State Space Reduction for
Process Algebra Specifications

Hubert Garavel and Wendelin Serwe

INRIA Rhone-Alpes / VASY
655, avenue de I’Europe
F-38330 Montbonnot St Martin, France
{Hubert.Garavel,Wendelin.Serwe}@inria.fr

Abstract. Data-flow analysis to identify “dead” variables and reset
them to an “undefined” value is an effective technique for fighting state
explosion in the enumerative verification of concurrent systems. Although
this technique is well-adapted to imperative languages, it is not directly
applicable to value-passing process algebras, in which variables cannot be
reset explicitly due to the single-assignment constraints of the functional
programming style. This paper addresses this problem by performing
data-flow analysis on an intermediate model (Petri nets extended with
state variables) into which process algebra specifications can be trans-
lated automatically. It also addresses important issues, such as avoiding
the introduction of useless reset operations and handling shared read-
only variables that children processes inherit from their parents.

1 Introduction

We consider the verification of concurrent systems using enumerative (or explicit
state) techniques, which consist in enumerating all the system states reachable
from the initial state.

Among the various approaches to avoid state explosion, it has been known
for long (e.g. [11]) that a significant reduction of the state space can be achieved
by resetting state variables as soon as their values are no longer needed. This
avoids to distinguish between states that only differ by the values of so-called
dead variables, i.e., variables that will no longer be used in the future before they
are assigned again. Resetting these variables, as soon as they become useless, to
some “undefined” value (usually, a pattern of 0-bits) allows states that would
otherwise differ to be considered as identical.

When concurrent systems are described using an imperative language with
explicit assignments, it is possible to reset variables by inserting zero-assignments
manually in the source program (e.g. [11]). Some languages even provide a dedi-
cated instruction for resetting variables (e.g. [14, §6]). Despite its apparent sim-
plicity, this approach proves to be tedious and error-prone, and it obscures the
source program with verification artefacts. Both its correctness and efficiency
critically depend on the specifier’s skills (resets have to be inserted at all the
right places and only these).

Moreover, this approach does not apply to value-passing process algebras
(i.e., process algebras with data values such as Ccs, Csp, LoTos [13], uCRL,
etc.), which use a functional programming style in which variables are initialised
only once and cannot be reassigned (thus, reset) later.

This paper addresses these two problems by presenting a general method,
which is applicable to process algebras and which allows variables to be reset
automatically, in a fully transparent way for the specifier. This method proceeds
in two steps.

In a first step, process algebra specifications are translated automatically
into an intermediate model with an imperative semantics. This approach was
first proposed in [8, 10], which proposed a so-called network model consisting
of a Petri net extended with state variables, the values of which are consulted
and modified when the transitions are executed. This network model is used in
the C&SAR compiler for LoTOs (C&ESAR is distributed as part of the widespread
CADP verification toolbox [9]). This paper presents the most recent version of
the network model, which adds to the model of [8, 10] the enhancements intro-
duced since 1990 in order to allow state space reductions based on transition
compaction and to support the EXEc/C&ESAR framework for rapid prototyp-
ing of LOTOS specifications. We believe that this network model is sufficiently
general to be used for other process algebras than LOTOS.

In a second step, resets are introduced, not at the source level (process alge-
braic specifications), but in the intermediate model, by attaching the resets to
the transitions of the network.

Various techniques can be used to determine automatically which variables
can be reset by which transitions. A simple approach consists in resetting all
the variables of a process as soon as this process terminates. This approach was
implemented in CESAR 4.3 (January 1992) and gives significant reductions® for
terminating processes (especially at the points corresponding to the sequential
composition (“>>”) and disabling (“[>”) operators of LOTOS, which are detected
by analysing the structure of the network model), but not for cyclic (i.e., non-
terminating) processes. The XMC model checker uses a similar approach [6],
with two minor differences: dead variables are determined by analysing the se-
quential composition of processes at the source level and are removed from the
representation of the state instead of being reset?.

A more sophisticated approach was studied in 1992-1993 by the first author
and one of his MSc students [7] in order to introduce variable resets everywhere
it would be possible, including in cyclic processes. A key idea in [7] was the
computation of variable resets by means of classical data-flow analysis techniques
(precisely, dead variable analysis), such as those used in optimising compilers for

! For the “rel/REL” reliable atomic multicast protocol, CESAR 4.3 generated a state
space of 126,223 states and 428,766 transitions in 30 minutes on a DEC Station 5000
with 24 MB RAM, while CESAR 4.2 would generate a state space of 679,450 states
and 1,952,843 transitions in 9 hours on the same machine.

2 See the concerns expressed in [12] about the poor efficiency of such a variable-length
state representation scheme.

sequential languages. An experimental version of CESAR implementing this idea
was developed in 1993. Although it gave significant state space reductions, it also
happened to produce incorrect results on certain examples, which prevented it
from being integrated in the official releases of CESAR. The reason for these
errors was unknown at that time, but is now understood and addressed in this
paper.

The use of data-flow analysis for resetting dead variables was later mentioned
in [12] and formalised in [3, 4], the main point of which is the proof that reduction
based on dead variable analysis preserves strong bisimulation. Compared to [7],
[3, 4] target at the SDL language rather than the LOTOS process algebra, and,
instead of the network model, consider a set of communicating automata with
state variables that are consulted and assigned by the automata transitions. The
main differences between the model of [3, 4] and the network model are twofold.

As regards system architecture, the network model allows concurrent pro-
cesses to be nested one in another at an arbitrary depth; this is needed for
a compositional translation of process algebra specifications in which parallel
and sequential composition operators are intertwined arbitrarily — such as the
LoTos behaviour “B1>>(Bs | | | B3)>>B,” expressing that the execution of pro-
cess Bj is followed by the concurrent execution of two processes By and Bs,
which, upon termination of both, will be followed by the execution of process
Bjy. On the contrary, the model of [3, 4] lacks any form of process hierarchy by
allowing only a “flat” collection of communicating automata, all activated in the
initial state.

As regards interprocess communications, the network model implements the
Hoare-style rendezvous mechanism used in process algebras by synchronised
Petri net transitions, which allow data exchanges between processes; additionally,
concurrent processes may share variables inherited from their parent process(es)
— as in the LoTOS behaviour “G?X :S5; (B1|11B2)”, in which both processes
B, and B can use variable X of sort S, whose value has been set in their parent
process; these shared variables are read-only, in the sense that children processes
cannot modify them. On the contrary, the model of [3, 4] relies on FIFO message
queues and shared variables that can be arbitrarily read/written by all the pro-
cesses. As regards shared variables, [3, 4] propose an approach in which variable
resets are computed partly at compile-time (when analysing each communicat-
ing automaton separately) and partly at run-time (when generating all reachable
states of the product automaton). Although it is difficult to figure out how this
approach can be implemented in practice — since the authors stand far from
algorithmic concerns and since the most recent versions® of their IF tool set [5]
do not reset shared variables actually — we believe that the communicating au-
tomata model used by [3, 4] is not sufficient in itself to express resets of shared
variables, so that some extra information (yet to be specified) must be passed
from compile-time to run-time. In comparison, the approach presented in this
paper can be performed entirely at compile-time and requires no addition to the
network model.

3 Namely, Ir 1.0 (dated November 2003) and Ir 2.0 (dated March 2003)

This paper is organised as follows. Section 2 presents the network model and
its operational semantics. Sections 3 and 4 respectively present the local and
global data-flow analyses of [7] for determination of variable resets. Section 5
deals with the particular case of inherited variables, which need careful attention
to avoid semantic problems caused by a “naive” insertion of resets. Section 6
reports about experimental results and Sect. 7 gives concluding remarks.

2 Presentation of the Network Model

The network model presented here is based on the definitions of [8, 10], the
essential characteristics of which are retained (namely, the Petri net structure
with state variables); but it also contains some more recent extensions that
proved to be useful.

Formally, a network is a tuple (Q,Qo,U,7,G,X,S,F), the components of
which will be presented progressively, so as to avoid forward references. We will
use the following convention consistently: elements of set Q (resp. U, T, G, X,
S, F) are noted by the corresponding capital letter, e.g. Q, Qo, @1, @', Q”, ete.

Sorts, Functions, and Variables. In the above definition of a network, S denotes
a finite set of sorts (i.e., data types), F denotes a finite set of functions, and
X denotes a finite set of (state) variables. We note domain(S) the (possibly
infinite) set of ground wvalues of sort S. Functions take (zero, one, or many)
typed arguments and return a typed result. Variables also are typed.

Contexts. To represent the memory containing state variables, we define a con-
text C as a (partial) function mapping each variable of X either to its ground
value or to the undefined value, noted “1”. We need 5 operations to handle con-
texts. For contexts C7 and C5, and variables X, ..., X,,, we define the contexts:

- {}: X — L (i.e., the empty context)

—{Xo— v} X — if X = X, then v else L

- Cio{Xo,.... X} X — if X € {Xo,...,X,,} then L else Cq(X)

- CLoCy: X +— if CQ(X) 7& L then CQ(X) else Cl(X)

- C18Cy: X +— if CQ(X) 7& L then CQ(X) else Cl(X)

We only use @ on “disjoint” contexts, i.e., when (C1(X)=1)V (Ca(X)=1).

Value Expressions. A wvalue expression is a term built using variables and func-
tions: V = X | F(Vi,...,V,>0). We note eval(C, V') the (unique) ground value
obtained by evaluating value expression V' in context C (after substituting vari-
ables with their ground values given by C and applying functions). Because the
network is generated from a LOTOS specification that is correctly typed and
well-defined (i.e., each variable is initialised before used), evaluating a value ex-
pression never fails due to type errors or undefined variables.

Offers. An offer is a term of the form: O ==V | 7X:S | O1...0O,>0, mean-
ing that an offer is a (possibly empty) sequence of emissions (noted “!”) and/or
receptions (noted “?”). We define a relation noted “[C,0] % [C',v; ... v,]" ex-
pressing that offer O evaluated in context C' yields a (possibly empty) list of
ground values vy ... v, and a new context C’ (C’ reflects that 7X :.S binds X to

the received value(s)). For given pair [C, O] there might be one or several pairs
[C', vy ...vy,] such that [C,0]-%[C’, v ... v,], since a reception ?X : S generates
as many pairs as there are ground values in domain(S).

v =eval(C,V) v € domain(S) Vie{1,...,n} [C,0;]%[Ci,vi]

[CV] 2 [{1 o] [C7X:S] 2 [{X = v}ho] [C01...0,]2 [, Ci vy ... v]

Actions. Actions are terms of the form:

A ::= none (empty action)
| when V (condition)
| for X among S (iteration)
| Xo,..., Xn>0:=Vo,...,V, (vectorial assignment)
| reset Xo,...,Xn>0 (variable reset)
| Ap;Ay (sequential composition)
| A1&A, (collateral composition)

We define a relation noted “[C, A]-%C"” expressing that successful execution of
action A in context C yields a new context C”. For given pair [C, A] there might
be zero, one, or several C’ such that [C, A] 5 C’, since a “when V” condition
may block the execution if V' evaluates to false, whereas a “for X among S”
iteration triggers as many executions as there are ground values in domain(5).

eval (C, V) = true v € domain(S) [C, X :=v]-5C"

[C, none] % C [C,when V]-5C [C, for X among S]->C’
C'=Co@.y{Xi— eval(C,V;)} C'=Co{Xp...,Xn}
[C, X0,y Xn:=Vo, ..., V] S C [C,reset Xo, ..., X,]>C"
[C, A S’ [C', Ay) S C" [C, Ay Ag] SO [C, Agy; A]SO
[C, Ay As] S [C, A1&As] SO

Gates. In the above definition of a network, G denotes a finite set of gates (i.e.,
names for communication points). There are two special gates: “7”, the usual
notation for the internal steps of a process, and “c”, a powerful artefact (see
[8, 10]) allowing the compositional construction of networks for a large class
of LoTOSs behaviours such as “B; [1(Ba| | Bs)”. Although e deserves a special
semantic treatment, this has no influence on the approach proposed in this paper;
thus, we do not distinguish € from “ordinary” gates.

Places and Transitions. In the above definition of a network, @ denotes a finite
set of places, Qg € Q is the initial place of the network, and 7 denotes a finite set
of transitions. Each transition T is a tuple (Q;, Qo, A, G,0, W, R), where Q; C Q

is a set of input places (we note in(T) = Q;), Q, C Q is a set of output places

(we note out(T) = Q,), A is an action, G is a gate, O is a (possibly empty)

offer, W is a when-guard (i.e., a restricted form of action constructed only with
WL,

“none”, “when”, “;” and “&”), and R is a reaction (i.e., a restricted form of
action constructed only with “none”, “:=", “reset”, “;”, and “&”).

3

Markings. As regards the firing of transitions, the network model obeys the
standard rules of Petri nets with the particularity that it is one-safe, i.e., each

‘\ Tl_INl ?XlzNat

|
|
|
K
‘: when X;>1 H
:\ 72 b
I L,
L when N=1 :\
" Ty =YL SEND !1 1 X; |
¥ X=Xy, M:=1 |
I ‘f;:::i\
\‘ H\ ””””””””””””””””
|
\‘ R
N Hl Y1:=
I i Te =T

[,

‘: when N=1 !

|| Ty=YLRECV !11Y ||

h Zy:= I

I I

\: I

| q4 I

::Tu Ooum 'Z1 H (
I

Fig. 1. Example of a network

place may contain at most one token — this is due to the so-called static control
contraints [2, 8, 10], which only allow a statically bounded dynamic creation
of processes (for instance, the following behaviour “B1>>(By| || Bs)>>B,” is
permitted, whereas recursion through parallel composition is prohibited).

Therefore, we can define a marking M as a subset of the places of the network
(i.e., M C Q). We define the initial marking My = {Qo}, which expresses that,
initially, only the initial place of the network has one token. We define a relation
noted “[M,T]™% M’ meaning that transition 7' can be fired from marking M,
leading to a new marking M’. Classically, [M, T]™ M’ holds iff in(T) C M (i.e.,
all input places of T have a token) and M’ = (M \ in(T)) U out(T) (i.e., tokens
move from input to output places).

Units. Contrary to standard Petri nets, which consists of “flat” sets of places
and transitions, the places of a network are properly structured using a tree-
shaped hierarchy of units. The set of units, which is finite, is noted U in the
above definition of a network. To each unit U is associated a non-empty, finite
set of places, called the proper places of U and noted places(U), such that all

sets of proper places {places(U) | U € U} form a partition of Q. Although units
play no part in the transition relation “[M,T] % M’” between markings, they
satisfy an important invariant: for each marking M reachable from the initial
marking M, and for each unit U, one has card (M N places(U)) <1, i.e., there
is at most one token among the proper places of U, meaning that each unit
models a (possibly inactive) sequential behaviour. This invariant serves both for
correctness proofs and compact memory representation of markings.

Units can be nested recursively: each unit U may contain zero, one, or several
units, called the sub-units of U; this is used to encapsulate sequential or concur-
rent sub-behaviours. There exists a root unit containing all other units. We note
“U’" C U” the fact that U’ is equal to U or transitively contained in U: this rela-
tion is a complete partial order, the maximum of which is the root unit. We note
places™ (U) = Uy places(U’) the set of places transitively contained in U. For
some marking M reachable from My, one may have card (M Nplaces™(U)) > 1in
case of concurrency between the sub-units of U; yet, for all units U and U’ C U,
one has (M N places(U) = 0) V (M N places(U’) = (), meaning that the proper
places of a unit are mutually exclusive with those of its sub-units.

Variables may be global, or local to a given unit. We note unit(X) the unit
to which variable X is attached (global variables are attached to the root unit).
A variable X is said to be inherited in all sub-units of unit(X). In a first ap-
proximation, we will say that variable X is shared between two units U; and U,
iff (Up C wnit(X)) A (Uz C unit(X)) A (Ur & Us) A (Uz £ Ur); this definition
will be sufficient until Sect. 5, where a refined definition will be given.

Labelled Transition Systems. Finally, the operational semantics of the network
model is defined as a Labelled Transition System (LTS), i.e., a tuple (X, o9, £, —)
where XY is a set of states, g € X' is the initial state, L is the set of labels and
— C Y x L x XY is the transition relation.

The LTS is constructed as follows. Each state of X consists of a pair (M, C),
with M a marking and C' a context. The initial state o is the pair (Mo, {}),
i.e., one token is in the initial place and all variables are undefined initially. Each
label of £ consists of a list G vy ...v,, with G a gate and vy ...v, a (possibly
empty) list of ground values resulting from the evaluation of an offer. A transition

(01, L, 02) belongs to the “—" relation, a fact which we note “oq L, oo, iff
M, T]Z M [C A SC" [C,0]%[C",v1...v,] [C",(W;R)]-SC"
(M, C) 2 (0,)

The above definition expresses that firing a transition involves several steps, the
execution of each must succeed: the action is executed first, then the offer is
evaluated, then the when-guard is checked, and the reaction is executed finally.
In fact, the actual definition of the transition relation is more complex because
there are rules to eliminate e-transitions from the LTS; as mentioned before, we
do not detail these rules here.

Ezxample. Figure 1 gives an example of a network. According to Petri Net graph-
ical conventions, places and transitions are represented by circles and rectangles.

Dashed boxes are used to represent units. For each transition, the corresponding
action, gate and offer, when-guard, and reaction are displayed (in that order)
from top to bottom on the right; we omit every action, when-guard, or reaction
that is equal to none. The variables attached to U; are X; and Z;; those at-
tached to Us are X5 and Zs; those attached to Us are M, N, X, Y, Y7, and Ys.
Variable X inherited from Ujs is shared between Uy and Us.

3 Local Data-Flow Analysis

In the network model, transitions constitute the equivalent of the “basic blocks”
used for data-flow analysis of sequential programs. We first analyse the flow of
data within each transition taken individually to characterise which variables
are accessed by this transition. Our definitions are based on [7] with adaptations
to take into account the latest extensions of the network model and to handle
networks that already contain “reset” actions. We define the following sets by
structural induction over the syntax of value expressions, offers, and actions:

— usey (V) (resp. use,(0O), use,(A)) denotes the set of variables consulted in

value expression V' (resp. offer O, action A).

— def,(O) (resp. def,(A)) denotes the set of variables assigned a defined value
by offer O (resp. action A).

— und,(A) denotes the set of variables assigned an undefined value (i.e., reset)
by action A.

— use_before_def, (A) denotes the set of variables consulted by action A and
possibly modified by A later (modifications, if present, should only occur
after the variables have been consulted at least once).

useo(1V) 2 use, (V)

use,(7X:5) 20

useo (01 ... 0p) = U useo(0;)
i=1

use, (X) 2 {X} i
usey (F(V17 e Vn)) = iL:Jlusev Va)

undq (reset Xo,...,Xn)é{Xo,...,Xn} defo(!V)é(Z)
unda(Av; Az) = (unda (A1) \ def, (A2)) U unda(A2) | def (7 :) 2 {X}
und, (A1&As) 2 unda (A1) U unda (As) def (O 02 " def (O
otherwise : und, (A) = 0 o(Or---On) iL:J1 o (O:)

A
def, (Xo, ..., Xn:=Vo, ..., Va) 2 {Xo,..., Xp} | WCa(When V) =Zuse,(V)

def,(for X among S) = {X} usea(Xo...:=Vo...) = _L:jousev(vi)
def, (A1; A2) % (def, (A1) \ und,(Az2)) U def,(A2) useq(Ar; Az) 2 use, (A1Z)7U useq (A2)
defa(Al&AQ) = defa(A1) U defa(Az) usea(Al&Ag) A2 usea(Al) U usea(A2)

otherwise : def, (4) = 0 otherwise : useq(A) = ()
use_before_def, (A1 ; As) = use_before_def, (A1) U (use_before_def, (Az) \ def,(A1))
use_before_def, (A1&As) = use_before_def, (A1) U use_before_def, (As)
otherwise : use_before_def,(A) = useq(A)

Finally, for a transition T' = (Q;, Q., A, G,O0, W, R) and a variable X, we
define three predicates, which will be the only local data-flow results used in
subsequent analysis steps:

— use(T, X) holds iff X is consulted during the execution of T'.
— def (T, X) holds iff X is assigned a defined value by the execution of T, i.e.,
if X is defined by A, O or R, and not subsequently reset.
— use_before_def (T, X) holds iff if X is consulted during the execution of T
and possibly modified later (modification, if present, should only occur after
X has been consulted at least once).
Formally:

use(T, X) = X € useq(A) U use,(0) U use, (W) U useq (R)
def (T, X) = X € ((def,(A) U def,(0)) \ und,(R)) U def, (R)

use_before_def,(A) U (useo(O) \ def,(A)) U)

use-before-def (T, X) = X € ((use_before_defa(W;R) \ (def,(A) U def,(0)))

Ezample. For the variable N in the network of Fig. 1, we have: use(T, N) for
T € {T4,T5,Ts,To, T10}, def (T, N) for T € {Tz,Ts}, and use_before_def (T, N)
for T € {T4, Ts, Ty, Tl()}.

4 Global Data-Flow Analysis

Based on local (intra-transition) data-flow predicates, we now perform global
(inter-transition) data-flow analysis, the goal being to compute, for each transi-
tion T = (Qi, Qo, A, G, O, W, R) and for each variable X, a predicate reset(T, X)
expressing that it is possible to reset variable X at the end of transition T (i.e.,
to append “reset X7 at the end of A if X is neither defined in O nor used in
O, W, and R, or else to append “reset X” at the end of R). To be exact, if X
is an inherited shared variable, it is not always possible to insert “reset X” at
the end of every transition 7" such that reset(7’, X); this issue will be dealt with
in Sect. 5; for now, we focus on computing reset(7T, X).

For sequential programs, the classical approach to global data-flow analysis
(e.g. [1]) conmsists in constructing a control-flow graph on which boolean pred-
icates will then be evaluated using fixed point computations. The vertices of
the control-flow graph are usually the basic blocks connected by arcs expressing
that two basic blocks can be executed in sequence. Since the control-flow graph
is a data-independent abstraction, it represents a superset of the possible exe-
cution paths, i.e., some paths of the control-flow graph might not exist in actual
executions of the sequential program.

A significant difference between sequential programs and our setting is that
networks feature concurrency. One could devise a “true concurrency” extension
of data-flow analysis by evaluating the boolean predicates, not on control-flow
graphs, but directly on Petri nets. Instead, following [7], we adopt an “interleav-
ing semantics” approach that maps concurrency onto a standard control-flow
graph, on which the boolean predicates can be evaluated as usual.

To abstract away concurrency from the network model, various possibilities
exist, leading to different control-flow graphs. One possibility would be to base
the analysis on the graph of reachable markings of the underlying Petri net;
this would be accurate but costly to compute, as state explosion might occur.

Fig. 2. CFG for Fig. 1 Fig. 3. CFGny for Fig. 1

Hence, we choose a stronger abstraction by defining the control-flow graph as the
directed graph CFG = (7, —), the vertices of which correspond to the transitions
of the network and such that there is an arc Ty — T3 iff out(T1) N in(T2) # 0.

Ezxample. The CFG corresponding to the network of Fig. 1 is shown in Fig. 2.

Instead of constructing a unique CFG valid for all variables, [7] suggests
to build, for each variable X, a dedicated control-flow graph CFGx, which is a
subset of CFG containing only the execution paths relevant to X (nowadays, this
would be called “slicing”). According to [7, § 4.3.3], such a restricted control-
flow graph increases the algorithmic efficiency; by our accounts, it also gives
more precise data-flow results.

To define CFGx formally, we need two auxiliary definitions. Let trans(U) =
{T| (in(T) U out(T)) N places™ (U) # 0} be the set of transitions with an input
or an output place in unit U. Let scope(X) be (an upper-approximation of) the
set of places through which the data-flow for variable X passes. Following the
simple, “syntactic” approximation of scope(X) given in [7], we define scope(X) =
places™ (unit(X)) as the set of all places in the unit to which X is attached.

We now define CFGx as the directed graph (7x, — x) with the set of vertices
Tx = tmns(unit(X)) and such that there is an arc Ty — x Ts iff out(T1)Nin(T2)N
scope(X) # 0. For T € Tx, we note succx(T) = {T" € Tx | T—xT'} and
predx (T)={T" € Tx | T'—xT}.

Ezxample. Figure 3 shows CFGy for the network of Fig. 1 and variable IV; notice
that Ty — Ty, but not Ty—nTy.

Following the classical definition of “live” variables (e.g. [1, pages 631-632]),
we define, for T' € Tx, the following predicate:

live(T, X) = V1 esucex () use-before-def (T, X) v (live(T", X) A —def (T", X))
that holds iff after T it is possible, by following the arcs of CFGx, to reach a

transition 7" that uses X before any modification of X. For a given X, the set
{T € Tx | live(T, X)} is computed as a backward least fixed point.

We could now, as in [3, 4], define reset(T, X) = —live(T, X). Unfortunately,
this simple approach inserts superfluous resets, e.g. before a variable is initialised
or at places where a variable has already been reset. For this reason, one needs

an additional predicate:
A

available(T, X) = def (T, X) V (\/T/epredX(T) (live(T', X)) A available(T", X)))

that holds iff T' can be reached from some transition that assigns X a defined
value, by following the arcs of CFGx and ensuring that X remains alive all along
the path. For a given X, the set {T' € Tx | available(T, X)} is computed as a
forward least fixed point. [7] uses a similar definition without the live(T”, X)
condition and, thus, only avoids resetting uninitialised variables.

Finally, we define reset(T', X) = available (T, X) A—live(T, X), expressing that
a variable can be reset where it is both available and dead.
Ezample. For the network of Fig. 1 and variable N, we have {T' | live(T,N)} =
{T%,Ts} and {T' | available(T, N)} = {T%,T4,T5,Ts, Ty, T1o}. Thus, we can insert
“reset N7 at the end of Ty, T5, Ty, and To. Using the definition of [3, 4], one
would insert superfluous “reset N7 at the end of Ty, Ty, and T7. Using the
definition of [7], one would insert superfluous “reset N” at the end of Ts and T7.
Using CFG instead of CFGy would give {T' | live(T,N)} ={Ty...T5,Ts ... T12}
and {T | available(T,N)} = {T1...T5,Ts...T12}, so that no “reset N” at all
would be inserted.

5 Treatment of Inherited Shared Variables

Issues when Resetting Shared Variables. Experimenting with the approach of
[7], we noticed that systematic insertion of a “reset X” at the end of every
transition T such that reset(T, X) could produce either incorrect results (i.e.,
an LTS which is not strongly bisimilar to the original specification) or run-time
errors while generating the LTS (i.e., accessing a variable that has been reset).

Ezxample. In the network of Fig. 1, there exists a fireable sequence of transitions
To,T1,T5, Ty, T, T7. Although reset(Ts, X) is true, one should not reset X at
the end of Tg, because X is used just after in 75. Clearly, the problem is that Tg
and T7 are two “concurrent” transitions sharing the same variable X. This was
no problem as long as X was only read by both transitions, but as soon as one
transition (here, T4) tries to reset X, it affects the other transition (here, 7).

So, insertion of resets turns a read-only shared variable into a read/write
shared variable, possibly creating read/write conflicts as in a standard reader-
writer problem. The sole difference is that resets do not provoke write/write
conflicts (concurrent resets assign a variable the same undefined value).

To avoid the problem, a simple solution consists in never resetting inher-

ited shared variables (as in the IF tool set [5]). Unfortunately, opportunities for
valuable state space reduction are missed by doing so.
Ezample. As shown in Fig. 4 (a) and (b), the LTS generated for the LOTOS
behaviour “G?X :bit; (G1! X ;stopl | 1G2! X ;stop)” has 9 states if the inher-
ited shared variable X is not reset, and only 8 states if X is reset after firing
transitions G1!X and G2! X (state space reduction would be more substantial
if both occurrences of “stop” were replaced by two complex behaviours B; and
Bs in which the value of X is not used). Figure 4 (c¢) shows the incorrect LTS
obtained by resetting X to 0 after each transition G1!'X and Ga! X.

Duplication of Variables. The deep reason behind the issues when resetting
inherited shared variables is that the control-flow graphs CFG and CFGx de-

Fig. 4. LTS (a) without reset, (b) with correct resets, and (c) with incorrect resets

fined in Sect. 4 are nothing but approximations. Their definitions follow the
place-transition paths in the network, which has the effect of handling similarly
nondeterministic choice (i.e., a place with several outgoing transitions) and asyn-
chronous concurrency (i.e., a transition with several output places). Indeed, both
LoTos behaviours “G; (Bi|11B3)” and “G; (B;[1Bs)” have the same CFG.
These approximations produce compact control-flow graphs, but are only correct
in absence of data dependencies (caused by inherited shared variables) between
“concurrent” transitions.

To address the problem, we introduce the notion of variable duplication. For
an inherited variable X shared between two concurrent behaviours By and Bs,
duplication consists in replacing, in one behaviour (say, Bs), all occurrences of
X with a local copy X' initialised to X at the beginning of By. This new vari-
able X’ can be safely reset in By without creating read/write conflicts with B;.
A proper application of duplication can remove all data dependencies between
“concurrent” transitions, hence ensuring correctness of our global data-flow anal-
ysis approximations. It also enables the desired state space reductions.
Ezample. In the previous example, duplicating X in Bs yields the LoToSs
behaviour “G7X:bit;let X':bit=X in (G;!X;stopl|||G2!'X’;stop)”, in
which it is possible to reset X after the G1!X transition and X’ after the
G2 ! X' transition; this precisely gives the optimal LTS shown on Fig. 4 (b).
Note that it is not necessary to duplicate X in Bj.

Instead of duplicating variables at the LOTOS source level, as in the above ex-
ample, we prefer duplicating them in the network model, the complexity of which
has already been reduced by detecting constants, removing unused variables,
identifying variables local to a transition, etc. Taking into account that concur-
rent processes are represented by units, we define the duplication of a variable
X in a unit U, with U C unit(X) and U # unit(X), as the operation of creating
a new variable X’ of the same sort as X attached to U (whereas X is attached
to unit(X)), replacing all occurrences of X in the transitions of trans(U) by X’
and adding an assignment “X’:=X” at the end of all transitions T' € entry(U)
such that live(T, X), where entry(U) = {T € trans(U) | in(T) N places* (U) = 0}
is the set of transitions “entering” U.

In general, several duplications may be needed to remove all read/write con-
flicts on a shared variable X. On the one hand, if X is shared between n concur-

rent behaviours, (n — 1) duplications of X may be necessary. On the other hand,
each new variable X’ duplicating X might itself be shared between concurrent
sub-units, so that duplications of X’ may also be required.

Concurrency Relation between Units. We now formalise the notion of “concur-
rent units”. Ideally, two units U; and U; are concurrent if it exists a reach-
able state (M,C) in the corresponding LTS such that the two sets of places
(MnNplaces™(U;)) and (M Nplaces™ (U;)) are both non empty and disjoint (mean-
ing that U; and U; are “separate” and simultaneously “active” in marking M).
Ezxample. In the LoTOS behaviour “(Bi||1B2)>>(Bs| || B4)”, units Uy and U,
corresponding to By and By are concurrent, units Us and Uy corresponding Bs
and By also, but neither U; nor Us is concurrent with either Us or Uy.

Practically, to avoid enumerating all states of the LTS, we need a relation
noted “U; |U;” that is an upper-approximation of the ideal definition above, i.e.,
U; and U; concurrent implies U; || U;. We base our definition on an abstraction
function o : @ — {1,..., N} (N being the number of units in the network) that
maps all the proper places of each unit to the same number: V@ € places(U;):
a(Q) = i. We extend « to sets of places by defining @ : p(Q) — p({1,...,N})
such that a({Q1,...,Qn}) = {a(Q1),...,(Q,)}. We then use a and @ to
“quotient” the network, yielding a Petri net with N places numbered from 1
to N, with initial place a(Qo) (Qo being the initial place of the network), and
which possesses, for each transition 7" in the network, a corresponding transition ¢
such that in(t) =@ (in(T)) and out(t) = a&(out(T)) — “self-looping” transitions
such that in(t) = out(t), as well as transitions identical to another one, can
be removed. As the number of units is usually small compared to the number
of places, one can easily generate the set M of all reachable markings for the
quotient Petri net. Finally, we define U; || U; iff there exists M € M such that
both sets (M N a(places™(U;))) and (M N @(places™(U;))) are not empty and
disjoint. Notice that U, ||U; implies U; # U;, U; £ U;, and U; Z U;.

Conflicts between Units. For two units U; and U; such that U; || Uj, let
ancestor(U;, U;) denote the largest unit U such that U; C U and U; Z U and let
link(U;, U;) denote the set of transitions connecting the ancestors of U; and those
of Uj; formally: link(U;, U;) = trans (ancestor (U;, U;)) Ntrans (ancestor(U;, U;)).
To characterise whether two units U; and U; are in conflict for variable X

according to given values of predicates use and reset, we define the predicate:
conflict(U;, Uj, X, use, reset) = U; C unit(X) A U; Cunit(X) A Ui |U; A

3T; € trans(U;) \ link(U;,U;)) (3T; € trans(U;) \ link(U;,U;))

reset(T;, X) A use(Tj, X)) V (reset(T;, X) A use(T;, X))
Intuitively, units U; and U; are in conflict for X if there exist two “indepen-
dent” transitions 7; and T} likely to create a read/write conflict on X. To avoid
irrelevant conflicts (and thus, unnecessary duplications), one can dismiss the
transitions of link(U;,U;), i.e., the transitions linking the ancestor of U; with
that of Uj, since the potential impact of these transitions on the data-flow for
X has already been considered when constructing CFGx and computing reset
— based on the observation that link(U;, U;) C trans(unit(X)).

1. compute the relation U; || U; and link(U;, U;) (cf. Sect. 5)
2. VARS :=X

3. while VARS # () do

4. begin

5. X:=one_of (VARS)

6. VARS:=VARS\{X}

7. repeat

8 forall T € trans(unit(X)) do

9. compute use(T, X), def (T, X), and use_before_def (T, X) (cf Sect. 3)
10. forall T € trans(unit(X)) do
11. compute reset(T, X) (cf Sect. 4)

12. compute conflict(U;,Uj, X, use, reset) and UCGx (cf Sect. 5)
13. compute U :=best_of (UCG x) (cf. Sect. 5)
14. if U # L then

15. begin

16. duplicate X in U by creating a new variable X'
17. VARS:=VARS U{X'}

18. end

19. untilU =1

20. — — at this point, there is no more conflict on X

21. forall T € trans(unit(X)) such_that reset(T, X) do
22. insert “reset X” at the end of T' (cf. Sect. 4)

23. end

Fig. 5. Complete algorithm

We then define, for given values of predicates use and reset, the unit conflict
graph for wvariable X, noted UCGx, as the undirected graph whose vertices
are the units of unit(X) and such that there is an edge between U; and Uj iff
conflict(U;,U;, X, use, reset).

Complete Algorithm. The algorithm shown in Fig. 5 operates as follows. VARS
denotes the set of all variables in the network, which might be extended progres-
sively with new, duplicated variables. All the variables X in VARS are processed
individually, one at a time, in an unspecified order. For a given X, the algorithm
performs local and global data-flow analysis, then builds UCGx. If UCG x has
no edge, X needs not be duplicated and “reset X” can be inserted at the end of
every transition 7' € trans(unit(X)) such that reset(T, X). Otherwise, X must
be duplicated in one or several units to solve read/write conflicts. This adds to
VARS one or several new variables X', which will be later analysed as if they
were genuine variables of the network (i.e., to insert resets for X’ and/or to solve
read /write conflicts that may still exist for X’). Everytime a new variable X’
is created to duplicate X, data-flow analysis for X and UCGx are recomputed,
as duplication modifies the network by removing occurrences (definitions, uses,
and resets) of X and by adding new assignments of the form X’':=X.

Since each creation of a new variable X’ increases the size of the state rep-
resentation (thus raising the memory cost of model checking), it is desirable to
minimise the number of duplications by choosing carefully in which unit(s) X
will be duplicated. Based on the observation that duplicating X in some unit U
removes from UCG x all conflict edges connected to U, the problem is similar to
the classical NP-complete “vertex cover problem” | except that each edge removal
provokes the recalculation of UCG x. To select the unit (noted best_of (UCG x))
in which X should be duplicated first, we adopt a combination of top-down and
greedy strategies by choosing, among the units of UCG x having at least one
edge, outermost ones; if there are several such units, we then choose one having
a maximal number of edges; if UCG x has no edges, best_of (UCG x) returns L.

For a given variable X, the “repeat” loop (line 7) terminates because of
fixed point convergence of global data-flow analysis and because the cardinal of
Ux = {U C wnit(X) | 3T € trans(U) \ entry(U) such that use(T, X)} strictly
decreases at each duplication (line 16). Indeed, Ux is the set of units U in
which variable X is used within a transition 7' that does not “enter” U (i.e.,
in(T) N places™(U) # 0). After duplicating X in U, there are no remaining
occurrences of X in the transitions of trans(U)\ entry(U) and, thus, U is no longer
in Uy . While duplication might add assignments X’:=X (and consequently, new
uses of X) to the transitions T' of entry(U) (in fact, only those T such that
live(T, X)) and, therefore, might add to Uy some new unit(s) U’ such that
U C U’ C unit(X), this is not the case actually, as all such units U’ already
belong to Ux (since U € Ux and U C U’ C unit(X) implies U’ € Ux).

The outermost “while” loop (line 3), which removes one variable X from
VARS but possibly inserts new variables X’ in this set, also terminates. Let 6(U)
be the nesting depth of unit U in the unit hierarchy, i.e., the number of parent
units containing U (the root unit having depth 0). Let L = max{o(U) | U € U}
be the maximal nesting depth, and let A(VARS) be the vector (ng,...,nr) such
that Vi, n; = card{X € VARS | 6(unit(X)) = i}. At each iteration of the outer-
most loop, A(VARS) strictly decreases according to the lexicographic ordering
on integer vectors of length L, as all variables X’ created to duplicate X are
attached to units strictly included in unit(X), i.e., (unit(X")) < 6 (unit(X)).

6 Experimental Results

We implemented our approach in a prototype version of CESAR and compared
this prototype with the “standard” version of CESAR, which, as mentioned in
Sect. 1, already resets variables but in a more limited way (upon process termi-
nation only). We performed all our measurements on a Sun Sparc Station 100
with 1.6 GB RAM.

We considered 279 LOTOS specifications (many of which are derived from
“real world” applications) for which the entire state space could be generated
with the “standard” version of C&ESAR. For 112 examples out of 279 (40%),
our approach reduced the state space (still preserving strong bisimulation) by
a mean factor of 9.7 (with a maximum of 220) as regards the number of states

and a mean factor of 13 (with a maximum of 360) as regards the number of
transitions. For none of the other 167 examples did our prototype increase the
state space.

Then, we considered 3 new “realistic” LOTOS specifications, for which our
prototype could generate the corresponding state space entirely, whereas the
“standard” version of C&ESAR would fail due to lack of memory. For one of these
examples, the “standard” version stopped after producing an incomplete state
space with more than 9 million states, while our prototype generated an LTS
with 820 states and 1,500 transitions (i.e., a reduction factor greater than 10%).

We then extended our set of 279+ 3 examples with 17 new, large examples for
which our prototype is still unable to generate the entire state space. On these
299 examples, variable duplication occurred in only 28 cases (9.4%) for which it
increased the memory size needed to represent a state by 60% on average (most
of the increase being due to 2 particular examples; for the 26 remaining ones,
the increase is only of 10% on average). However, on all examples for which the
“standard” version of CESAR could generate the LTS entirely, we measured that,
on average, the increased memory cost of state representation was outweighed
by the global reduction in the number of states.

As regards execution time, we observed that our approach divides by a factor
of 4 the total execution time needed to generate all LTSs corresponding to the
279 examples mentioned above. The cost in time of our algorithm is small (about
4%) and more than outweighed by the resulting state space reductions.

7 Conclusion

This paper has shown how state space reduction based on a general (i.e., not
merely “syntactic”) analysis of dead variables can be applied to process algebra
specifications. Our approach requires two steps.

First, the process algebra specifications are compiled into an intermediate
network model based on Petri nets extended with state variables, which can be
consulted and modified by actions attached to the transitions.

Then, data-flow analysis is performed on this network to determine auto-
matically where variable resets can be inserted. This analysis generalizes the
“syntactic” technique (resetting variables of a process upon its termination) im-
plemented in CESAR since 1992. It handles shared read-only variables inherited
from parent processes, an issue which so far prevented the approach of [7] from
being included into the official releases of CESAR.

Compared to related work, our network model features a hierarchy of nested
processes, where other approaches are usually restricted to a flat collection of
communicating automata. Also, our data-flow analysis uses two passes (back-
ward, then forward fixed points computations) in order to introduce no more
variable resets than necessary.

Experiments conducted on several hundreds of realistic LOTOS specifications
indicate that state space reduction is frequent (20-40% of examples) and can

reach several orders of magnitude (e.g. 10*). Additionally, state space reduction
makes CAESAR four times faster when processing the complete set of examples.

As regards future work, we can mention some open issues (not addressed in

this paper, since they are beyond the scope of the CESAR compiler for LOTOS),
especially data-flow analysis in presence of dynamic creation/destruction of pro-
cesses (arising from recursion through parallel composition) and data-flow anal-
ysis for shared read/write variables (in which case duplication is no longer pos-
sible).

References

[

2]

3]
[4]

[5]

[6]

(7]

8]
[9]

[10]

[11]

[12]

[13]

[14]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

G. Ailloud. Verification in ECRINS of LOTOS Programs. In Towards Practical
Verification of LOTOS specifications, Universiteit Twente, 1986. Technical Report
ESPRIT/SEDOS/C2/N48.1.

M. Bozga, J.-C. Fernandez, and L. Ghirvu. State Space Reduction based on Live
Variables Analysis. In SAS5’99, LNCS 1694, pages 164-178, Sept. 1999. Springer.
M. Bozga, J.-C. Fernandez, and L. Ghirvu. State Space Reduction based on Live
Variables Analysis. Science of Computer Programming, 47(2-3):203—-220, 2003.
M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and L. Mounier. Ir:
An Intermediate Representation and Validation Environment for Timed Asyn-
chronous Systems. In FM’99. Springer, Sept. 1999.

Y. Dong and C. R. Ramakrishnan. An Optimizing Compiler for Efficient Model
Checking. In FORTE’99, pages 241-256, Beijing, Oct. 1999. Kluwer.

J. Galvez Londono. Analyse de flot de données dans un systéme parallele. Mémoire
de DEA, Institut National Polytechnique de Grenoble and Université Joseph
Fourier, Grenoble. Supervised by Hubert Garavel and defended on June 22, 1993
before the jury composed of Hubert Garavel, Farid Ouabdesselam, Claude Puech,
and Jacques Voiron.

H. Garavel. Compilation et vérification de programmes LOTOS, Theése de doctorat,
Université Joseph Fourier, Grenoble, Nov. 1989.

H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Newsletter, 4:13-24, Aug. 2002. Also INRIA Technical Report RT-0254.

H. Garavel and J. Sifakis. Compilation and Verification of LOTOS Specifications.
In 10™ International Symposium on Protocol Specification, Testing and Verifica-
tion, pages 379-394. IFIP, June 1990.

S. Graf, J.-L. Richier, C. Rodriguez, and J. Voiron. What are the Limits of Model
Checking Methods for the Verification of Real Life Protocols? In 1°* Workshop
on Automatic Verification Methods for Finite State Systems, LNCS 407, pages
275-285, June 1989.

G. J. Holzmann. The Engineering of a Model Checker: The Gnu i-Protocol Case
Study Revisited. In 6 SPIN Workshop, LNCS 1680, pages 232-244, 1999.
ISO/IEC. Loros — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, ISO, Geneve,
Sept. 1989.

R. Melton and D. L. Dill. Murphi Annotated Reference Manual, 1996. Release
3.1. Updated by C. Norris Ip and Ulrich Stern. Available at
http://verify.stanford.edu/dill/Murphi/Murphi3.1/doc/User.Manual.

