
A Set of Performance and Dependability

Analysis Components for CADP

Holger Hermanns1,2 and Christophe Joubert3

1 Department of Computer Science, University of Twente,
P.O. Box 217, NL-7500 AE Enschede, The Netherlands

2 Department of Computer Science, Saarland University,
Im Stadtwald, D-66123 Saarbrücken, Germany

3 INRIA Rhône-Alpes / VASY, 655, avenue de l’Europe
F-38330 Montbonnot Saint-Martin, France

Abstract. This paper describes a set of analysis components that open
the way to perform performance and dependability analysis with the
Cadp toolbox, originally designed for verifying the functional correct-
ness of Lotos specifications. Three new tools (named Bcg Steady,
Bcg Transient and Determinator) have been added to the toolbox.
The approach taken fits well within the existing architecture of Cadp
which doesn’t need to be altered to enable performance evaluation.

1 Introduction

The design of models suited for performance and dependability analysis of sys-
tems is difficult because of their ever increasing size and complexity, in particular
for systems with a high degree of irregularity. The potential of formal methods
and tools to support the modelling and analysis of performance and dependabil-
ity aspects has led to various techniques and tools, mostly based on stochastic
Petri nets (SPN for short, e.g. [2, 22, 3, 4]), or stochastic process algebras (e.g. [12,
1, 15]), or both [7].

This paper describes Pdac (Performance and Dependability Analysis Com-
ponents), a set of components that enable the study of performance and depend-
ability for specifications developed by means of the Cadp toolbox [10]. The latter
is a widespread tool set for the design and verification of complex systems. Cadp
supports the process algebra Lotos for specification, and offers various tools for
simulation and formal verification, including equivalence checkers (bisimulations)
and model checkers (temporal logics and modal µ-calculus). The toolbox is de-
signed as an open platform for the integration of other specification, verification
and analysis techniques. This is realized by means of application programming
interfaces (Api) which on different levels provide means to extend or exploit the
functionalities of the toolbox. These Apis have been used by others to link Cadp
to other specification languages as well as other verification/testing tools.

Here we describe how these Apis have been used to support performance
and dependability analysis based on Markov modelling and numerical algo-
rithms. Our efforts have been driven by the intention to avoid changes to the



existing components as much as possible, while providing a sound and efficient
framework for performance and dependability analysis, including state-of-the-
art stochastic model checking techniques. To achieve this we use the theory
of interactive Markov chains [13], a conservative extension of both process al-
gebra and continuous-time Markov chains (Ctmc for short), the latter being
a well-investigated and frequently used class of stochastic models. More de-
tails on the modelling philosophy can be found in [13, 8], while here we fo-
cus on the tool architectural aspects. The resulting set of tool components
(http://fmt.cs.utwente.nl/tools/pdac/) will be part of the forthcoming
Cadp 2003 (http://www.inrialpes.fr/vasy/cadp).

The paper is organised as follows. Section 2 briefly explains how the process
algebra Lotos can be used for modelling Markovian aspects. Section 3 describes
extensions of Cadp to support performance evaluation.

2 Interactive Markov chains in CADP

Many stochastic models derived from state-transition diagrams have been pro-
posed. Our approach is based on the interactive Markov chain model (Imc),
which can be considered as simply a labelled transition system (Lts) whose
transitions can be either labelled with an action (as in an ‘ordinary’ Lts) or
with special labels of the form “rate λ”, where λ is a positive real value. A

transition “ rate λ−−−−−−→ ” going out of some state S is called a delay transition

and expresses an internal delay in state S (henceforth called a Markov delay).
It indicates that the time t spent in S follows a so-called negative exponential

distribution function Prob{t ≤ x} = 1− e−λx, to be read as: the probability that
state S is exited at time x the latest equals 1 − e−λx. The Imc model contains
as two particular cases the Lts model and the well-known Ctmc model (which
is obtained when there are only delay transitions). The latter model has been
extensively studied in the literature and is equipped with various efficient eval-
uation strategies (see, e.g. [23]). Similar to Markov decision processes [20], the
Imc model allows nondeterminism in states, i.e., two identical action transitions
leaving the same state.

To extend the Cadp tool towards Imc, the approach chosen [8] is a light-
weight one, which does not modify the syntax of Lotos and requires no change
in the Cadp compilers for Lotos (Cæsar.adt and Cæsar). The approach has
two steps. Starting from a (functionally verified) Lotos specification, the user
can insert, wherever a Markov delay λi should occur, a new (fresh) Lotos gate
Λi. After the special gates Λi have been inserted in the specification, Cæsar and
Cæsar.adt are invoked as usual to generate the corresponding Lts, which is
stored in the Bcg (Binary Coded Graphs) format. This Lts is then turned into
an Imc (still encoded in the Bcg format) by replacing all its action transitions
Λi with delay transitions “rate λi”. This is done using the Bcg Labels tool
of Cadp.

So, by this two step methodology, we can generate an Imc model correspond-
ing to a Lotos specification with inserted delays and store this model in the



Bcg format. Another, less manual, possibility to specify Imc has been suggested
in [16] where a constraint-oriented style is used to incorporate Markov delays (or
more complex phase-type distributions) between the actions of an existing (and
verified) Lotos specification. Again, the result is an Imc model stored in the
Bcg format. We refer to [8] for a discussion of the soundness of this approach,
and for more details and options in the process of generating an Imc with Cadp.

3 Analysis components

The Pdac set encompasses two sorts of tools to analyse Imc models generated
via Cadp. (i) The Determinator tool and the Cadp component tool Bcg Min
provide different means to distill a Ctmc from an Imc model. (ii) The main
analysis components, Bcg Steady and Bcg Transient, enable numerical in-
spection of the behavior Ctmcs encoded in the Bcg format. We discuss the
tools in reverse order.

Analysing a Markov Chain. Two analysis tools provide standard numerical al-
gorithms to compute the distribution of probability in a Ctmc.

– Bcg Transient implements the uniformisation method [23], calculating
the time-dependent probability to be in each of the Markov Chain states at
a user-specified point in time (relative to the initialisation of the system).
The time point is a command-line parameter.

– Bcg Steady computes the time-independent, long run equilibrium proba-
bilities for each of the system states, using the Gauss-Seidel algorithm [23].
This equilibrium is known to exist for arbitrary finite Ctmcs.

Both tools accept a Bcg file as input. Unless the file contains action transitions,
the graph is accepted for analysis. First, the tool transforms the given graph into
the generator matrix representation of a Ctmc using the sparse matrix package
of [18]. Then, the respective computational procedure is launched. In either case,
this results in a vector of state probabilities.

Dependent on the option selected by the user, the solution vector is writ-
ten to file (option -sol) or is further processed, to compute so-called transition
throughputs. A transition throughput indicates the average number of transi-
tion executions per time unit, for a user-specified set of transitions of interest.
These measures can provide important high-level information to assess the sys-
tem performance, reliability or productivity. Bcg Transient and Bcg Steady
support throughput calculations if the Bcg file contains tagged delay transitions
of the form “tag ; rate λ”, where tag can be an arbitrary label. In this case
the throughput is computed for each syntactic tag occuring in the Bcg file (if
the option -thr is selected).

To allow postprocessing and visualisation of computed measures,
Bcg Transient and Bcg Steady give output results in a Csv-like format
(Comma Separated Values). Thus data can be directly conveyed as input to
table-oriented applications such as Gnuplot or Excel, which can read Csv
files.



Distilling the Markov Chain. Since the numerical analysis components take a
Ctmc as input, tools are needed to distill a Ctmc from an Imc model. Due to the
presence of nondeterminism in Imc this is infeasible in general, and the toolset
only provides two partial solutions to this. Both are based on the observation
that nondeterminism – while being essential for compositional specification –
can often be factored out in the final state space being subject to performance
and dependability analysis.

– Determinator implements an on-the-fly algorithm for the well-specified

condition [11, 6] of a stochastic process. Roughly, an Imc is said to be well-
specified, if – whatever nondeterministic decisions are taken – the resulting
Ctmc is unique. The algorithm implemented is a variant of the one described
in [5, 6].

– Bcg Min is the bisimulation minimiser of Cadp. It can also be used for
distilling a Ctmc from an Imc: If for a given Imc it holds that – whatever
nondeterministic decisions are taken – the resulting lumped Ctmc chain is
unique, then this lumped Ctmc will be returned by (the stochastic branching
bisimulation option of) Bcg Min applied to the original Imc model with all
actions hidden.

Bcg Min provides a more powerful way of resolving nondeterministic compared
to the Determinator tool (which does not check the quotient under lumping),
but it is computationally more expensive (and is not an on-the-fly algorithm).
It is possible to use Determinator as a preprocessor to Bcg Min. In the
practical cases we considered, this combination turned out to be rather beneficial.
Typically the time needed for distilling a lumped Ctmc from Imc was decreased
by a factor of eight, compared to applying Bcg Min directly.

Other specification formalisms. When designing the extension to Cadp, care
has been taken to exploit the features of the Bcg Api in a way that as far
as possible also other formalisms are supported by the toolset. We refer to the
manual pages (see http://fmt.cs.utwente.nl/tools/pdac/ and http://www.

inrialpes.fr/vasy/cadp/man) for a complete description of the possibilities
and limitations, and highlight only a few specific options we have implemented:

– Both Bcg Transient and Bcg Steady can handle state spaces where
delay transitions and probabilistic transitions coexist. The latter are encoded
using distinguished labels of the form “prob pi”, where pi is a real value from
the interval (0, 1]. These models often appear in the context of generalized
SPN and similar models [19].

– Determinator is able to handle models with delay transitions, nondeter-
ministic transitions and also probabilistic transitions. Such models occur in
the context of stochastic activity networks or other SPN like models [21, 5].

These options allow the tool components to be used in the context of other
modelling formalisms, provided that a link to the Bcg format exists (via the
Api). The tool Bcg io provides encoding and decoding functionality from/to



various tool formats, including simple text-based formats. As one particular
application of the Bcg Api, a conversion from the Bcg format to the Etmcc
model checker [17] has been implemented. This allows one to perform stochastic
model checking of Ctmcs encoded in the Bcg format.

Λi → rate λi

Cæsar(.adt)
Bcg

Λi

Bcg TransientLotos

Etmcc

Bcg Steady

Determinator Bcg Min

Bcg Labels

Svl

Fig. 1. Tool chain of Cadp with Pdac.

Using the scripting language Svl. The diagram in Figure 1 summarizes the
position of each component inside the tool chain, where Λi refers to the fresh
LOTOS gates which are later (using Bcg Labels) replaced by “rate λi”. The
tools Bcg Min and/or Determinator are used to distill a Ctmc (the latter
being an on-the-fly algorithm), and Bcg Steady or Bcg Transient are used
for numerical analysis.

To drive a whole set of performance studies, the scripting language Svl[9]
turned out to be very useful. It allows one to conveniently execute the required
sequence of tool invocations, and to iterate the numerical analysis on a (possibly
multidimensional) list of performance parameters. With Svl we have mechanised
the analysis of the Scsi II protocol [8] and of the Hubble space telescope [14].

Acknowledgements. We are grateful to Hubert Garavel and Radu Mateescu
(Inria Rhône-Alpes) for their insightful comments about the design of the Pdac.
The Bcg Min tool is a co-development of Damien Bergamini (Inria Rhône-
Alpes), Moëz Cherif (formerly at Inria Rhône-Alpes), Hubert Garavel, and
Holger Hermanns. The tools Bcg Transient and Bcg Steady are based on
code provided by Vassilis Mertsiotakis (Lucent Technologies) as part of the
TIPPtool, which was developed at the University of Erlangen-Nürnberg. This
work is supported by the Dutch foundation for scientific research NWO under
the Vernieuwingsimpuls program, and has been carried out during a stay of
the second author at the University of Twente.

References

1. M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A Tool
Integrating Functional and Performance Analysis of Concurrent Systems. In Proc.
FORTE/PSTV’98, p. 457–467, Kluwer, 1998.

2. G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: GRaphical
Editor and Analyzer for Timed and Stochastic Petri Nets. Perf. Eval., 24(1,2):47–
68, 1995.



3. G. Ciardo, A.S. Miner. SMART: Simulation and Markovian Analyzer for Reliability
and Timing. In Proc. IPDS’96, p. 60, IEEE CS Press, 1996.

4. G. Ciardo, J. Muppala, and K. Trivedi. SPNP: stochastic Petri net package. In
Proc. PNPM’89, p. 142–151, IEEE CS Press, 1989.

5. G. Ciardo and R. Zijal. Well-defined stochastic Petri nets. In Proc. MASCOTS’96,
p. 278–284, IEEE CS Press, 1996.

6. D.D. Deavours and W.H. Sanders. An efficient well-specified check. In Proc.
PNPM’99, p. 124–133, IEEE CS Press, 1999.

7. D.D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M. Doyle, W. H.
Sanders, and P.G. Webster. The Möbius Framework and Its Implementation. IEEE
Trans. on Softw. Eng., 28(10):956–969, 2002.

8. H. Garavel and H. Hermanns. On Combining Functional Verification and Perfor-
mance Evaluation using CADP. In Proc. FME’02. LNCS 2391:410–429, 2002.

9. H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verifica-
tion. In Proc. FORTE/PSTV 2001, p. 377–394, Kluwer, 2001.

10. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Newsletter, 4:13–24, 2002.

11. R. German, A. van Moorsel, M.A. Qureshi, and W.H. Sanders. Algorithms for the
Generation of State-Level Representations of Stochastic Activity Networks with
General Reward Structures. IEEE Trans. on Softw. Eng., 22(9):603–614, 1996.

12. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-Based Approach to Performance Modelling. In Proc. TOOLS’94. LNCS
794:353–368, 1994.

13. H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality.
LNCS 2428, 2002.

14. H. Hermanns. Construction and Verification of Performance and Reliability Mod-
els. Bulletin of the EATCS, 74:135-154, 2001.

15. H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Com-
positional performance modelling with the TIPPtool. Perf. Eval., 39(1-4):5–35,
January 2000.

16. H. Hermanns and J.P. Katoen. Automated compositional Markov chain generation
for a plain-old telephony system. Sci. of Comp. Prog., 36(1):97–127, 2000.

17. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov Chain
Model Checker. In Proc. TACAS’00. LNCS 1785:347–362, 2000.

18. K.S. Kundert. Sparse matrix techniques. In Circuit analysis, Simulation and De-
sign 3, North-Holland, 1986.

19. A. Marsan, G. Balbo, and G. Conte. A Class of Generalized Stochastic Petri Nets
for the Performance Evaluation of Multiprocessor Systems. ACM Trans. on Comp.
Sys., 2(2):93–122, 1984.

20. M.L. Puterman. Markov Decision Processes. John Wiley, 1994.
21. W.H. Sanders and J.F. Meyer. Stochastic Activity Networks: Formal Definitions

and Concepts. In Proc. FMPA 2000. LNCS 2090:315–343, 2001.
22. W.H. Sanders, W.D. Oball, M.A. Qureshi, and F.K. Widjanarko. The UltraSAN

modeling environment. Perf. Eval., 24(1):89–115, 1995.
23. W.J. Stewart. Introduction to the numerical solution of Markov chains. Princeton

University Press, 1994.


