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Abstract

This paper describes decision procedures for bisimulation and simulation relations between two
transition systems. The algorithms proposed here do not need to previously construct them: the
verification can be performed during their generation. In addition, a diagnosis is computed when
the two transitions systems are not equivalent.

1 Introduction

One of the successful approaches used for the verification of systems of communicating processes is
provided by behavioral equivalence and preorder relations, which allow to compare different descrip-
tions of a given system. More precisely, if we note S (Specification) the most abstract description
of the system and I (Implementation) the most detailed one, it is possible to check whether I is in
fact an implementation of S in the following manner: from S and I, generate two Labeled Transition
Systems (LTS for short) S1 and S2. Let R be an appropriate equivalence relation or preorder relation
on LTS. Then, I implements S if and only if S1RS2.

Among the different equivalence relations which have been proposed, bisimulations appear to be the
most attractive ones: these equivalences have a suitable semantics, are well defined, and for each
of them a normal form exists which is minimal in number of states and transitions. An efficient
algorithm [PT87] allows to compute the normal form of a LTS S for the strong bisimulation relation.
This algorithm consists in refining a partition of its states until it becomes “compatible” with its
transition relation. If n is the number of states of S, and m is the cardinality of its transition relation,
then the time requirement for this algorithm is O(m log(n)). Thus, an efficient decision procedure for
the equivalence of two transition systems consists in computing the normal form of the union of the
LTS.

Other equivalence relations are based on simulation preorders like safety equivalence [Rod88], which
characterizes exactly safety properties [BFG*91]. In this case, I implements S if and only if S1RS2 and
S2RS1. A decision procedure for safety equivalence is based on the Paige & Tarjan algorithm [Fer89].

However, the main drawback of these methods is that the whole LTS have to be stored (i.e, the sets
of states and transitions). Consequently, the size of the graphs which can be compared is limited, and
this limit is easily reached when verifying real examples.

In this paper we extend the decision procedure for bisimulation equivalence relation, presented in [FM90],
to simulation based equivalence or preorder. In fact, we show that it is sufficient to define a particular
synchronous product between two LTS parametrized by a simulation or a bisimulation. Thus, the
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verification can be done during the process of the two transition systems (“on the fly” verification). In
addition, in the case where two LTS are not comparable under the relation R, we produce as a diagno-
sis an execution sequence which leads in a failure state. This approach is similar to the one proposed
in [JJ89], [BFH90] and [CVWY90], which deals with “on the fly” verification of linear temporal logic
properties.

A version of our algorithm for a weaker bisimulation, for safety equivalence and for simulation preorder
have been implemented in the tool Aldébaran which allows to compare and reduce LTS with respect
to several equivalence relations (strong bisimulation, observational equivalence [Mil80], acceptance
model equivalence [GS86] and safety equivalence).

The paper is organized as follows: in section 2 we give the definitions used in the following pages, in
section 3 the verification method for simulations and bisimulations is described, in section 4 we give
the algorithm, and in section 5 we show how it can be adapted to provide a diagnostic. The results
obtained when applying the usual algorithm and our improved one are also compared in this section.

2 Definitions

2.1 Labeled Transition Systems

Let States be a set of states, A a set of names (of actions), and τ a particular name of A, which
represents an internal or hidden action. For a set X, X ∗ will represent the set of finite sequences on
X.

Definition 2.1 A LTS is a tuple S = (Q,A, T, q0) where: Q is the subset of States reachable from
q0 with respect to T , A is a set of actions (or labels), T ⊆ Q × A × Q is a labeled transition relation,
and q0 is the initial state.

For each label a and each state q, we consider the image set: T a[q] = {q′ ∈ Q | (q, a, q′) ∈ T}.
We also use the notation p

a
−→T q for (p, a, q) ∈ T . We consider the set of the actions which can be

performed in a state q: Act(q) = {a ∈ A | ∃q ′ ∈ Q . q
a

−→ q′}.

Definition 2.2 Let S = (Q,A, T, q0) be a LTS and q a state of Q.
The set of the finite execution sequences from q (noted Ex(q)) is defined as follows:

Ex(q) = {σ ∈ Q∗ . σ(0) = q ∧ ∀i . 0 ≤ i < |σ| − 1, ∃ai ∈ A . σ(i)
ai−→T σ(i + 1)}.

In the following, for a LTS S, the term execution sequences of S represents the set Ex(q0) (where q0

is the initial state of S). Furthermore, an execution sequence is elementary if and only if all its states
are distinct. The subset of Ex(q) containing the elementary execution sequences of a state q will be
noted Exe(q).

2.2 Equivalences and Preorders

We recall the definition of the simulation and the bisimulation relations.

Notation 1 Let λ ⊆ A∗, and let p, q ∈ Q. We write p
λ

−→T q if and only if:

∃u1 · · · un ∈ λ ∧ ∃q1, · · · , qn−1 ∈ Q ∧ p
u1−→T q1

u2−→T q2 · · · qi
ui+1
−→T qi+1 · · · qn−1

un−→T q.
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T λ[q] = {q′ ∈ Q | q
λ

−→T q′}. Let Π be a family of disjoint languages on A.

ActΠ(q) = {λ ∈ Π | ∃q′ . q
λ

−→ q′}.

Definition 2.3 (simulation) Let Π be a family of disjoint languages on A. We define inductively a
family of simulations RΠ

k by:

RΠ
0 = Q × Q

RΠ
k+1 = {(p1, p2) | ∀λ ∈ Π . ∀q1 . (p1

λ
−→T q1 ⇒ ∃q2 . (p2

λ
−→T q2 ∧ (q1, q2) ∈ RΠ

k ))}

The simulation preorder for Π is vΠ=
∞⋂

k=0

RΠ
k , the simulation equivalence is ≈Π=

∞⋂

k=0

(RΠ
k ∩ RΠ

k

−1
).

Definition 2.4 (bisimulation) Let Π be a family of disjoint languages on A. We define inductively a
family of bisimulations RΠ

k by:

RΠ
0 = Q × Q

RΠ
k+1 = {(p1, p2) | ∀λ ∈ Π . ∀q1 . (p1

λ
−→T q1 ⇒ ∃q2 . (p2

λ
−→T q2 ∧ (q1, q2) ∈ RΠ

k ))

∀q2 . (p2
λ

−→T q2 ⇒ ∃q1 . (p1
λ

−→T q1 ∧ (q1, q2) ∈ RΠ
k ))}

The bisimulation equivalence for Π is ∼Π=
∞⋂

k=0

RΠ
k .

Remark 1 From these general definitions, several simulation and bisimulation relations can be de-
fined. The choice of a class Π corresponds to the choice of an abstraction criterion on the actions. The
strong simulation and the strong bisimulation are defined by Π = {{a} | a ∈ A}, the w-bisimulation
is the bisimulation equivalence defined by Π = {τ ∗a | a ∈ A ∧ a 6= τ}, the safety preorder is the
simulation preorder defined by Π = {τ ∗a | a ∈ A ∧ a 6= τ} and the safety equivalence is the simulation
equivalence where Π = {τ ∗a | a ∈ A ∧ a 6= τ}.

Each equivalence relation RΠ defined on states can be extended to an equivalence relation comparing
LTS in the following manner: let Si = (Qi, Aτ , Ti, qi), for i = 1, 2 be two LTS such that Q1 ∩ Q2 = ∅
(if it is not the case, this condition can be easily obtained by renaming). Then we define S1 RΠ S2 if

and only if (q1, q2) ∈ RΠ and S1 6R
Π

S2 if and only if (q1, q2) 6∈ RΠ.

3 Verification of Simulations and Bisimulations “On the Fly”

In this section, we describe the principle of a decision procedure which allows to check if two LTS S1

and S2 are similar or bisimilar without explicitly constructing the two graphs. We define the product
S1 ×RΠ S2 between two LTS S1 and S2, and then we show how the existence of RΠ between these two
LTS can be expressed as a simple criterion which must hold on the execution sequences of this product.
In the rest of the section, we consider two LTS Si = (Qi, Ai, Ti, q0i), for i = 1, 2. We use pi, qi, p

′
i, q

′
i to

range over Qi. We use RΠ and RΠ
k to denote either simulations or bisimulations (RΠ =

∞⋂

k=0

RΠ
k ).

The LTS S1 ×RΠ S2 is defined as a synchronous product of S1 and S2: a state (q1, q2) of S1 ×RΠ S2

can perform a transition labeled by an action a if and only if the state q1 (belonging to S1) and the
state q2 (belonging to S2) can perform a transition labeled by a. Otherwise,
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• in the case of a simulation, if only the state q1 can perform a transition labeled by a, then the
product has a transition from (q1, q2) to the sink state noted fail.

• in the case of a bisimulation, if only one of the two states (q1 or q2) can perform a transition
labeled by a, then the product has a transition from (q1, q2) to the sink state fail.

Definition 3.1 We define the LTS S = S1 ×RΠ S2 by:
S = (Q,A, T, (q01, q02)), with Q ⊆ (Q1 × Q2) ∪ {fail}, A = (A1 ∩ A2) ∪ {φ}, and T ⊆ Q × A × Q,
where φ 6∈ (A1 ∪ A2) and fail 6∈ (Q1 ∪ Q2).
T and Q are defined as the smallest sets obtained by the applications of the following rules: R0, R1
and R2 in the case of a simulation, R0, R1, R2 and R3 in the case of a bisimulation.

(q01, q02) ∈ Q [R0]

(q1, q2) ∈ Q, ActΠ(q1) = ActΠ(q2), q1
λ

−→T1
q′1, q2

λ
−→T2

q′2

{(q′1, q
′
2)} ∈ Q, {(q1, q2)

λ
−→T (q′1, q

′
2)} ∈ T

[R1]

(q1, q2) ∈ Q, q1
λ

−→T1
q′1, T 2

λ [q] = ∅

{fail} ∈ Q, {(q1, q2)
φ

−→T fail} ∈ T
[R2]

(q1, q2) ∈ Q, q2
λ

−→T2
q′2, T 1

λ [q] = ∅

{fail} ∈ Q, {(q1, q2)
φ

−→T fail} ∈ T
[R3 bisimulation]

Let’s notice that (p1, p2)
φ

−→T fail if and only if (p1, p2) 6∈ RΠ
1 .

The following proposition allows to express that S1 and S2 are not comparable against RΠ in terms
of the execution sequences of S1 ×RΠ S2.

Proposition 3.1 Let S = (Q,A, T, q0) be the product S1 ×RΠ S2. Then, (q01, q02) 6∈ RΠ if and only if
it exists an elementary execution sequence σ of S (σ ∈ Exe(q01, q02)) such that:

• σ = {(q01, q02) = (p0, q0), (p1, q1), ... (pk, qk), fail}.

• ∀i . 0 ≤ i ≤ k, (pi, qi) 6∈ RΠ
k−i+1.

The proof of this proposition is based on the following lemma:

Lemma 3.1 Let S = (Q,A, T, q0) be a LTS. Then we have,
∀k ≥ 1,∀p, q ∈ Q, (p, q) 6∈ RΠ

k+1
∧ (p, q) ∈ RΠ

k ⇒

∃λ ∈ Π . ∃p′ . ∃q′ . p
λ

−→T p′ ∧ q
λ

−→T q′ ∧ (p′, q′) 6∈ RΠ
k ∧ (p′, q′) ∈ RΠ

k−1
.

Proof (By induction on k). We consider the case where the family (RΠ
k )k≥0 are simulations. Let

(p, q) 6∈ RΠ
k+1 and (p, q) ∈ RΠ

k . From (p, q) 6∈ RΠ
k+1, we have

∃λ ∈ Π . ∃p′ . p
λ

−→T p′ ∧ (∀q” . q
λ

−→T q” ⇒ (p′, q”) 6∈ RΠ
k ).

Since (p, q) ∈ RΠ
k , ∃q′ . q

λ
−→T q′ ∧ (p′, q′) ∈ RΠ

k−1. The lemma is the conjunction of these two facts.
2

In order to obtain the proof of proposition 3.1, we choose the least k ≥ 0 such that (p, q) 6∈ RΠ
k+1 and

(p, q) ∈ RΠ
k , then we construct the sequence (p0, q0), ..., (pk , qk) such that
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1. (p0, q0) = (p, q),

2. (pi, qi)
λi−→T (pi+1, qi+1), with (pi, qi) 6∈ RΠ

k−i+1
and (pi, qi) ∈ RΠ

k−i for 0 ≤ i < k (see lemma
3.1).

3. (pk, qk) 6∈ RΠ
1 , which is equivalent to (pk, qk)

φ
−→T fail.

If one of the two LTS is deterministic, proposition 3.1 can be improved. In this case, if S2 (or S1, if
the (RΠ

k )k≥0 are bisimulations) the converse of the lemma 3.1 holds: For a state (q1, q2) of S1 ×RΠ S2,
(q1, q2) ∈ RΠ

k if and only if fail is not a successor of (q1, q2) and all the successors (q′1, q
′
2) of (q1, q2)

verify (q1, q2) ∈ RΠ
k−1

.

Lemma 3.2 Let S = (Q,A, T, q0) be the product S1×RΠ S2 and let us suppose that S2 is deterministic
(or S1 if the (RΠ

k )k≥0 are bisimulations).

∀k ≥ 1,∀p, q ∈ Q, ∃λ ∈ Π . ∃p′ . ∃q′ . p
λ

−→T p′ ∧ q
λ

−→T q′ ∧ (p′, q′) 6∈ RΠ
k ⇒ (p, q) 6∈ RΠ

k+1

From this lemma, we can deduce proposition 3.2:

Proposition 3.2 Let S = (Q,A, T, q0) be the product S1 ×RΠ S2 and let us suppose that S2 is deter-
ministic (or S1 if the (RΠ

k )k≥0 are bisimulations). Then:

S1 6R
Π
S2 ⇔ ∃σ ∈ Ex(q01, q02) . ∃k > 0 . σ(k) = fail.

Proof We only show the ⇐ direction. The ⇒ direction is a consequence of the proposition 3.1.
Let k such that σ(k) = fail. Then we have : {(q01, q02), ... (pk, qk), fail} ∈ Ex(q01, q02. Thus,
(pk, qk) 6∈ RΠ

1 . According to the lemma 3.2, (pk−1, qk−1) 6∈ RΠ
2 , and so on. Thus, (q01, q02) 6∈ RΠ

k+1. 2

According to this proposition, if at least one of the two LTS S1 or S2 (resp. S2) is deterministic
then S1 and S2 are not bisimilar (resp. similar) if and only if it exists an execution sequence of
S1 ×RΠ S2 containing the state fail.

4 Algorithms

In the previous section, we have expressed the bisimulation and the simulation between two LTS S1

and S2 in terms of the existence of a particular execution sequence of their product S1 ×RΠ S2. Now
we show that this verification can be realized by performing depth-first searches (DFS for short) on
the LTS S1×RΠ S2. Consequently, the algorithm does not require to construct the two LTSpreviously :
the states of S1 ×RΠ S2 are generated during the DFS (“on the fly” verification), but not necessarily
all stored. And the most important is that transitions do not have to be stored.

We note n1 (resp. n2) the number of states of S1 (resp. S2), and n the number of states of S1 ×RΠ S2

(n ≤ n1 × n2). We describe the algorithm considering the two following cases:

Deterministic case: if RΠ represents a simulation (resp. a bisimulation) and if S2 (resp. either
S1 or S2) is deterministic, then, according to proposition 3.2, it is sufficient to check whether
or not the state fail belongs to S1 ×RΠ S2, which can be easily done by performing a usual
DFS of S1 ×RΠ S2. The verification is then reduced to a simple reachability problem in this
graph. Consequently, if we store all the visited states during the DFS, the time and memory
complexities of this decision procedure are O(n). Several memory efficient solutions exist to
manage such a DFS ([Hol89]).
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General case: in the general case, according to the proposition 3.1, we have to check the existence
of an execution sequence σ of S1 ×RΠ S2 which contains the state fail and which is such that
for all states (q1, q2) of σ, (q1, q2) /∈ RΠ

k for a certain k. According to the definition of RΠ
k , this

verification can be done during a DFS as well if:

• the relation RΠ
1 can be checked.

• for each visited state (q1, q2), the result (q1, q2) ∈ RΠ
k is synthesized for its predecessors in

the current sequence (the states are then analyzed during the back tracking phase).

More precisely, the principle of the general case algorithm is the following: if RΠ is a simulation (resp. a
bisimulation) we associate with each state (q1, q2) a bit array M of size |T1[q1]| (resp. |T1[q1]|+|T2[q2]|).
During the analysis of each successor (q ′1, q

′
2) of (q1, q2), whenever it happens that (q′1, q

′
2) ∈ RΠ then

M [q′1] (resp. M [q′1] and M [q′2]) is set to 1. Thus, when all the successors of (q1, q2) have been analyzed,
(q1, q2) ∈ RΠ if and only if all the elements of M have been set to 1.

As in the deterministic case algorithm, to reduce the exponential time complexity of the DFS the
usual method would consist in storing all the visited states (including those which do not belong to
the current sequence) together with the result of their analysis (i.e, if they belong or not to RΠ).
Unfortunately, this solution cannot be straightly applied:

During the DFS, the states are analyzed in a postfixed order. Consequently, it is possible to reach a
state which has already been visited, but not yet analyzed (since the visits are performed in a prefixed
order). Therefore, the result of the analysis of such a state is unknown (it is not available yet). We
propose the following solution for this problem:

Notation 2 We call the status of a state the result of the analysis of this state by the algorithm. The
status of (q1, q2) is “∼” if (q1, q2) ∈ RΠ, and is “6∼” otherwise.

Whenever a state already visited but not yet analyzed (i.e, which belongs to the stack) is reached,
then we assume its status to be “∼”. If, when the analysis of this state completes (i.e, when it is
popped), the obtained status is “6∼”, then a TRUE answer from the algorithm is not reliable (a wrong
assumption was used), and another DFS has to be performed. On the other hand, a FALSE answer
is always reliable.

Consequently, the following data structures are required:

• A stack St1, to store the states already visited of the current execution sequence. Each element
of St1 is a couple ((p, q), l), where (p, q) is a state and l the list of its direct successors which
remains to explore.

• A stack St2, to store the bit arrays associated to each state of the current execution sequence.
We assume that whenever a new array is pushed into St2, then it is initialized with the value 0.

• a set V , to mark all the visited states.

• a set R, to store all the states of the current sequence visited more than once.

• a set W , to store all the states for which the obtained status is “6∼”.

The list of all direct successors of a state (p, q) is obtained by the function succ:
succ(p, q) = {(a, (p′, q′)) . p

a
−→T1

p′ ∧ q
a

−→T2
q′}.

succ(p, q) can be incrementally computed in the following manner:
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- calculate the direct successors of p and q applying the transition rules of the description language
of S1 and S2.

- calculate the direct successors of (p, q), applying the rules given in definition 3.1.

We also consider the function partial DFS, which performs a DFS storing all the visited states and
analyzing only the states which do not belong to V ∪W . The result returned by this function may be
TRUE, FALSE or UNRELIABLE. The algorithm then consists in a sequence of calls of partial DFS
(each call increasing the set W ), until the result belongs to {TRUE,FALSE}.

The algorithm dealing with the bisimulation relation is the following:

Algorithm
W := ∅
repeat

result := partial DFS { perform a DFS }
until result ∈ {TRUE, FALSE}
return result

end.

function partial DFS
V := ∅ ; R := ∅ ; stable := false
St1 := {(q01, q02), succ(q01, q02)}
St2 := ∅
push into St2 a bit array of size 2 { in order to deal with (q01, q02) }
push into St2 a bit array of size (|T1[q01]| + |T2[q02]|) (1)
while St1 6= ∅

stable := true
((q1, q2), l) := top(St1)
M := top(St2)
if l 6= ∅

choose and remove (q′1, q
′
2) in l

if (q′1, q
′
2) /∈ V ∪ W

if (q′1, q
′
2) /∈ St1 { it’s a new state }

if ¬ ((q′1, q
′
2)

φ
−→T fail)

push {(q′1, q
′
2), succ(q′1, q

′
2)} in St1

push into St2 a bit array of size (|T1[q
′
1]| + |T2[q

′
2]|) (1)

endif
else { (q′1, q

′
2 ∈ St1) }

insert (q′1, q
′
2) in R { this state has been visited more that once }

M [q′1] := 1 ; M [q′2] := 1 (2)
endif

else { (q′1, q
′
2) ∈ V ∪ W (i.e, visited in a previous DFS) }

if (q′1, q
′
2) /∈ W

M [q′1] := 1 ; M [q′2] := 1 (2) { q′1 ∼ q′2 }
endif

endif
else { l 6= ∅ }
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pop(St1) ; pop(St2)
insert (q1, q2) in V { a new state has been analyzed }
M ′ := top(St2)
if M [q′] = 1 for all q′ in (T1[q1] ∪ T2[q2]) (3)

M ′[q1] := 1 ; M ′[q2] := 1 {q1 ∼ q2 } (2)
else

insert (q1, q2) in W { q1 6∼ q2 }
if (q1, q2) ∈ R

stable := false { we assumed a wrong status }
endif

endif
endif

endwhile
M := top(St2)
if M [q01] 6= 1 and M [q02] 6= 1 (4)

return FALSE { q01 6∼ q02 }
else

if stable
return TRUE { q01 ∼ q02 }

else
return UNRELIABLE { another DFS has to be performed }

endif
endif

end.

The algorithm dealing with the simulation is straightly obtained by replacing:

(1) by push into St2 a bit array of size (|T1[q01]|)

(2) by M [q′1] := 1

(3) by if M [q′] = 1 for all q′ in T1[q1]

(4) by if M [q01] = 1

Proposition 4.1 Algorithm terminates, and it returns TRUE if and only if the two LTS are bisimi-
lars.

Proof We use the following notations: let DFSi representing the ith execution of the function
partial DFS, and let Ri (resp. Wi) representing the set R (resp. W ) at the end of DFSi. When
DFSi terminates, the following property holds:

stable = False ⇔ Rk ∩ Wk 6= ∅ (1)

Algorithm terminates: From (1), ∀i . DFSi returns UNRELIABLE ⇔
∃(q1, q2) ∈ Q . ((q1, q2) ∈ Wi ∩ Ri).

Moreover, as during DFSi the states of Wi−1 aren’t pushed, we also have:
∀i . ∀(q1, q2) ∈ Q . ((q1, q2) ∈ Ri ⇒ (q1, q2) /∈ Wi−1).

From these two assertions, we can deduce :
∀i . DFSi returns UNRELIABLE ⇒

∃(q1, q2) ∈ Q . ((q1, q2) ∈ Wi ∧ (q1, q2) /∈ Wi−1).
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Consequently, the set W increases strictly (∀i . Wi ⊂ Wi+1) and, as Q is finite, it exists a k such
that DFSk doesn’t return UNRELIABLE, which ensures the termination of Algorithm. Moreover,
the number of calls to the function partial DFS is less or equal to n.

It remains to prove the correctness. Let DFSk be the last DFS performed. From (1), Rk ∩ Wk = ∅ ∨ DFSk

returns FALSE. But,

- if Rk∩Wk = ∅, then all the assumptions made during DFSk are correct. Consequently, the obtained
result is correct too.

- Whenever the status of a state is unknown, it’s assumed to be ∼. Thus, the relation computed by
the algorithm contains the relation ∼ (it’s a weaker relation). It follows that if the algorithm
returns FALSE then the LTS aren’t bisimilar.

2.

The time requirement for the function partial DFS is O(n). In the worst case, as pointed out in the
proof of proposition 4.1 the number of calls of this function may be n. Consequently, the theoretical
time requirement for this algorithm is O(n2). In practice, it turns out that only 1 or 2 DFS are required
to obtain a reliable result. Moreover, whenever the LTS are not bisimilar, the time requirement is
always O(n).

In both cases, the memory requirement for the algorithm is O(n). However, the data structures
required can be divided into sequentially accessed memory (St1 and St2) and randomly accessed mem-
ory ( R, V and W ). Furthermore, as it is not critical to store all the already visited states, memory
efficient implementations can be found for the set V , like hash-based caches.

5 Applications and Results

From this general algorithm several decision procedures for bisimulation and simulation based relations
have been implemented in the tool Aldébaran, like strong and w-bisimulation, strong simulation,
safety preorder and safety equivalence. However, as it is the case for the Paige & Tarjan algorithm,
such decision procedures are really useful in a verification tool – from a user’s point of view – only
if they allow to build a diagnosis whenever the two LTS are not related. We show how the previous
algorithm has been modified in order to allow this computation. Then, we give some results obtained
when applying it to the verification of Lotos specifications.

Remark 2 In this draft implementation, the verification is not performed “on the fly” straightly
from the Lotos specifications: the LTS are previously generated and the verification phase consists
in simultaneously building the LTS product and deciding whether or not they are related, as described
in the algorithm. Thus, the obtained results can be compared with the classical verification procedure
(based on the Paige & Tarjan algorithm) already implemented in Aldébaran.

5.1 Diagnosis

Several formalisms have been proposed in order to express the “non bisimulation” of two LTS (for
example Hennessy-Milner Logic in [Cle90]). We present here a more intuitive solution, suitable either
for bisimulation or simulation relations (both denoted by RΠ): whenever the two LTS S1 and S2 are
not related, we build an explanation sequence consisting of an execution sequence σ of S1 ×RΠ S2
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terminated by a failure state (pk, qk) which is not in RΠ
1 (i.e, from which it clearly appears that S1

and S2 are not related) and such that for each (pi, qi) of σ, (pi, qi) 6∈ RΠ.

Definition 5.1 Let S1 and S2 be two LTS. An explanation sequence of S1 6R
Π
S2 is an execution

sequence σ of S1 ×RΠ S2 such that:

• σ = {(q01, q02) = (p1, q1), (p2, q2), ..., (pk, qk)}

• ∀i . 0 ≤ i ≤ k, (pi, qi) 6∈ RΠ
k−i+1

.

• (pk, qk) /∈ RΠ
1

In fact, the explanation sequences are exactly the execution sequences which are looked for during the
verification phase, see proposition 3.1.

We show how such a sequence can be obtained (and therefore printed) without modifying the time
and memory complexities of the previous algorithm:

deterministic case: Obviously, when a state fail is reached during the DFS of S1 ×RΠ S2 the stack
St1 contains an explanation sequence (proposition 3.2).

general case: In this case, the sequence has to be explicitly built during the verification phase. In
the previous algorithm, all the visited states (p, q) of S1 ×RΠ S2 which do not belong to RΠ are
inserted in the set W . To obtain an explanation sequence, it is then sufficient to modify the
algorithm in the following manner: whenever a new state is inserted in W , it is linked with one
of its successor already in W (which always exists). Thus, if the initial state of the product
belongs to W (i.e, the two LTS are not related), an explanation sequence is straightly available
from its associated linked list.

5.2 Results

Two examples are studied here: the first one is an alternating bit protocol called Datalink protocol
[QPF88], and the second one is a more realistic example, the rel/RELfifo protocol [SE90]. For each
example, the verification was performed as follows:

- generating the LTS S1 (Implementation) from the Lotos description, using the Lotos compiler
Cæsar [GS90].

- building the LTS S2 (Specification), representing the expected behavior of the system.

- comparing S1 and S2 with respect to w-bisimulation or safety equivalence, using both the usual
decision procedure of Aldébaran and the improved one described in this paper.

5.2.1 Datalink protocol

The Datalink protocol is an example of an alternating bit protocol. The Lotos specification provided
to Cæsar is described in [QPF88]. By varying the number of the different messages (noted N), LTS
of different sizes can be obtained. These LTS have been compared, with respect to w-bisimulation,
with the LTS describing the expected behavior of the protocol. However, for N > 40, the memory
required by the classical decision procedure of Aldébaran becomes too large, and consequently the
verification can no longer be performed with this procedure.
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The following notations are used:

• ni and mi denote the number of states and transitions of the two LTS (i = 1, 2).

• n denotes the number of states of the product which have been effectively analyzed.

• t1 is the time needed by the usual decision procedure of Aldébaran.

• t2 is the time needed by the decision procedure described in this paper.

The times given here are elapsed times, obtained on a SUN 3-80 Workstation.

N n1 m1 n2 m2 n t1 t2

20 7241 10560 41 440 1661 0:24 0:19

30 15661 23040 60 930 3691 0:57 0:55

40 27281 40320 80 1640 6521 2:07 1:45

50 42101 62400 101 2600 10151 — 2:27

60 60121 89280 121 3720 14581 — 3:42

70 81341 120960 140 4970 19811 — 6:42

80 105761 157440 161 6560 25841 — 9:23

5.2.2 rel/RELfifo protocol

This algorithm has also been used for the verification of a “real” protocol, rel/RELfifo ([SE90]),
carried out in Hewlett-Packard Laboratories [MB90]. This reliable multicast protocol provides the
following service:

Atomicity: If a multicast from a transmitter is received by a functioning receiver, then all the other
functioning receivers will also receive it, even if the transmitter crashes during the multicast.

Fifo: All the multicasts from the same transmitter are received by the functioning receivers in the
order of the multicasts were made.

This protocol has been modeled in Lotos, and a LTS of 680 000 states and 1 900 000 transitions has
been generated by Cæsar. The Fifo requirement has been verified by comparing (with respect to
safety equivalence) this LTS in which only the actions performed by one receiver were visible, with
the expected behavior of a single receiver. Although the size of the graphs prevented a verification by
using the Paige & Tarjan algorithm, this comparison was carried out by using the algorithm described
in this paper in less than 3 hours on a HP-9000 Workstation.

6 Conclusion

Several applications can be obtained from the algorithm described in this paper.

First, it can be viewed as a new decision procedure (in the usual sense) for bisimulation equivalence,
simulation equivalence and simulation preoders between LTS.

The results obtained, from a draft implementation in Aldébaran, show that this algorithm can be
more efficient than the usual one. As this algorithm requires less memory, verifications of larger LTS
become possible.
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Moreover, the diagnosis capability of this decision procedure is very useful from the user’s point of
view for the specification of communicating processes (as a debugging tool for a sequential language).

But one of the major improvement provided by this algorithm is that “on the fly” verification of
bisimulation and simulation relations are allowed. In this framework, our project is to modify the
Lotos compiler Cæsar to compare Lotos specifications (with respect to these relations) without
explicitly storing the whole LTS of the Lotos specifications. Consequently, checking of real size
examples could be carried out.
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