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Abstract

Given a boolean equation system & and one of its bound variables Xj, ;;, we propose a local
algorithm for computing the solution 6(Xj,;¢) of £ This algorithm relies on depth-first traver-
sals of the dependency graph of &£: the boolean equation system is solved during the depth-first
search, and the algorithm terminates as soon as the value obtained for Xj,;; is correct. Two
applications are presented in the framework of program verification: bisimulation checking, and
model-checking for the alternation-free p-calculus. This algorithm has been implemented within
the CESAR-ALDEBARAN toolbox and experimental results on rather large examples demonstrated
its practical interest.

1 Introduction

In 1991 we proposed an algorithm for computing various bisimulation relations between two labeled
transition systems (Its) [FM91]. The main feature of this algorithm is to rely on a depth-first traversal
of a synchronous product of the two Itss. Thus, it does not require to store in memory their whole set
of states and transitions during the computation, which improved the memory efficiency of the usual
methods based on partition refinement. This algorithm has been implemented within the CasSAR-
ALDEBARAN toolbox, and in spite of its theoretical worst-case time complexity, it was successful in
practice for on-the-fly verification of non trivial LoTOS programs.

From these interesting results, the initial aim of the present work was to re-use this algorithm for
alternation-free u-calculus [Koz83] model checking. Although previous works have already been carried
out in this area (see for instance [Cle90, CS91, Lar92, BVWO94, And92], our goal was twofold: first, to
propose an algorithm detailed enough to allow a straightforward implementation, but also to obtain a
convenient framework for designing on-the-fly algorithms for checking either equivalence relations or
temporal logic formulae.

It turns out that boolean equation systems (bes), with mixed fixpoint equations, are a suitable frame-
work to formalize such algorithms [And92, VWL94, AV95]. More precisely, we present in this paper a
general algorithm for computing the solution 6( Xj,;1) of a given bes £, where Xj, ;¢ is a distinguished
variable of £. This algorithm is restricted to so called mscc-consistent bess: each maximal strongly
connected component of its dependency graph is either a least or greatest fixpoint equations set. The
mscc-consistence ensures that there are no alternating fized point [CS91, EL86]. Finally, two applica-
tions of this algorithm are proposed, respectively devoted to bisimulation checking and alternation-free
p-calculus [Koz83] model checking.

This algorithm is a straight generalization of the one presented in [FM91]: it relies on a depth-first
traversal of the dependency graph of the bes under consideration starting from variable X; ;. During
this traversal a solution is computed for each variable of £, following a postfixed order. The main idea
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is then to minimize the number of traversals required to compute 6(Xj,;¢). In particular, we show
that when the dependency graph is reducible to a tree (i.e., when already computed results never need

to be re-used), then a single traversal is always sufficient.

The paper is organized as follows: in section 2, we recall some definitions about boolean equation
systems. We also give some propositions to establish the correctness of our algorithm. The algorithm
itself is presented in section 3. We propose in section 4 two applications: equivalence-checking for
bisimulation relations and model-checking for the p-calculus. Finally, we present two case studies in
the last section and we show, for one of them, that previous analysis results have been improved.

2 Boolean Equation Systems

We recall in this section some basic definitions on boolean equation systems, and we propose a reso-
lution method leading to a local algorithm.

2.1 Definition

Let Var be a set of variables. The language of formulae is defined by the following abstract grammar
where X ranges over Var:
® = true|false| X |[®PADP|DPV |-

In the sequel, we suppose, for technical convenience, that the formulae ® are in positive normal form.
For a given formula @, let fv(®) be its set of free variables defined by structural induction: fv(true) =
fv(false) = 0,fv(X) = {X },fv(=®) = fv(D), fv(P1 A @3) = fv(B1 V @) = fv (D) U fv(D,).

A Boolean Equation System (bes, for short), &, is a set {X; =5, ®i};cpy o), Where o; € {u,v}. An
equation X =, @ (resp. X =, @) is called a least (resp. greatest) fixpoint equation. bv(&) =

{X1,..., X} is the set of bound variables of £. Similarly, fv(& va )\ bv(&) is the set of free

variables of £. A bes is well-formed iff all left hand sides Varlables are different, i.e. if X; =,, ®; and
X; =5, ®; then i = j. A bes is closed iff fv(£) = 0. All the bess we conslder are well-formed and
closed.

Let B = ({0,1},V,A,<,=,0,1) be the uniquely complemented lattice of boolean values, where 0 < 1,
V is the least upper bound, A the greatest lower bound and — the negation operator.

For a formula ® and an environment p : Var — B, the boolean value [[®]](p) is defined by
structural induction on @ : [[true]](p) = 1,[[false]](p) = 0,[[X]](p) = p(X),[[®1V ®2]l(p) =

[[@4]1(p) V [[@2]](p), [[®1 A @2]1(p) = [[@4]1(p) A [[22]](p), [[=2]I(p) = ~[[@]](p)-

2.2 The direct graph of dependencies

Given a bes £ and a bound variable X;

i
Ge = (Ax. defined as follows :

o Xt is the distinguished variable.

nit of &, we consider in the following the Its
init? € Xinit)

e —¢ is the dependency relation defined on the bound variables of £: X; —¢ X; iff X; € fv(®;).

by transitive closure of —¢.

o A Xipi is the subset of £ variables, reachable from X :¢



Let < be the posifized order produced by any depth-first traversal of Ge, starting from Xj ;¢ X; < X

iff X; is popped before X; during the traversal. Note that Xj;j; is the greatest element of AXinit

w.r.t. relation <.

We also consider the set of Mazimal Strongly Connected Components (mscc for short) of Its Gg: two
variables X;, X; of bv(&) belong to the same mscc iff X; —% X; and X; —% X.

The mscc relation is an equivalence relation on bv(&). Let &,..., & denote the partition of bv(&)

w.r.t. this relation, and let gged be the quotient of lts G modulo this relation: states of gged are
msccs of Gg, and there is a transition from &; to &; iff there is a variable X; € &; and a variable X; € &;

red

such that X; —¢ X;. It is easy to see that G£°¢ is a direct acyclic graph (dag).

Each msce & can be viewed as a bes {X; =,, ®;}x,ce,. In the sequel we denote by & either the mscc
of Gg, or the bes it represents. Moreover, a bes £ will be said mscec-consistent iff the following holds:

e ecach mscc & of £ contains either only least fix-point (Ifp) equations or only greatest fix-
point equations (gfp), formally there exists J; C [1,n] such that & = {X; =,, ®;}ics, and
Viy,i9 € J1 .05, = 04y 5

e negation operators only appear on free variables of a given mscc of £.

In the sequel, the bes we consider are always supposed to be mscc-consistent.
For each bes & we also define a notion of root w.r.t. the < relation:
e root_scc(&;) denotes the maximal element of & w.r.t the < relation, i.e. it is the first reached

and the last analyzed during a depth-first traversal.

e root(&;) denotes the set of roots of each elementary cycle of &:

root(z‘:l) ={X; € bv(gl) | iX; € bv(gl) Xy <X N X = X}

The relation < between the variables of £ can now be extended to mscc themselves, defining that
& < & iff root_sce(&;) < root_scc(E;). Note that: & <& A VX, € & ,VX; €&, X, < X;.

Finally, a mscc &; is said reducible to a tree w.r.t. the relation < iff each of its states has at most one
predecessor by relation —¢ greater than itself:

reducible(Ej) = V)(Z',)(]',)(]C . —|()(]~ —e X; N X —e X; N X; < X]‘ AN X; < )(k)

A dependency graph is said reducible to a tree iff each of its mscc is. Now, we have the following
(straightforward) results:

Proposition 2.1

(i) the set of free variables of a mscc &; satisfies: VE; . v (&;) C {bv(&;) | & < &}
(ii) If the lts Ge is reducible to a tree: VE; . fv(&;) C {root_scc(&;) | &; < &}

2.8 Solution of a bes

Let & = {X; =5, ®;};c[1,, @ mscc-consistent bes, and &1,. .., & its msccs.
The solution of £ is defined as follows:

e the solution of an equation X; =,, ®; is a function § : Var — B such that, if o; = v (resp. 0; = p)
then 8(X;) is the largest (resp. the least) value satisfying 6(X;) = [[®:]](9).



e § is a (global) solution of &£ iff it is a solution of each of its equations.
The existence of such a solution is straightforward when £ is mscc-consistent:

e For each mscc &, boolean functions ®; appearing in right hand side of the equations of &
are monotonic (since negation operators are only applied on free variables). Thus, given any
environment p; : Var — B assigning free variables of &, there exists a unique solution ¢, ,, for
bes & (since & is either a greatest or a least fix-point equations set).

e According to proposition 2.1, each free variable of & is a bound variable of a mscc &, with
Em < &1, and fv(&1) = (. Since relation < is a total order, the global solution é of £ can be
obtained by computing (in increasing order) each solution §; ,,, where p; is defined as the union
of solutions é,, ,,, computed so far:

6= 61,0, where pr = ) by pp,
1<I<k Em<E

To compute the solution é;,, of each mscc &, the algorithm we propose in the next section relies on
the Gauss-Seidel resolution method: ¢;,, is obtained as the limit of a sequence (4} pl)iZO computed
iteratively, each &} ,, being obtained following the total order < on variables of & (see below).

However, instead of computing in turn each é;,,, we consider the sequence of functions 6%, which
converges to ¢, and defined as the union of solutions 5;,/)1 computed so far. The underlying idea is then
to try to minimize the number of iteration steps required to obtain a correct value of 5i(Xi1lit)7 i.e.,
equal to 6(Xjpit)-

This approach can be formalized as follows:

o Let & be a mscc of £ and p;: Var — B an environment such that p;(X) is defined for each
variable X in fv(&;). The solution é; ,, is the limit of the sequence (6;,;)1)2'20 where:

0if X ¢ fv(&) and & is a lfp
Lif X ¢ fv(&) and & is a gfp
pi(X) otherwise

60,,(X)

l,Pl

i & (Xy) for X > X;
‘51:;3(Xj) = ﬂq)j]](éz,zl) where 61,/])1(‘)(’“) - { 6;-7"311()(” for X}, < X]]-
1Pl

e the global solution of a bes £ of msce & ...& is then the limit of the sequence ((5%20 defined
as follows:

i ; _ :
&= | O, wherepr= 1 b, ,,
1<i<k Em<E

According to proposition 2.1, environment p; is defined for each free variable of & as far as ¢6;, ,
functions are computed in increasing order on the mscc of .

Intuitively, computation of function §° will require at most 7 traversals of lts Ge. However, the exact
number of iterations steps required to compute §(X; ;¢ ) is given in Section 2.4.

2.4 Stability

For each mscc & of a bes £, we now define a notion of stability. Informally, & is stable at level ¢ iff

for all roots X of its elementary cycles, 6}@()() = b1,,(X).
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More formally, predicates stable and stable_scc are defined as follows for all ¢ > 1:

stable’(&) = (VX .X €root(&) = 6] ,(X)=6,1(X))
stable_scc'(§) = (Vm . &, < & = stable'(E,))

Proposition 2.2 relates this notion of stability to the computation of the solution ¢, ,, of a bes &.

Proposition 2.2 Let £ be a (mscc-consistent) bes, and £1,E;, . .. & its msces. Then, for all msce &:

(i) V(&) =0= 6, = b,
(ii) Vi > 1. (stable_scc'(§;) A stable'(&))) = 8, = O1p
(iii)
: 6 (X)) = 01, (X) = if €1 i
Vi > 1. stable_sccl(&) = VX € gl ) { l_,pl( ) 0 = l,pz( ) 0 Zf 1 s a gfp

LX) =1 = 6,(X)=1 if&isalfp

Proposition 2.3 provides an upper bound on the number of iterations required to compute locally the
solution of a bes. However, as discussed in section 3, this bound will only correspond to a worst-case
complexity of our algorithm.

Proposition 2.3 Let £ be a (mscc-consistent) bes, and &1,E,...E ils msces. Let n be the total
k

number of roots of each msccs: n = Z | root(&;) |. Then, stable_scc™(E;) A stable”(&).

=1
Finally, when the dependence graph associated to & is reducible to a tree, the solution 6(Xj, ;) can
always be computed in a single iteration step (i.e., a depth-first traversal of G¢):

Proposition 2.4 Let £ a (mscc-consistent) bes, and &1, &z, ... Ex its msces. If the lts Ge is reducible
to a tree then (X ;1) = 6(Xjpnip)-

See [FM95] for a proof of these propositions.

3 Algorithm

We present in this section a local algorithm for computing the solution &(X; ;¢
variable X; ;¢ of a bes £. The approach followed is the one described in the previous section: a

) for a given bound

sequence of functions §°(X) is computed by successive iterations, using a suitable order relation on
bound variables of £.

This algorithm proceeds by performing depth-first traversals of the dependency graph Gg¢ associated
to bes &: each traversal i of the algorithm computes the value of §*(X) for all bound variables X.
However:

o Correctness of the results is guaranteed only if £ is mscc-consistent, so this check has also to be
performed (when not ensured by hypothesis on &) ;

o The algorithm should terminate when the computed function §° is such that 6°(X;pi¢) = 6(Xipt)-
This condition holds either for ¢« = 1 if G¢ is reducible to a tree, or when the mscc &£ contain-
ing Xj,; satisfies stable_scc'(§;) and stable’(£;). Therefore, these checks have also to be
performed.



We show in the sequel that all these verifications can be carried out during the computations of
functions §°. Moreover, since the algorithms only rely on depth first traversals, it does not require a
prior generation of Its Gg, nor even to necessarily store its whole set of states and transitions.

Starting from an usual depth-first traversal algorithm, we add the detection of msccs and the compu-
tation of the solution.

To allow the computation of the functions §* during a dfs, several data structures are required:

e Astack I', with elements in @ x 22 x IN x IN (the final state X of the current execution sequence
o, its pending successors, its depth in o and the minimal depth reachable from X). If ¥ € T' then
let v = (state(y),succ(y), deep(y), min(y)) and let v¢ be the initial element. We write X € T
for 3y € I' . X = state(y). The stack I' is managed through usual operations “push”, “pop” and

‘Ctop”‘
o Aset V C @, used to store the visited states which are no longer in T'.
o A set Scc C @, intended to store the roots of each mscc of G¢ (Scc = | ] root_sce(&;)).
&;
o A set R C @, intended to store the roots of each elementary cycle of G¢ (R = U root(&;)).

&;

Sets L and T, subsets of @) intended to store the states X whose values §( X ) are already known
(and respectively equal to 0 and 1).

a variable depth to keep track of the current depth of the stack.

e boolean variables stable, stable_scc and reducible those values are set according to the definition
of previous section.

We denote by “post” the function delivering the successors list of a given state X of Gg: post(X) =
{X'| X —¢ X'}. Furthermore, we use the function Fiz : Q — {v, u} ; for each variable X defined by
the equation X =, ®, Fiz(X)=o.

The following function performs an iteration step of the algorithm: at the end of the ith call a function
D(X)is available, such that for each state X, D(X) = ¢*(X). It also returns true if no more iterations

are required, i.e., if D(X;5¢) = 6(Xjpit)-

Now, the algorithm steps are

step 1 The state Y belongs to I' or V. In the last case, we do nothing ; In the first case, let 4’ such
that state(7”) = Y. We add Y to the root (R := RU{Y'}) and we set D (Y) to 1 (resp. to 0) if
Fiz (Y) = v (resp. Fiz (Y) = p). If deep(7’) < min(y) then min(y) := deep(y’).

step 2: We perform the following statement:

o We compute D (X) := ®x(D(X') | X’ € post(X)).
o If (stablesscc and D (X) = 1 and Fiz (X) = p) (resp. stable_scc and D (X) = 0 and Fiz
(X) =v) then we add X to T (resp. to L) and if (X € R) we set stable to false.

e if depth(y) = min(y), then X is a root of a mscc. Thus, we set stable_scc to stable and we
add X to the set Scc.

o if I' # () then min(top(T")) is set to min(min(top(T'), min(y)).



function evaluate (X : state) returns boolean is
begin
V := () ; stable := true ; stable_scc := true ; reducible := true
I''=0;R:=0;Scc:=0
depth := 1 ; push ((Xo, post (X¢),depth, depth), T')
while (T # () loop
v :=top (I') ; X := state(y) ; S := succ ()
if X € TthenD (X):=1elsif X € L then D (X):=0
else
if (5 #0) then
choose and remove Y in §
if (Y ¢(VUT)) then
depth := depth + 1 ; push ((Y, post (Y),depth, depth), I)
else
(* step 1 : check if Y is a mscc-root and update the depth
of the element in order to detect a mscc *)
end if
else (* S =0%)
depth := depth -1; pop (I') ; V := VU {X}
(* step 2 :compute the solution associated with X, update the sets T, L, R
and update the variables stable, stable_scc and reducible. *)
end if
end if
end loop
return (reducible or stable_scc)
end

Finally, the local algorithm for computing 6(X;;¢) is the following:

function compute_local_solution (Xg) returns boolean is
begin

L:={X €@ |post(X)=0 A ®x = false}

T:={X €@ |post(X)=0 AN &x = true}

loop

reliable := evaluate (Xo)

while - reliable

end loop

return (D(Xy))
end

The correctness of this algorithm is a consequence of the propositions established in the previous
section, and its complexity is given by the following proposition:

Proposition 3.1 Let G be the dependency graph of a bes £. If n, m and n, denote respectively the
number of states, transitions and roots of elementary cycles of Ge then:



o The time complexity of function compute_local_solution is O(m x n,) in the general case, and
O(m) when & is reducible to a tree.

o [ts memory complezity is O(m).

4 Applications

In this section, we propose two applications of this algorithm. More precisely, we show how
bisimulation-checking and model-checking for the alternate p-calculus are characterized by a msce-
consistent bes.

4.1 Bisimulation-checking

Let 5, = (Qi,A,—L,(Zoi)Z‘:LQ be two ltss. Bisimulation equivalence ~ is defined as the greatest
fix-point of B: 291XQ2 __, 2@1XQ2 where:

B(R) = {(p1,p2)|Va € A.Yq .(;m - ¢ = 3¢ . (p2 - @ N (¢1,92) € R))
Vg2 . (p2 —— @2 = Jq1 . (p1 — @1 A (¢1,92) € R))}

Let Act(p) = {a | 3¢.p —= ¢} and & be the bes with Xgo, 00, s distinguished variable:

X,,, =, false if Act(p) # Act(q)

Xp7q =, /\ /\ \/ Xpl7q/ A /\ /\ \/ Xpl7ql if.ACt(p):.ACt(q)

a€A a€A

@ 1 ' @, a1
p—p’ 93—4q 9—q9 p—p

The msce-consistency is straightforward since each equation is a gfp one. Moreover, we can show
that 6(X,,) = 1iff (p,q) € vR.B(R) [FM95]. Such a characterization can be done for all bisimulation
equivalence, simulation preorder and simulation equivalence.

4.2 Model-checking for the alternation free p-calculus

Syntax

We consider the following abstract syntax :

pu=true [false | ¢ V ¢ | A pl<a>p|la]e| X |vX.p| vX.o|pX.p| puX.p

Semantics

Formulae are interpreted over a lts 5 = (@, A, —, go) with respect to a given environment p. Env
denotes the set of environments: Env : Var — 29, For p € Env, X, Y € Var and R C ) we adopt the
usual convention: p[R/X|(Y) = if (X =Y) then R else p(Y).

The meaning of a formula ¢, noted [¢],, represents the set of states satisfying ¢ when its free variables
are assigned by p.

Function [.] : F — Env — 2% describes the semantics of a formula and is defined as follows:



[true], =
[false],
[er A w2,
[er Vo2,
[X1,
[~¢l, =
[<a>¢], =
[lalel, =
[uX.el, =

[vX.¢l, =
Definition of the BES

Q
0

[e1l, N [e2]p

[¢1]p U T2,

p(X)

Q\ [#]

{e13¢ . = ¢ A ¢ el¢l,}
{a1Yq . — ¢ = ¢ €l¢l,}
(AR | [€l,r/x] € R}
UARI R S [el,m/x)}

Let § = (Q,A,~%,q) be alts and ¢ the formula to be checked on ¢o. Let & be the bes defined
according to the following rules with X, , as distinguished variable. For each equation X,, 4, =5 ...
obtained by rules (1)-(5), the value of ¢ is inherited as follows:

e if ¢; is not in the scope of a fixpoint formula (there is no context), then the value of o is

irrelevant,

e otherwise, there exists a variable X, 5z, such that i; is a subformula of 9); and there exists

no fixpoint on any syntactic path from 9 to .

Xp,<a>e

X

plale
Xp#’l N 2

Xp#d Vo2

X

P,
AXp,vX-v

Xp,uX-ea

Xp true =o true Xp,false =, false

0 v Xpro (1)

a

p—p’

=0 " Xpe (5)
v Xp,(p[l/X.kp/X] (6)

=u XpoluX.o/X] (7)

Proposition 4.1 Let ¢ be a closed formula and S = (Q,A,—,q) a lts. Then, q € [¢] iff the
solution & of the bes &y, ., is such that 6( Xy, ) =1

The proof is done by structural induction on ¢ [FM95].



5 Implementation Issues

This algorithm is implemented in the C£SAR-ALDEBARAN toolbox [FGM™92], both for bisimulation
checking and model checking for the u-calculus.

The CESAR-ALDEBARAN toolbox provides both an environment for the construction and the verifi-
cation of communicating systems, and facilities to implement quickly new verification algorithms.

More precisely, it offers two kinds of tool: a compiler and verifier. The compiler (C£sARr) allows the
translation of a LOoTOS program into several formalisms, such that Petri Nets or communicating ltss,
whereas the verifier (ALDEBARAN) is able to perform equivalence checking on such formalisms.

However, a third component, called OPEN-C&SAR, has been developed by H. Garavel upon
Casar([Gar92]). Initially, the aim of this component was twofold: to offer an environment for easily
implement new verification algorithms, and to allow on-the-fly verifications of LoTos programs. More
recently, OPEN-C&ESAR has been extended to also deal with programs described as communicating
ltss.

The basic idea of OPEN-CESAR is to run the verification tool together with a simulator which generates
a lts from a given LOTOS program as far as the verification progress. More precisely, the architecture
of OPEN-CESAR relies on three separate modules:

e the graph module, providing a C representation of the lts (i.e., primitives to access the initial
state and the successor list of a given state) ;

e the storage module, providing predefined data structures to store the lts informations (such that
a stack, a state-table, ...etc.) ;

o the exploration module, which implements the verification algorithm in terms of a lts traversal.

Note that the graph and storage modules only depend on the program under verification and are
automatically generated by OPEN-CESAR.

Within this toolbox, the model-checking algorithm has been implemented as an exploration module for
OPEN-CAESAR, whereas the equivalence-checking algorithm was implemented as a part of ALDEBARAN.

6 Examples

We give in this section two examples of non trivial verifications performed using the implementation
within CAESAR-ALDEBARAN of the two algorithms described in the previous section. After a brief pre-
sentation of these case-studies, we propose for both of them a formal specification of the requirements
to be verified. Finally, the results of the verification are commented.

6.1 The rel/REL protocol

The rel/RFEL protocol [SE90] aims to support atomic communications between a transmitter and
several receivers, in spite of an arbitrary number of failures from the stations involved in the commu-
nications. We focus here on a version of this protocol which preserves the order of the messages sent
by the transmitter.
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Protocol description

The service provided by this protocol consists of the two following (informal) properties:

atomicity: if a station F sends a message m to a group of stations G, then either all the functioning
elements of G receive m, or none of them does, even if several crashes occur in the group {E'} U G.

causality: if a station F sends a sequence of messages, in a defined order, to a group of stations G,
then no functioning element of G may receive these messages in a different order.

The rel/REL protocol is built on a transport layer protocol which provides a reliable (i.e., atomic and
causal) message transmission between any pair of stations. In case of crash, stations are supposed to
have a fail-silent behavior: they stop to send and to accept messages. It is also assumed that, even
if multiple crashes occur, the network remains strongly connected: all functioning stations may still
exchange messages.

The protocol is based on the two phase commit algorithm: the transmitter sends two successive copies
of the message to all receivers; each message is uniquely identified, and an additional label indicates
whether it is the first or the second copy. On receipt of the first copy, a station § waits for the second
one; if it does not arrive before the expiration of a delay, then 5 assumes that the transmitter crashed
and that some of the receivers may have not received a copy of the message. Then, S relays the
transmitter and multicasts the two copies of the message, still using the rel/RFEL protocol. To reduce
the network traffic, a station stops to relay as soon as a second copy of the message is received from
the transmitter or from any other receiver.

The full LoTos specification can be found in [FM95].

Formal specification of atomicity

As defined above, atomicity means that “an emitied message is either received by all the functioning
receivers, or is not received by any of them”. If get; denotes the receipt of a first copy of a message
by station ¢, and crash; the crash of station ¢, this property can be rephrased in the following way:

“for each station © and for each execution sequence nol containing action get; nor action crash;
(station 7 is still waiting for a message), any occurrence of action get; for a given j # i (station j
received the message) should be eventually followed either by action get; (station i itself received the
message), or action crash; (station ¢ stopped to function), or action crash; (station j stopped to
function )”.

Such a property can be expressed using the p-calculus. For any formula f,g we use the following
macros: < * > denotes the next operator (i.e. < * > f = \/ < a > f); [+ is the dual of < % > ;

a€A
A is the conditional “always” operator (i.e. Afg=vX.g A (f = [¥]X)); Ev is the “eventuality”

operator : Evf =puX.(f V (¥ X A <x>T)).
The atomicity property is then expressed by the following formula:

/\ A(lget;]F N [crash;|F)( /\ lget;|(Ev(< get; > TV < crash; >TV < crash; > 1T)))
i ey
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Formal specification of causality

The second service property concerns the preservation of the message order: “messages from a given
transmitler are received in the same order as they were sent”. This is a safety property expressing
that the received messages respect some conditions, but not ensuring their receipt. As it associates a
transmitter and a receiver, it is sufficient to verify it for any pair (transmitter, receiver).

This property can easily be expressed using a transition system. Assuming that messages sent by
a transmitter are identified by unique numbers 1,2,...,n according to their emission order, the ex-
pected behavior of a receiver (modulo safety equivalence) can be represented by the simple sequence
Sn = gely; gely;...; get,. The verification process then only consists in checking if the graph G of
the LoTos program is related with S, modulo safety equivalence [BFGT91] when only get; actions
are made visible.

Verification

Both properties were verified for a LoT0S program describing a configuration with a single transmitter,
two receivers, and three distinct messages sent. The causality was proved using the on-the-fly part of
ALDEBARAN. The verification time was about few minutes.

Moreover, the atomicity was proved for a configuration with a single transmitter, three receivers and
three distinct messages sent. The verification time was about one hour on a SUN SS10 . Notice
that on the same workstation a lack of memory prevented to generate the complete graph from the
Loros program. Therefore “classical” model-checking or equivalence-checking algorithms would have
not been applicable on this example and previous results described in [BM90] have been improved.

6.2 A Transit-Node

This example was initially defined in the RACE project 2039 SPECS. It consists of a simple transit
node where messages arrive, are routed and leave the node.

Informally, it can be viewed as a “black box” communicating with the environment through several
data ports-in, several data ports-out, a control port-in and a control port-out. Two types of messages
can be received by the node: control messages, allowing to modify the node configuration, and data
messages, which have to be correctly routed from a data port-in to a data port-out.

Formal description

The Lotos specification of the transit node [Mou94] consists in four communicating processes: a
Controller, an FrrorHandler, a DalaPortInSel and a DataPortQOutSet.

o Process Controller accepts and treats the following control messages: open a data port, (re)-
define a route, and send outside the node faulty data messages (e.g., data messages those transit
time inside the node exceeded a given amount of time).

o Process DataPortInSet manages the data port-in set of the node. Indeed, data ports-in are
modelized as independent processes, without interaction between each other. These processes
accept and treat data messages. Data messages are labeled with a route number, indicating a

'but a “false” answer was instantaneously obtained on an erroneous version of the protocol ...
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set of data port-out to which the message can be routed. If the route does not exist, or if the
corresponding data ports-out are not open, then the message becomes faulty.

o Process DataPortQOulSel manages the data port-in set of the node. Here again, data ports-out
are modelized as independent processes, without interaction between each other. These processes
simply store the data messages received from process DataPortInSet, and deliver them outside
the node.

o Process FrrHandler stores all the faulty messages transmitted by the other processes and delivers
them outside the node on indication of process Controller (see above).

Specification of the requirements

Several requirements were associated with the informal description of the node. We focus here on the
routing of data messages. Further details on other requirements can be found in [Mou94].

Informally, and from a safety point of view, messages are correctly routed if and only if the following

holds:

whenever a data message M is received with a roule indication R, if S is the data port-oul set associated
to R, then message M cannol leave the node on a dala port-oul not belonging to 5.

Assuming that action add_route (R, 5) associates to route R the data port-out set S (route definition),
action data_in (M, R) denotes the reception of a data message M with route indication R, and action
data_out (M, P) denotes the delivery of message M through data port-out P, this requirement can be
rephrased as follows:

For each (M, R, S), after any occurrence of action add_route (R,S) (i.e., route R is defined), no
action data_in (M, R) can be followed by an action data_out (M, P) for a given P ¢ S unlil a new
occurrence of action add_route (R, S") (i.e., route R is redefined).

To express this formula in the mu-calculus we use a weak wuntil operator “Wu f g”:
Wufg=uX.(g V (f AN <#*>X)). Then, the routing requirement can be formally specified as fol-
lows, where 5, 5" and S” are different data port-out sets, R is a route number, P a data port-out not
belonging to S, and M a data message:
A (T)
([addroute (R, 5)]
Wu([datain (M, R)] Wu (- < dataout(M,P)>1T)
(< add_route (R, 5") > T))
(add_route (R, S5”)))

Verification

This property was verified for a LoTos program describing a node configuration consisting of two
data ports and two data messages. Note that two data ports leads to four distinct port sets, and thus
four routes can be defined using this configuration (a route is uniquely defined by its associated port
set). The verification time was about twenty minutes on a SUN SS10.
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7 Conclusion

We have extended an algorithm for bisimulation checking to solve general boolean equation systems
with mixed fixpoint computations. This algorithm, already implemented for several equivalence and
preorder relations, has been now implemented for the p-calculus model-checking. Thus, new verifi-
cation facilities have been introduced in CESAR-ALDEBARAN, providing the user with both another
specification formalism (the p-calculus) and a new decision procedure.

The main interest of this algorithm is that it relies on depth-first traversals, thus allowing on-the-fly
verification: the bes is solved as far as the traversal goes on. In the worst case, its complexity is
similar to the already known algorithms. However, experimental results demonstrated its practical
interest. Thus, thanks to the on-the-fly approach, non trivial p-calculus formula could be verified on
LoTos programs those underlying lts was too large to be generated. This is even enforced when the
formulae under verification is false, since only a small part of the program usually needs to be explored.
Moreover, in this last case, a set of erroneous execution sequences is available, providing diagnostic
elements. Such features are highly appreciable in the context of program verification, particularly for
specification debugging (i.e., in the early stages of the verification process).

A local algorithm was already proposed by Andersen to solve alternation-free bes [And92], also based
on a traversal of its dependency graph. However, the main difference is that whenever the value of a
variable changes from 0 to 1 (or conversely) during the traversal, each variable kept in a “dependency
list” is immediately updated (instead of performing another partial traversal, if necessary, as in our
algorithm). Thus, although worst-case complexities of both algorithms are similar, our solution allows
to save memory as much as possible.

Further applications could be considered for this algorithm. For instance model-checking for other
logics than the p-calculus (possibly by specializing it to particular operators), or equivalence-checking
for non (bi)simulation-based relations (as far as they could be expressed in terms of boolean equation
systems). But boolean equation systems appear also in the context of program flow analysis and this
algorithm should be applied in this area.
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