
Verifying Bisimulations “On the Fly”
Jean-Claude Fernandez Laurent Mounier

LGI-IMAG BP 53X 38041 GRENOBLE Cedex

Abstract

This paper describes a decision procedure for bisimulation-based equivalence relations between
labeled transition systems. The algorithm usually performed in order to verify bisimulation
consists in refining some initial equivalence relation until it becomes compatible with the
transition relation under consideration. However, this method requires to store the transition
relation explicitly, which limits it to medium-sized labeled transition systems.
The algorithm proposed here does not need to previously construct the two transition systems:
the verification can be performed during their generation. Thus, the amount of memory
required can be significantly reduced, and verification of larger size systems becomes possible.
This algorithm has been implemented in the tool Aldébaran and has been used in the
framework of verification of Lotos specifications.

1 Introduction

One of the successful approaches used for the verification of systems of communicating processes
is provided by behavioural equivalence relations, which allow to compare different descriptions
of a given system.
Such an approach appears to be particularly convenient for the verification of Lotos specifica-
tions: the operational semantic of Lotos (derived from CCS [Mil80] and CSP [BHR84]) defines
a program as a labeled transition system, and thus descriptions of different abstraction levels
of a given communicating system, expressed in the same formalism, can be compared by these
equivalences, on labeled transition systems.
More precisely, if we note S (Specification) the more abstract description of the system and I
(Implementation) the more detailed one, it is possible to check whether I is in fact an implemen-
tation of S in the following manner: From S and I, generate two labeled transition systems S1

and S2. Let ∼R be an appropriate equivalence relation (on labeled transition systems). Then,
I implements S if and only if S1 ∼R S2.
Among the different equivalence relations which have been proposed, bisimulations appear to
be the most attractive ones: these equivalences have a suitable semantics, are well defined, and
for each of them a normal-form exists which is minimal in number of states and transitions.
An efficient algorithm [PT87] allows to compute the normal form of a labeled transition system
S for the strong bisimulation relation. This algorithm consists in refining a partition of its states
until it becomes “compatible” with its transition relation. If n is the number of states of S, and
m is the cardinality of its transition relation, then the time requirement for this algorithm is
O(m log(n)).

Thus, an efficient decision procedure for the equivalence of two transition systems consists in
computing the normal form of the union of the labeled transition systems.
However, the main drawback of this method is that the whole labeled transition systems have
to be stored (i.e, the sets of states and transitions). Consequently, the size of the graphs which
can be compared is limited, and this limit is easily reached when verifying real examples.

In this paper, we present an alternative decision procedure for bisimulation based equivalence re-
lations which allows to compare labeled transition systems without explicitly representing them.
Thus, the verification can be done during the process of the two transition systems (verification
“on the fly”). This approach is similar to the one proposed in [JJ89] and [CVWY90], which
deals with “on the fly” verification of linear temporal logic properties.
A version of our algorithm for the bisimulation-based safety equivalence [Rod88] has been im-
plemented in the tool Cæsar-Aldébaran. This tool is composed of a Lotos compiler (Cæsar

[GS90] [Gar89]), able to generate efficiently a labeled transition system from a given specification,
and an equivalence checker (Aldébaran [Fer88] [Fer89]) which allows to compare and reduce
labeled transition systems with respect to several equivalence relations (strong bisimulation,
observational equivalence [Mil80], acceptance model equivalence [GS86] and safety equivalence).

The paper is organized as follows: in section 2 we give the definitions used in the following
pages, in section 3 the verification method for strong bisimulation is described, and in section 4
we show how the algorithm can be adapted to safety equivalence. The results obtained when
applying the usual one and our improved algorithm are also compared in this section.

2 Definitions

2.1 Labeled Transition Systems

Let States be a set of states, A a set of names (of actions), and τ a particular name of A, which
represents an internal or hidden action.

Definition 2.1 A labeled transition system is a quadruplet S = (Q,A, T, q0) where:

• Q is the subset of States reachable from q0 with respect to T .

• A is a set of actions (or labels).

• T ⊆ Q × A × Q is a labeled transition relation.

• q0 is the initial state.

For each label a and each state q, we consider the image set: Ta[q] = {q′ ∈ Q | (q, a, q′) ∈ T}.

We also use the notation p
a

−→T q for (p, a, q) ∈ T .

Definition 2.2 Let S = (Q,A, T, q0) be a labeled transition system and q a state of Q.
The set of the finite execution sequences from q (noted Ex(q)) is defined as follows:

Ex(q) = {σ ∈ Q∗ . σ(0) = q ∧ ∀i . 0 ≤ i ≤ |σ|, ∃ai ∈ A . σ(i)
ai−→T σ(i + 1)}.

In the following, for a labeled transition system S, the term execution sequences of S represents
the set Ex(q0) (where q0 is the initial state of S). Furthermore, an execution sequence is
elementary if and only if all its states are distinct. The subset of Ex(q) containing the elementary
execution sequences of a state q is denoted Exe(q).

2.2 strong bisimulation

Intuitively, two states p and q are strongly bisimilar if for each state p′ reachable from p by
execution of an action a there is a state q ′, reachable from q by execution of the same action a
such that p′ and q′ are also strongly bisimilar.
Strong bisimulation, noted ∼, can be defined as the intersection of a sequence of decreasing
relations [Mil80]:

Definition 2.3 ∼ = ∩ ∼i for i ∈ N , where ∼i are defined by:

• ∀p, q ∈ Q . p ∼0 q,

• p1 ∼i+1 p2 if and only if ∀a ∈ A .
∀r1 . (p1

a
−→T r1 ⇒ ∃r2 . (p2

a
−→T r2 ∧ r1 ∼i r2)) ∧

∀r2 . (p2

a
−→T r2 ⇒ ∃r1 . (p1

a
−→T r1 ∧ r1 ∼i r2)).

Each equivalence relation ∼R defined on states can be extended to an equivalence relation
comparing labeled transition systems in the following manner: let Si = (Qi, Aτ , Ti, qi), for i =
1, 2 be two labeled transition systems such that Q1 ∩Q2 = ∅ (if it is not the case, this condition
can be easily obtained by renaming). Then we define S1 ∼R S2 if and only if q1 ∼R q2

3 Verification of Strong Bisimulation “On the Fly”

In this section, we describe a decision procedure which allows to check if two labeled transition
systems S1 and S2 are strongly bisimilar without explicitly constructing the two graphs. This
procedure is based on the exploration of all the execution sequences of the product of the two
labeled transition systems.
First, we justify the principle of the verification, and then we propose different algorithms.

3.1 Principle of the verification

We give the definition of the product S1 ×S2 between two labeled transition systems S1 and S2,
and then we show how the existence of a strong bisimulation between these two labeled transi-
tion systems can be expressed as a simple criterion which must hold on the execution sequences
of this product.

For two labeled transition systems S1 and S2, the labeled transition system S1×S2 is defined
as a synchronous product of S1 and S2: a state (q1, q2) of S1×S2 can perform a transition labeled
by an action a if and only if the state q1 (belonging to S1) and the state q2 (belonging to S2)
can perform a transition labeled by a. Otherwise, if only one of the two states (q1 or q2) can
perform a transition labeled by a, then the product has a transition from (q1, q2) to the sink
state noted fail.

Definition 3.1 Let Si = (Qi, Ai, Ti, q0i) for i = 1,2 be two labeled transition systems. We define
the labeled transition system S = S1 × S2 by:
S = (Q,A, T, (q01, q02)), with Q ⊆ (Q1×Q2)∪{fail}, A = (A1∩A2)∪{φ}, and T ⊆ Q × A × Q,
where fail /∈ (A1 ∪ A2) and φ /∈ (Q1 ∪ Q2).
T and Q are defined as the smallest sets obtained by the applications of the following rules:

(q01, q02) ∈ Q [R0]

(q1, q2) ∈ Q, q1

a
−→T1

q′1, q2

a
−→T2

q′2

{(q′1, q
′

2)} ∈ Q, {(q1, q2)
a

−→T (q′1, q
′

2)} ∈ T
[R1]

(q1, q2) ∈ Q, q1

a
−→T1

q′1, T2a[q] = ∅

{fail} ∈ Q, {(q1, q2)
φ

−→T fail} ∈ T
[R2]

(q1, q2) ∈ Q, q2

a
−→T2

q′2, T1a[q] = ∅

{fail} ∈ Q, {(q1, q2)
φ

−→T fail} ∈ T
[R3]

The following proposition allows to express the non-equivalence of two labeled transition systems
S1 and S2, in terms of the execution sequences of S1 × S2.

Proposition 3.1 Let Si = (Qi, Ai, Ti, q0i) for i = 1,2 be two labeled transition systems, and let
S = (Q,A, T, q0) be the product S1 × S2.
Then, q01 6∼ q02 if and only if it exists an elementary execution sequence σ of S (σ ∈ Exe((q01, q02))
such that:

• σ = {(q01, q02) = (p0, q0), (p1, q1), ... (pk, qk), fail}.

• ∀i . 0 ≤ i ≤ k, pi 6∼
k−i+1 qi

The proof of this proposition is based on the following lemma:

Lemma 3.1 Let S = (Q,A, T, q0) be a labeled transition system. Then we have,
∀k ≥ 1,∀p, q ∈ Q,

p 6∼k+1 q ∧ p ∼k q ⇒ ∃a ∈ A . ∃p′ . ∃q′ . p
a

−→T p′ ∧ q
a

−→T q′ ∧ p′ 6∼k q′ ∧ p′ ∼k−1 q′.

Moreover, if one of the two labeled transition systems is deterministic, proposition 3.1 can be
improved. In the following lemma, we give an expression of the relation ∼k which holds in this
case:

For a state (q1, q2) of S1 × S2, q1 ∼k q2 if and only if fail is not a successor of (q1, q2) and
all the successors (q′1, q

′

2) of (q1, q2) verify q1 ∼k−1 q2.

Lemma 3.2 Let S1 and S2 be two labeled transition systems, let S = (Q,A, T, q0) be the product
S1 × S2, and let us suppose that S1 or S2 is deterministic i.e.,

∀a ∈ A . ∀q ∈ Qi . |Tia[q]| ≤ 1 for i = 1,2.
Then, it follows: ∀(p, q) ∈ Q,∀k ≥ 1, p ∼k q ⇔

¬((p, q)
φ

−→T fail) ∧ ∀a ∈ A . ∀(p′, q′) . ((p, q)
a

−→T (p′, q′) ⇒ p′ ∼k−1 q′).

From this lemma, we can deduce proposition 3.2:

Proposition 3.2 Let S1 and S2 be two labeled transition systems, let S = (Q,A, T, q0) be the
product S1 × S2, and let us suppose that S1 or S2 is deterministic:
Then: S1 6∼ S2 ⇔ ∃σ ∈ Ex(q01, q02) . ∃k > 0 . σ(k) = fail.

According to this proposition, if at least one of the two labeled transition systems (S1 or S2)
is deterministic then S1 and S2 are not strongly bisimilar if and only if it exists an execution
sequence of S1 × S2 containing the state fail.

3.2 Algorithms

We have expressed the strong bisimulation of two labeled transition systems S1 and S2 by means
of the product S1 × S2 in the following manner:

• If one of the two labeled transition systems is deterministic, then S1 ∼ S2 if and only if
the state fail does not belong to S1 × S2.

• In the general case, S1 ∼ S2 if and only if one cannot find an execution sequence σ of
S1 × S2 which contains the state fail and which is such that all the states (q1, q2) of σ
verify q1 6∼ q2.

In this section, we show that these verifications can both be realized by performing depth first
searches (DFS) on S1×S2. Consequently, the algorithms do not need to previously construct the
two labeled transition systems: the states of S1 ×S2 are generated during the DFS (verification
“on the fly”), but not necessarily all stored. And, what is most important, transitions need
never to be stored.
We give three algorithms realizing such a verification: the first one is devoted to the determin-
istic case and the two others deal with the general case. For each of them, we discuss the time
and memory complexity.

3.2.1 Deterministic case

According to proposition 3.2, if one of the two labeled transition systems is deterministic, the
problem of the verification of S1 ∼ S2 can be reduced to a simple reachability problem in the
graph S1 × S2. We give here a usual DFS algorithm (Algorithm 1).
The required data structures are the following: a stack St1 in order to store the execution
sequence which is currently analyzed and a set W , which contains all the already visited states.
Each element of St1 is a couple ((p, q), l), where (p, q) is a state and l the list of its direct
successors which have not yet been encountered in the currently analyzed execution sequence.
The list of all direct successors of a state (p, q) is obtained by the function succ:

succ(p, q) = {(a, (p′, q′)) . p
a

−→T1
p′ ∧ q

a
−→T2

q′}.

succ(p, q) can be incrementally executed in the following manner:

- calculate the direct successors of p and q applying the transition rules of the language.

- calculate the direct successors of (p, q), applying the rules given in definition 3.1.

Algorithm1

St1 := {(q01, q02), succ(q01, q02)}
W := {(q01, q02)}
while St1 6= ∅

((q1, q2), l) := top(St1)
if l = ∅ { if all successors have been reached ... }

pop(St1) { then backtrack}
else

choose and remove (q′1, q
′

2) in l

if ¬ ((q′1, q
′

2)
φ

−→T fail)
if (q′1, q

′

2) /∈ W { this is a new state }
insert (q′1, q

′

2) in W
push {(q′1, q

′

2), succ(q′1, q
′

2)} in St1
endif

else
return FALSE { fail is reachable ⇒ S1 6∼ S2 }

endif
endif

endwhile
return TRUE { fail isn’t reachable ⇒ S1 ∼ S2 }

end.

Notice that St1 is needed in order to perform a complete search, but the set W is only
intended to improve the efficiency of the algorithm by storing partial results, and therefore do
not need to contain all the states.
Let ni be the number of states of Si (i = 1,2), and let n be the number of states of S1 × S2

(n ≤ n1 × n2).
The time and memory requirements of Algorithm 1 are of order of O(n). However, several
graph search algorithms have been proposed allowing to improve these complexities, possibly
with partial search (see for example [Hol90]). All of them can easily be adapted to this particular
problem.

3.2.2 General case

According to proposition 3.1, in order to decide if S1 and S2 are bisimilar, it is sufficient to
check whether or not it exists an execution sequence of S1×S2 which contains the state fail and
which is such that all of its states (q1, q2) satisfy q1 6∼ q2. Consequently, the main problem is to
be able for each states (q1, q2) in Q, to decide if q1 6∼i q2 for some i.
The proposed solution is based on the definition of 6∼i:

q1 6∼i q2 ⇔ ∃a ∈ A .

[∃q′1 . (q1

a
−→T1

q′1 ∧ (∀q′2 . (q2

a
−→T2

q′2 ⇒ q′1 6∼i−1 q′2) ∨ T2a[q2] = ∅)) ∨

∃q′2 . (q2

a
−→T2

q′2 ∧ (∀q′1 . (q1

a
−→T1

q′1 ⇒ q′1 6∼i−1 q′2) ∨ T1a[q1] = ∅))]

which is equivalent to:

q1 6∼i q2 ⇔ q1 6∼1 q2 ∨ ∃a ∈ A .

[∃q′1 . (q1

a
−→T1

q′1 ∧ ∀q′2 . (q2

a
−→T2

q′2 ⇒ q′1 6∼i−1 q′2)) ∨

∃q′2 . (q2

a
−→T2

q′2 ∧ ∀q′1 . (q1

a
−→T1

q′1 ⇒ q′1 6∼i−1 q′2))]

According to this definition, it appears that the verification can be done during a DFS of the
graph S1 × S2 if:

• the relation 6∼1 can be checked.

• for each analyzed state (q1, q2), the result (q1 ∼i q2) is synthesized for its predecessors in
the current sequence (the states are then analyzed during the back tracking phase).

More precisely, the principle of the algorithm is the following:
Associated with each state (q1, q2), we need a bit array M of size |T1[q1]| + |T2[q2]|. During the
analysis of each state (q′1, q

′

2) in succ(q1, q2), whenever q′1 and q′2 are found bisimilar then M [q′1]
and M [q′2] are set to 1. Thus, when all the successors of (q1, q2) have been analyzed, q1 ∼ q2 if
and only if all the elements of M have been set to 1.
Furthermore, as we can restrict our analysis to elementary sequences (proposition 3.1), each
sequence in the DFS is terminated either by a sink state, or by a state belonging already to the
same sequence.
The following data structures are required:
The DFS itself is managed by a stack St1, as in Algorithm 1. Moreover, since a bit array is
needed for each state of the current sequence, we use another stack St2, which is the stack of
these arrays. We assume that whenever a new array is pushed into St2, then it is initialized
with the value 0.
The algorithm is the following:

Algorithm2

St1 := {(q01, q02), succ(q01, q02)}
St2 := ∅
push into St2 a bit array of size 2 { in order to deal with (q01, q02) }
push into St2 a bit array of size (|T1[q01]| + |T2[q02]|)
while St1 6= ∅

((q1, q2), l) := top(St1)
M := top(St2)
if l 6= ∅

choose and remove (q′1, q
′

2) in l
if (q′1, q

′

2) /∈ St1 { this is a new state }

if ¬ ((q′1, q
′

2)
φ

−→T fail)
push {(q′1, q

′

2), succ(q′1, q
′

2)} in St1
push into St2 a bit array of size (|T1[q

′

1]| + |T2[q
′

2]|)
endif

else { the current sequence is terminated }
M [q′1] := 1 ; M [q′2] := 1

endif
else { l = ∅, then backtrack }

pop(St1) ; pop(St2)
M ′ := top(St2)

if M [q′] = 1 for all q′ in (T1[q1] ∪ T2[q2]) { q1 ∼ q2 }
M ′[q1] := 1 ; M ′[q2] := 1

endif
endif

endwhile
M := top(St2)
if M [q01] = 1 and M [q02] = 1

return TRUE { q01 ∼ q02 }
else

return FALSE { q01 6∼ q02 }
endif

end.

Let ci be the maximum number of successors per state of Si (ci = max{|Tia[q]|, for a ∈ Ai and
for q ∈ Qi} i = 1, 2), and let c be the maximum number of successors per state of S1 × S2

(c ≤ c1 × c2). Let d be the number of states of the longest elementary sequence of S1 × S2.
The number n∗ of states visited by the Algorithm 2 is then in the range of n ≤ n∗ ≤ cd ([Hol90]).
Consequently, the time requirement for Algorithm 2 is of order of O(n∗), and the memory re-
quirement is O(d).

Notation:

In the sequel, we call the status of a state the result of the analysis of this state by an
algorithm. The status of (q1, q2) is “∼” if q1 and q2 are found bisimilar, and is “6∼” otherwise.
2.

In order to reduce the exponential complexity of Algorithm 2, the usual method would con-
sist, as in Algorithm 1, in storing all the visited states together with their status (including
those which do not belong to the current sequence). Unfortunately, this solution cannot be
directly applied:
During the DFS, the states are analyzed in a postfixed order. Consequently, it is possible to
reach a state which has already been visited, but not yet analyzed (since the visits are performed
in a prefixed order). Therefore, the status of such a state is unknown (it is not available yet).
We propose the following solution for this problem: Whenever a state already visited but not
yet analyzed (i.e, which belongs to the stack) is reached, then we assume its status to be “∼”.
If, when the analysis of this state completes (i.e, when it is popped), the obtained status is “6∼”,
then a TRUE answer from the algorithm is not reliable (a wrong assumption was used), and
another DFS has to be performed. On the other hand, a FALSE answer is always reliable.
The data structures required are two stacks St1 and St2 (as in Algorithm 2), and three sets,
R,V , and W :
The set V is intended to mark all the visited states, the set R is used for storing all the states of
the current sequence which were visited more than once, and the set W contains all the states
for which the obtained status is “6∼”.
We consider the function partial DFS, which performs the same DFS as in Algorithm 2, but
storing the visited states and analyzing only the states which do not belong to V ∪W . The result
returned by this function may be TRUE, FALSE or UNRELIABLE. The algorithm consists in
a sequence of calls of partial DFS (each call increasing the set W), until the result belongs to
{TRUE,FALSE}.

Algorithm3

W := ∅
repeat

result := partial DFS { perform a DFS }
until result ∈ {TRUE, FALSE}
return result

end.

function partial DFS

V := ∅ ; R := ∅ ; stable := false
St1 := {(q01, q02), succ(q01, q02)}
St2 := ∅
push into St2 a bit array of size 2 { in order to deal with (q01, q02) }
push into St2 a bit array of size (|T1[q01]| + |T2[q02]|)
while St1 6= ∅

stable := true
((q1, q2), l) := top(St1)
M := top(St2)
if l 6= ∅

choose and remove (q′1, q
′

2) in l
if (q′1, q

′

2) /∈ V ∪ W
if (q′1, q

′

2) /∈ St1 { it’s a new state }

if ¬ ((q′1, q
′

2)
φ

−→T fail)
push {(q′1, q

′

2), succ(q′1, q
′

2)} in St1
push into St2 a bit array of size (|T1[q

′

1]| + |T2[q
′

2]|)
endif

else { (q′1, q
′

2 ∈ St1) }
insert (q′1, q

′

2) in R { this state has been visited more that once }
M [q′1] := 1 ; M [q′2] := 1

endif
else { (q′1, q

′

2) ∈ V ∩ W (i.e, visited in a previous DFS) }
if (q′1, q

′

2) /∈ W
M [q′1] := 1 ; M [q′2] := 1 { q′1 ∼ q′2 }

endif
endif

else { l 6= ∅ }
pop(St1) ; pop(St2)
insert (q1, q2) in V { a new state has been analyzed }
M ′ := top(St2)
if M [q′] = 1 for all q′ in (T1[q1] ∪ T2[q2])

M ′[q1] := 1 ; M ′[q2] := 1 {q1 ∼ q2 }
else

insert (q1, q2) in W { q1 6∼ q2 }
if (q1, q2) ∈ R

stable := false { we assumed a wrong status }
endif

endif

endif
endwhile
M := top(St2)
if M [q01] 6= 1 and M [q02] 6= 1

return FALSE { q01 6∼ q02 }
else

if stable
return TRUE { q01 ∼ q02 }

else
return UNRELIABLE { another DFS has to be performed }

endif
endif

end.

Proposition 3.3 Algorithm 3 terminates, and it returns TRUE if and only if the two labeled
transition systems are bisimilars.

Proof We use the following notations :
Let DFSi representing the ith execution of the function partial DFS, and let Ri (resp. Wi)
representing the set R (resp. W) at the end of DFSi.
When DFSi terminates, the following property holds:

stable = False ⇔ Rk ∩ Wk 6= ∅ (1)

Algorithm 3 terminates:
From (1), ∀i . DFSi returns UNRELIABLE ⇔

∃(q1, q2) ∈ Q . ((q1, q2 ∈ Wi ∩ Ri).

Moreover, as during DFSi the states of Wi−1 aren’t pushed, we also have:

∀i . ∀(q1, q2) ∈ Q . ((q1, q2) ∈ Ri ⇒ (q1, q2) /∈ Wi−1).

From these two assertions, we can deduce :
∀i . DFSi returns UNRELIABLE ⇒

∃(q1, q2) ∈ Q . ((q1, q2 ∈ Wi ∧ (q1, q2) /∈ Wi−1).

Consequently, the set W increases strictly (∀i . Wi ⊂ Wi+1) and, as Q is finite, it exists a k such
that DFSk doesn’t return UNRELIABLE, which ensures the termination of Algorithm 3.
Moreover, the number of calls to the function partial DFS is less or equal to n.

It remains to prove the correctness. Let DFSk be the last DFS performed. From (1), it follows:
Rk ∩ Wk = ∅ ∨ DFSk returns FALSE.

But,

- if Rk ∩ Wk = ∅, then all the assumptions made during DFSk are correct. Consequently, the
obtained result is correct too.

- Whenever the status of a state is unknown, it’s assumed to be ∼. Thus, the relation computed
by the algorithm contains the relation ∼ (it’s a weaker relation). It follows that if the
algorithm returns FALSE then the labeled transition systems aren’t bisimilar.

2.

Let n be the number of states of S1 × S2.
The time requirement for the function partial DFS is O(n). In the worst case, as pointed out
in the proof of proposition 3.3 the number of calls of this function may be n. Consequently, the
theoretical time requirement for this algorithm is O(n2). In the following section, we show that,
for all the examples considered, only one DFS was needed in order to obtain a reliable result.
Moreover, whenever the labeled transition systems are not bisimilar, the time requirement is
always O(n).
In both cases, the memory requirement for the algorithm is O(n). However, the data structures
required can be divided into sequentially accessed memory and randomly accessed memory. As
pointed out in [CVWY90], it is the size of the randomly accessed memory which is critical.
In our case, only the sets R, V and W are randomly accessed (i.e, about 3 bits per state),
while the stacks St1 and St2 are sequentially accessed (and consequently can be implemented
in secondary memory).

4 Applications

The decision procedure for the strong bisimulation given in the previous section can be adapted
in order to deal with weaker equivalence relations. In this section, we describe the modifications
needed in order to deal with the safety equivalence. We show that it is sufficient to transform
only the definition of the product of the two labeled transition systems (and consequently the
function succ). From this modified product, the algorithms of the previous section can be applied
in order to decide of the safety equivalence of the two systems.
Then we give some results obtained by applying this algorithm to labeled transition systems
generated from Lotos specifications.

4.1 Safety Equivalence

Several weaker relations, based on the bisimulation, have been proposed in order to deal with
the unobservable action τ 6∈ A (as observational equivalence [Mil80], branching bisimulation
[GW89]).
Safety equivalence (introduced in [Rod88]) is an equivalence relation preserving safety properties
of systems, and which is therefore interesting in connection with a temporal logic. However, the
relation described in [Rod88] is based on a safety preorder, and we consider here a stronger
bisimulation-based relation.
Safety equivalence, denoted ≈s, can as strong bisimulation be defined as the intersection of a
sequence of decreasing relations:

Definition 4.1 ≈s = ∩ ≈i
s for i ∈ N , where ≈i

s are defined by:

• ∀p, q ∈ Q . p ≈0
s q,

• p1 ≈i+1
s p2 if and only if ∀a ∈ A .

∀r1 . (p1

τ∗a
−→T r1 ⇒ ∃r2 . (p2

τ∗a
−→T r2 ∧ r1 ≈i

s r2)) ∧

∀r2 . (p2

τ∗a
−→T r2 ⇒ ∃r1 . (p1

τ∗a
−→T r1 ∧ r1 ≈i

s r2)).

As in the case of the strong bisimulation, in order to obtain an algorithm performing “on the
fly” verification of safety equivalence, First we define a new product between S1 and S2 (noted
S1 ×s S2). We show that, the relation ≈s can then be expressed in terms of the execution
sequences of this product.
The definition of S1 ×s S2 is similar to definition 3.1: it is straightly obtained by replacing the

relation
a

−→Ti
by

τ∗a
−→Ti

, for a 6= τ (i = 1,2).

Definition 4.2 Let Si = (Qi, Ai, Ti, q0i) for i = 1,2 be two labeled transition systems. We define
the labeled transition system S = S1 ×s S2 such that:
S = (Q,A, T, (q01, q02)), with Q ⊆ (Q1 × Q2) ∪ {fail}, and A = (A1 ∩ A2) ∪ {φ}, where
fail /∈ (A1 ∪ A2) and φ /∈ (Q1 ∪ Q2).
T and Q are the smallest sets obtained by application of the following rules:

(q01, q02) ∈ Q [R0]

(q1, q2) ∈ Q, a ∈ A − {τ}, q1

τ∗a
−→T1

q′1, q2

τ∗a
−→T2

q′2

{(q′1, q
′

2)} ∈ Q, {(q1, q2)
a

−→T (q′1, q
′

2)} ∈ T
[R1]

(q1, q2) ∈ Q, a ∈ A − {τ}, q1

τ∗a
−→T1

q′1, ¬(q2

τ∗a
−→T2

q′2)

{fail} ∈ Q, {(q1, q2)
φ

−→T fail} ∈ T
[R2]

(q1, q2) ∈ Q, a ∈ A − {τ}, q2

τ∗a
−→T2

q′2, ¬(q1

τ∗a
−→T1

q′1)

{fail} ∈ Q, {(q1, q2)
φ

−→T fail} ∈ T
[R3]

The following proposition is similar to proposition 3.1:

Proposition 4.1 Let Si = (Qi, Ai, Ti, q0i) for i = 1,2 be two labeled transition systems, and let
S = (Q,A, T, q0) be the product S1 ×s S2.
Then, q01 6≈s q02 if and only if there exists an elementary execution sequence σ of S such that:

• σ = {(q01, q02) = (p1, q1), (p2, q2), ... (pk, qk), fail}.

• ∀i . 1 ≤ i ≤ k, pi 6∼
k−i qi

According to this proposition, it is obvious that the algorithms obtained in the previous section
can be applied in order to decide of safety equivalence of two systems. Only the function succ
used in the algorithm has to be redefined.

Moreover, one can notice that only the states which are reachable by the relation
τ∗a
−→T1

and
τ∗a
−→T2

(a 6= τ) belong to the product S. Consequently, in most examples, the number of states
analyzed during a DFS (and therefore the time needed) is much smaller than n1 × n2 (which is
the theoretical upper bound).

4.2 Results

The decision procedure for safety equivalence described above has been implemented in Aldébaran.
In this section, we give the results obtained when applying it to Lotos examples.
In this draft implementation, the verification is not performed “on the fly” directly from the
Lotos specifications: the labeled transition systems are previously generated and the verifica-
tion phase consists then in simultaneously building the product and deciding whether or not the
equivalence holds, as described in the algorithms.
Moreover, the obtained results can be compared with the classical verification procedure, also
implemented in Aldébaran.

Three examples are studied here: the first one is the well known scheduler described by Milner
in [Mil80], the second one is an alternating bit protocol called Datalink protocol [QPF88], and
the last one is a real example, the rel/RELfifo protocol [SE90].
For each example, the verification was performed as follows:

- generating the labeled transition system S1 (Implementation) from the Lotos description,
using Cæsar.

- building the labeled transition system S2 (Specification), representing the expected behaviour
of the system.

- comparing S1 and S2 with respect to safety equivalence, using the usual decision procedure of
Aldébaran and the improved one described in this paper (Algorithm 3).

The following notations are used:

• ni and mi denote the number of states and transitions of the two labeled transition systems
(i = 1, 2).

• n denotes the number of states of the product which have been effectively analyzed.

• t1 is the time needed by the usual decision procedure of Aldébaran.

• t2 is the time needed by the decision procedure described in this paper.

The times given here are elapsed times, obtained on a SUN 3-80 Workstation. Only the verifi-
cation phase is taken into account.

4.2.1 Milner’s scheduler

The problem consists in designing a scheduler which ensures that N communicating processes
start a given task in a cyclic way. The Lotos specification considered has been straightly ob-
tained from Milner’s CCS solution.
The results are given for different values of N .

N n1 m1 n2 m2 n t1 t2

7 1345 5377 7 7 449 0:14 0:11

8 3073 13825 8 8 1025 0:46 0:34

9 6913 34561 9 9 2305 2:50 1:44

10 15361 84481 10 10 5121 13:07 5:25

4.2.2 Datalink protocol

The Datalink protocol is an example of an alternating bit protocol. The Lotos specification
provided to Cæsar is described in [QPF88].
By varying the number of the different messages which can be transmitted (noted N), labeled
transition systems of different sizes can be obtained. However, for N > 40, the memory required
by the classical decision procedure of Aldébaran becomes too large, and consequently the
verification can no longer be performed with this procedure.

N n1 m1 n2 m2 n t1 t2

20 7241 10560 41 440 1661 0:24 0:19

30 15661 23040 60 930 3691 0:57 0:55

40 27281 40320 80 1640 6521 2:07 1:45

50 42101 62400 101 2600 10151 — 2:27

60 60121 89280 121 3720 14581 — 3:42

70 81341 120960 140 4970 19811 — 6:42

80 105761 157440 161 6560 25841 — 9:23

4.2.3 rel/RELfifo protocol

This algorithm has also been used for the verification of a “real” protocol, rel/RELfifo ([SE90]),
carried out in Hewlett-Packard Laboratories [BM90]. This reliable multicast protocol provides
the following service:

Atomicity: If a multicast from a transmitter is received by a functioning receiver, then all the
other functioning receivers will also receive it, even if the transmitter crashes during the
multicast.

Fifo: All the multicasts from the same transmitter are received by the functioning receivers in
the order of the multicasts were made.

This protocol has been modeled in Lotos, and a labeled transition system of 680 000 states
and 1 900 000 transitions has been obtained using Cæsar. The Fifo requirement has been ver-
ified by comparing (with respect to safety equivalence) this labeled transition system in which
only the actions performed by one receiver were visible, with the expected behaviour of a single
receiver.
Although the size of the graphs prevented a verification by using the Paige & Tarjan algo-
rithm, this comparison was carried out by using Algorithm 3 in less than 3 hours on a HP-9000
Workstation.

5 Conclusion

Two applications can be obtained directly from the algorithm described in this paper.
First, it can be viewed as a new decision procedure (in the usual sense) for bisimulation-based
equivalence relations between labeled transition systems.
The results obtained for safety equivalence, from a draft implementation, show that, at least for

this relation, this algorithm is more efficient than the usual one. Moreover, as this algorithm
requires less memory, verifications of larger size labeled transition systems become possible.
Furthermore, this algorithm allows to perform “on the fly” verifications: in relation with an
efficient “simulator” (i.e., a tool able to generate a labeled transition system from a Lotos

specification), it is possible to compare Lotos specifications (with respect to an equivalence
relation) without explicitly storing the whole labeled transition system. Thus, the verification
could be integrated in the simulation phase, significantly reducing the amount of memory needed.
Consequently, checking of real size examples could be carried out.

Acknowledgements

The authors whish to thank Joseph Sifakis, who suggested this work, for his helpful comments,
and Suzanne Graf who accepted to read earlier versions of this paper.

References

[BHR84] S. D. Brookes, C.A.R Hoare, and A.W. Roscoe. Theory of Communicating Sequen-
tial Processes. JACM, 31(3), 1984.

[BM90] Simon Bainbridge and Laurent Mounier. Specification and Verification of a Reliable
Multicast Protocol. Technical Report (In preparation), Hewlett-Packard Laborato-
ries, Bristol, U.K, 1990.

[CVWY90] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory Efficient Algo-
rithms for the Verification of Temporal Properties. (to appear,1990).

[Fer88] J. C. Fernandez. Aldébaran, Un système de vérification par réduction de processus
communicants. PhD thesis, Université de Grenoble, 1988.

[Fer89] J. C. Fernandez. Aldébaran: A tool for verification of communicating processes.
Technical Report SPECTRE c14, LGI-IMAG Grenoble, 1989.

[Gar89] H. Garavel. Compilation et vérification de programmes LOTOS. PhD thesis, Uni-
versité Joseph Fourier de Grenoble, 1989.

[GS86] S. Graf and J. Sifakis. Readiness Semantics for Regular Processes with Silent Action.
Technical Report Projet Cesar RT-3, LGI-IMAG Grenoble, 1986.

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS Spec-
ifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the
10th International Symposium on Protocol Specification, Testing and Verification
(Ottawa), IFIP, North-Holland, Amsterdam, June 1990.

[GW89] R.J. Van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics (extended abstract). CS-R 8911, Centrum voor Wiskunde en In-
formatica, Amsterdam, 1989.

[Hol90] Gerard J. Holzmann. Algorithms for Automated Protocol Validation. Technical
Report 69:32-44, AT&T Technical Journal, January 1990.

[JJ89] Claude Jard and Thierry Jeron. On-Line Model-Checking for Finite Linear Tem-
poral Logic Specifications. In International Workshop on Automatic Verification
Methods for Finite State Systems, LNCS 407, Springer Verlag, 1989.

[Mil80] R. Milner. A Calculus of Communication Systems. In LNCS 92, Springer Verlag,
1980.

[PT87] R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM J. Comput.,
No. 6, 16, 1987.

[QPF88] Juan Quemada, Santiago Pavón, and Angel Fernández. Transforming LOTOS Spec-
ifications with LOLA: The Parametrized Expansion. In Kenneth J. Turner, editor,
Proceedings of the 1st International Conference on Formal Description Techniques
FORTE’88 (Stirling, Scotland), pages 45–54, North-Holland, Amsterdam, Septem-
ber 1988.

[Rod88] C. Rodriguez. Spécification et validation de systèmes en XESAR. PhD thesis,
Institut National Polytechnique de Grenoble, 1988.

[SE90] Santosh K. Shrivastava and Paul. D. Ezhilchelvan. rel/REL: A Family of Reliable
Multicast Protocol for High-Speed Networks. Technical Report (In preparation),
University of Newcastle, Dept. of Computer Science, U.K, 1990.

