DISTRIBUTOR and BCG_MERGE: Tools for
Distributed Explicit State Space Generation

Hubert Garavel, Radu Mateescu, Damien Bergamini, Adrian Curic, Nicolas
Descoubes, Christophe Joubert, Irina Smarandache-Sturm, and Gilles Stragier

INRIA Rhone-Alpes / VAsY
655, avenue de I’Europe, F-38330 Montbonnot St Martin, France

1 Introduction

The explicit-state verification of complex concurrent systems, whose underlying
state spaces may be prohibitively large, requires an important amount of memory
and computation time. Although explicit state space generation is known to be
exponential as the number of concurrent processes in the system increases, it is
tempting to push forward the capabilities of verification tools by exploiting the
computing resources (memory and processors) of massively parallel machines,
such as clusters and grids.

Several distributed algorithms have been proposed for analyzing stochastic
Petri nets and Markov chains (e.g., by Nicol and Ciardo, by Haverkort, Bell, and
Bohnenkamp, etc.), as well as for model checking (e.g., by Stern and Dill, by
Lerda and Sisto, etc.). Our own distributed algorithms [3] allow the construction
of Labelled Transition Systems (LTSs) using several machines connected by a net-
work. These algorithms are implemented in the DISTRIBUTOR and BCG_MERGE
tools using the facilities of the CADP [2] verification toolbox. In a nutshell, each
machine used by DISTRIBUTOR is responsible for generating and storing a frag-
ment of the entire LTS. Upon termination of the distributed state space gener-
ation, all these fragments are combined together using BCG_MERGE to obtain
the entire LS.

Between 2000 and 2005, we developed three successive versions (1.0, 2.0,
and 3.0) of DISTRIBUTOR and BCG_MERGE. This led to significant functionality
improvements. For instance, version 3.0 of DISTRIBUTOR can also reduce LTSs
on-the-fly, by applying 7-compression (elimination of 7-cycles denoting diver-
gence) or 7-confluence (a form of partial order reduction preserving branching
equivalence) [4] using the algorithms proposed in [6]. However, besides the dis-
tributed algorithms themselves, we realized that it was also essential to pay
attention to often-neglected practical issues, such as software architecture con-
cepts and user-oriented features pertaining to ergonomy, and this is what the
present paper is about.

2 Software Architecture and User-Oriented Features

Source language independence. Developing verification tools for sequen-
tial machines is a demanding, long-term effort. But the development effort is

even higher for verification tools intended to work on parallel machines. There-
fore, it is desirable to design tools that can support multiple input languages
instead of a single one. For this reason, DISTRIBUTOR is implemented using
the OPEN/CESAR generic environment [1], which is the basis for all on-the-fly
verification algorithms implemented within CADP. OPEN/C&ESAR offers an im-
plicit representation for LTSs to be explored on-the-fly by providing a language-
independent API that basically defines the states, labels, and transitions of the
Ls, together with functions for comparing, hashing, accessing the initial state,
and computing the successors of a given state. It also provides C libraries con-
taining a rich set of Lrs exploration primitives (transition lists, stacks, tables,
etc.). Thus, DISTRIBUTOR can be used for any input language equipped with a
compiler supporting the OPEN/C&ESAR API.

Platform independence. A key design goal of DISTRIBUTOR and BCG_MERGE
is to allow them to run on the largest possible number of computing platforms
(networks of workstations, clusters of PCs, or even laptops, etc.) For this reason,
DiSTRIBUTOR and BCG_MERGE only use the features present in mainstream
operating systems and do not to rely on any dedicated middleware (such as MPI,
etc.) that is not installed by default. Similarly, they do not assume the existence
of a common file system (e.g., NFS, SAMBA, etc.) shared between machines.

Separation between algorithms and communications. Starting from
version 2.0 of DISTRIBUTOR and BCG_MERGE, a clear separation was es-
tablished between, on the one hand, the distributed algorithms themselves
and, on the other hand, the primitives used for communication between ma-
chines. Such primitives are encapsulated into a dedicated library (named
CAESAR_NETWORK), which provides functionalities such as blocking and non-
blocking buffered send/receive. Following the ”platform independence” re-
quirement, CESAR_NETWORK only requires ordinary TcCP sockets and stan-
dard remote connection protocols (e.g., rsh/rcp, ssh/scp, etc.) to be available.
CAESAR_NETWORK is also used by other VASY tools for distributed equivalence
checking [5] and distributed model checking.

Instances on local and remote machines. The machine on which
DISTRIBUTOR and BCG_MERGE are launched by the end-user is called the local
machine, all the other ones being called remote machines. DISTRIBUTOR and
BcG_MERGE work by launching distributed processes, called instances. Each
instance corresponds to a pair (M, D), indicating that a distributed process will
be launched on machine M and will store its files in directory D (the working
directory of the instance) located on some filesystem of M. Several instances
with different working directories may execute on the same machine. A working
directory may be either local to its machine, or shared between several machines.

Description of network resources. To specify the list of machines and in-
stances involved in the distributed computation, the CESAR_NETWORK library
uses a dedicated file named Grid Configuration File (GCF), whose format is
defined in [8]. This file also specifies the various configuration parameters to
be used for launching instances and connecting machines: TCP port number(s)
used by sockets, remote connection protocol (rsh, ssh, etc.), remote copy protocol

source
program

OPEN/CZESAR-
compliant
compiler

OPEN/CESAR
graph module

cC

OPEN/CESAR
expl. module

-7 spawns
distributor.exe
(instance 1)

fragment1.bcg

distributor.exe
coordinator

distributor.exe
instance N)

. references

—™| bcg_merge

machine 0 machine 1 machine N
(local) (remote) (remote)

(rep, scp, ete.), login name(s) used for remote authentication, size of communi-
cation buffers, pathname of the CADP installation directory, connection timeout,
pathname of the working directory, and list of files to be copied in the working
directories upon launching.
Partitioned Labelled Transition Systems. The result of the distributed LiTs
generation performed by DISTRIBUTOR is a theoretical model defined in [3] and
called Partitioned Ls (PLTS for short). A PLTS is a collection of fragments (one
per instance), each fragment containing a subset of the states and transitions of
the entire LTS to be generated. Taken altogether, the fragments form a partition
of the entire Lrs. Taken individually, each fragment can be seen as an LTS, with
the important difference that it may be a disconnected graph, which is never
the case with an LTS generated from a “meaningful” specification. The role of
BCG_MERGE is to take a PLTS and merge all its fragments into one single LTs.
To represent LTss, as well as fragments, we use the BcG (Binary-Coded
Graphs) format of CADP. This format provides an ezplicit representation for
Lrss given by their states, labels, and transitions. It allows to store LTSs in

compact, binary files and is equipped with a set of C libraries and tools providing
a wide range of functionalities (reading and writing, exploring the transition
relation, converting from/to other LTs formats, visualizing graphically, etc.). A
collection of Bca files is available on-line in the VLTS benchmark suite [9], which
aims at providing realistic examples of LTss for the assessment of verification
and graph manipulation tools. To represent PLTSs, we developed (together with
CWwI in the framework of the international SENVA research team) a dedicated
format named PBG (Partitioned BCG Graph). A PBG is a text file containing
references to a GCF file and to a collection of fragments stored as Bca files.
The overall functioning of DISTRIBUTOR and BCG_MERGE within the
OPEN/CA&SAR environment is illustrated in the previous figure.
Initialization and termination protocols. Besides the normal termination of
the distributed LTs generation (when each instance has finished its local compu-
tations and no more messages are in transit), which is handled using a distributed
termination detection algorithm, abnormal termination must also be handled
properly. If the distributed LTS generation fails (e.g., because some machine has
exhausted its memory) or the user decides to cancel it (e.g., by pressing Ctrl-C),
DISTRIBUTOR must stop all the distributed activities of its instances. Therefore,
a dedicated protocol is necessary. The solution we adopted in DISTRIBUTOR
and BCG_MERGE is based upon a special process, called coordinator, which is
launched on the local machine and has the charge of initializing the distributed
computation (parsing the GCF file, establishing the connections from the local
to the remote machines, launching the instances) and of detecting termination.

Overview 3 Labels [Progress | Statistics | Resources | Overview | Labels | Progress E_ilﬂiisiiHEi Resources |

Hosts Explored States Remaining States Transitions Variation Total number of Visited States
Total number of Remaining States
Total number of Transitions
Mean number of Visited States

L

node-1

node-2

node-3 Mean number of Remaining States

node—4 Mean number of Transitions

Total number of Labels
Size of each State (bytes)
Humber of Hosts

node-5

node-6

RN N RN

node-7

w,

Real-time monitoring. Because end-users naturally want to observe the
progression of distributed computations, DISTRIBUTOR and BCG_MERGE are
equipped with (optional) graphical monitors providing information in real-time
about computation status (when generating or merging of the PBG) and resource
usage (processors and memories). The monitor of DISTRIBUTOR (see the figure
above) is driven by the coordinator process, which periodically inspects the sta-
tus of each instance. The monitor window has five panels, each giving a different
view of the distributed computation. The “Overview” panel (on the left) shows,
for each instance, the number of explored states (whose successors have been
visited), the number of remaining states (visited, but not explored yet), and

the number of transitions in the corresponding fragment; the variation of re-
maining states (increasing, decreasing, steady) is represented as a coloured box
(green, orange, red). The “Statistics” panel (on the right) shows various global
data, such as the total and average number of visited and remaining states, of
transitions, of labels, etc.

3 Conclusion and Future Work

Versions 3.0 of DISTRIBUTOR and BCG_MERGE are documented [8,7] and dis-
tributed as part of the CADP toolbox. They run on several platforms (Linux,
MacOS, Solaris, Windows). Experiments performed on various case-studies and
different computing platforms have shown quasi-linear speedups and a good load
balancing between machines.

We plan to continue our work along two directions. Using DISTRIBUTOR,
generating very large LTSs becomes easier and one is now confronted to the
limits of standard 32-bit machines, especially when state numbers become larger
than 232 and/or when BcG files become larger than 4 Gbytes. Shifting to 64-bit
machines should solve these issues and overcome the current size limitations.

BCG_MERGE is valuable as it allows (at least for small or medium-sized
models) to verify that the Lrss generated by DISTRIBUTOR are identical to
those generated on a single machine. For large models however, BCG_MERGE
may be a bottleneck because of the aforementioned 4 Gbytes limit. This can
be avoided by performing verification directly on the PBG file, without invoking
BCG_MERGE first. We seek to develop a PBG_OPEN tool connecting the PBG
model to the API defined by OPEN/CAESAR, thus allowing the model checking
and equivalence checking tools of CADP to be applied on PBG models directly.

References

1. H. Garavel. OPEN/C/ESAR: An Open Software Architecture for Verification, Sim-
ulation, and Testing. In Proc. of TACAS’98, LNCS vol. 1384, pp. 68-84.

2. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. Furopean As-
sociation for Software Science and Technology (EASST) Newsletter, 4:13-24, 2002.

3. H. Garavel, R. Mateescu, and I. Smarandache. Parallel State Space Construction
for Model-Checking. In Proc. SPIN’2001, LNCS vol. 2057, pp. 217-234.

4. J.F. Groote and J. van de Pol. State Space Reduction using Partial 7-Confluence.
In Proc. of MFCS’2000, LNCS vol. 1893, pp. 383-393.

5. Ch. Joubert and R. Mateescu. Distributed On-the-Fly Equivalence Checking. In
Proc. of PDMC’2004, ENTCS vol. 128.

6. R. Mateescu. On-the-fly State Space Reductions for Weak Equivalences. In Proc.
of FMICS’05, ACM, pp. 80-89.

7. Vasy. BCG_MERGE Manual Page. http://www.inrialpes.fr/vasy/cadp/man/
bcg_merge.html, December 2004.

8. Vasy. DISTRIBUTOR Manual Page. http://www.inrialpes.fr/vasy/cadp/man/
distributor.html, December 2004.

9. Vasy and Sen2. The VLTS benchmark suite. http://www.inrialpes.fr/vasy/cadp/
resources/benchmark_bcg.html, March 2003.

