., gn, b1, ..., bn in

(cycler[g1, a1, b1, g2]

|[g1, g2]|

(

...

cycler[gi, ai, bi, gi+1]

|[gi+1]|

...

(cycler[gn, an, bn, g1] ||| g1; stop)

...

))

where library cycler endlib

endspec

numbers of cyclers number of states number of transitions number of classes time

2 13 35 3 0.01s

3 37 325 4 0.05s

4 97 1465 5 0.15s

5 241 5851 6 0.6s

6 577 21853 7 1.9s

7 1345 78247 8 6.9s

8 3073 272209 9 24s

9 6913 927451 10 80s
Notice that in both cases, time increases quasi linearly with the number of transitions.

6 Conclusion

In this paper we have presented an overview of Aldébaran. We have shown that it is possible
to implement efficient decision procedures for some equivalence relations. We have design
a verification tool which may be easily interfaced with others systems. An extension has
been proposed in [13] in order to explain why two labeled transition systems are not similars
according to an equivalence relation.

There are many directions for future work. One involves the definition of equivalence relations
compatible with a set of properties (i.e., temporal logic formulas). Another involves strategies
to control state explosion occurring in the parallel composition. An attempt in this way has
been done with the graph of communications notions.

26

References

[1] A. Aho, J. Hopcroft, and J. Ullman. Design and analysis of computer Algorithms.
Addison Wesley, 1974.

[2] P. Couronné, J.A. Plaice, and J.B. Saint. The lustre esterel portable format. unpub-
lished, 1986.

[3] J. A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
TCS, 37 (1), 1985.

[4] T. Bolognesi and S.A. Smolka. Fundamental results for the verification of observational
equivalence. In H.Rudin and C.H. West, editors, Protocol Specification, Testing and
Verification VII, 1987.

[5] S. D. Brookes, C.A.R Hoare, and A.W. Roscoe. Theory of communicating sequential
processes. JACM, 31(3), 1984.

[6] J. C. Fernandez. Aldébaran, Un système de vérification par réduction de processus
communicants. PhD thesis, Université de Grenoble, 1988.

[7] J. C. Fernandez. Aldébaran: User’s Manual. Technical Report, LGI-IMAG Grenoble,
1988.

[8] H. Garavel. Compilation et vérification de programmes LOTOS. PhD thesis, Université
Joseph Fourier de Grenoble, 1989.

[9] S. Graf. A complete inference system for an algebra of regular acceptance models. In
Mathematical Foundations of Computer Science, 1986. LNCS, 233.

[10] S. Graf and J. Sifakis. Readiness Semantics for Regular Processes with Silent Action.
Technical Report Projet Cesar RT-3, LGI-IMAG Grenoble, 1986.

[11] P. Kanellakis and S. Smolka. Ccs expressions, finite state processes and three problems
of equivalence. In Proceedings ACM Symp. on Principles of Distribued Computing,
1983.

[12] R. Milner. A calculus of communication systems. In LNCS 92, Springer Verlag, 1980.

[13] L. Mounier. Equivalence des systèmes de transitions étiquetées : réduction et diagnostic.
June 1989. Rapport de DEA, Grenoble.

[14] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM J. Comput., No.
6, 16, 1987.

[15] D. Park. Concurrency and automata on infinite sequences. In Theorical Computer
Science, 5th G1-Conference, Springer Verlag, 1985. LNCS 104.

[16] C. Rodriguez. Spécification et validation de systèmes en XESAR. PhD thesis, Institut
National Polytechnique de Grenoble, 1988.

27

[17] G. Winskel. Synchronization tree. In J. Diaz, editor, 10th ICALP, LNCS 154, 1983.

28

