Formal Specification of a
Framework for Groupware
Development

Alain Kerbrat, Slim Ben Atallah
Bull-IMAG, 2 avenue de Vignates, 38610 Gieres, France E-mail :
[Alain.Kerbrat,Slim.Benatallah]@imag.fr

Abstract

This paper describes the formal specification in LOTOS of COOPSCAN, a framework
for cooperative applications development. We first present the architectural choices
and collaboration strategies for the integration of applications in such a collaboration
aware framework. Then, we show how we derive a LOTOS specification from the
CoopScan description. We define some generic properties to be verified in this kind
of framework. The verification of some of these properties is presented, using the
CESAR-ALDEBARAN toolbox.

Keywords: formal specification, verification, LoT0oS, CSCW, groupware, software
components

1 INTRODUCTION

As local networks and teamwork develop, the concept of Computer Supported Co-
operative Works (CSCW) becomes increasingly important. Cooperative applications
have been classified following several criteria. One deals with the nature of interac-
tions between participants, either asynchronous or synchronous (every action on the
shared space is simultaneously visible by all participants — What You See Is What
I See). In this paper, we focus on the synchronous cooperative applications.

The development of such applications can follow two basic approaches : either de-
velop the whole application from scratch, or re-use existing applications and integrate
them into a collaboration aware environment. The second approach seems more inter-
esting, and is developed now in several groupware frameworks(e.g. [Ca90], [MR92]).
Although these frameworks have different characteristics and fulfill various needs,
they all offer a structured view of what is (or should be) a cooperative environment,
and how should an application be designed or modified in order to be integrated in
such an environment.

2 Formal Specification of a Framework for Groupware Development

However, all the ideas about the architecture and protocols of a synchronous group-
ware development are generally expressed informally, and there is no way to actually
test the consistency of architectural choices, or protocols combination without imple-
menting it.

The aim of this work is to extend an existing development environment with a
formal description of its architecture and functionalities. We first intend to specify
and verify some generic properties on the described architecture. Then it will be
possible to actually analyze and test the integration of different protocols for the
management of collaboration.

The rest of the paper is organized as follows : first, we describe the intended frame-
work for groupware. This environment has already been designed and is currently
being prototyped. In a second part, we present a component based description of the
COOPSCAN's architecture and how we obtain a LoTOS [BB88] specification, then we
extend the LOTOS specification in order to model a working environment.

In the last part, we define some important properties for cooperative applications,
and then show how they can be verified using the CAESAR-ALDEBARAN toolbox.

2 THE CoorScaN FRAMEWORK

CooprScaN [BAK95] is a framework for developing CSCW applications. In CoOP-
SCAN, a clear separation is drawn between the cooperation space, which contains the
shared data and applications, and the organization space, where the collaboration
control protocols are defined. These protocols concern the following points:

The registration protocol controls the actions performed when a user initiates, joins
or leaves a collaboration session. The main problems occur when a user joins an
existing session, as we have to provide him with an up-to-date copy of the shared
data of the session. Furthermore, all participants must be aware of the new comer.

The concurrent access control protocol controls the management of shared data
access conflicts. We will consider here a pessimistic policy, where we prevent conflict
by associating the access right with an unique token.

2.1 CooPScAN architecture : a component based
description

We describe the COOPSCAN architecture using components, as defined in [BBA195].
Components in this proposition are well encapsulated parts of the application, which
communicates with each other via services calls. One strong point of component based
descriptions is the clear separation between the description of a component and the
description of its interactions with other components. We consider two classes of
components :

Basic components These components correspond either to component reducible
to one single object or binary module, or to a bunch of objects where we cannot
make a clear distinction between the code of the objects methods and the code for

The COOPSCAN framework 3

the objects communications. In the latter case, we will encapsulate all the set of
interacting objects in one single component.

Complex components These are components composed of sub-components, and
of a description of all potential interactions between sub-components. In[BBA*95],
another characteristic of component is distinguished for the design of cooperative
applications ; this special component is the collection component, i.e. a component
which can exist as several instances at execution time.

Any component offers two distinct, but related views : its interface which declares
what can be its interactions with its environment, and its implementation which
defines how it evolves with respect to these interactions and time progress.

Component’s interface A component’s interface describes all the services that the
component provides (offered services) or needs for his computations (required ser-
vices). The services are described by their signatures, much like the Interface Defini-

tion Language used in the CORBA framework [Gro93].

Component’s implementation A component’s implementation differs in nature if we
consider basic or complex component. In the case of a basic component, the imple-
mentation can be a binary object, ready to be linked with the rest of the application.

In the case of a complex component, the implementation consists in a list of sub-
components (either basic or complex, possibly collections) and a controller. The con-
troller first role is to describe all potential communications between sub-components.
This is a static view of the communications between sub-components. The con-
troller’s second role is to provide also a dynamic view of the communications, by
the specification of ordering sequences of the communications and of the dynamic
creation/destruction of instances of collection sub-components. The controller last
role is to keep track of some attributes, either public or private variables, known at
the component level.

Graphical description To present the COOPSCAN ’s components, we will use a
graphical syntax, which comes from the configuration language DARWIN[Dul94]. In
this language, a basic component is represented as a named rectangular box, and the
services of the interface of the component are drawn as small squares or circles. A
empty square or circle means a required service, whereas a full one means a provided
service. A collection component is represented as several superimposed boxes, with
the interface services drawn only on the uppermost box. The minimum and maximum
number of instances allowed is given by a interval min ... maz following the name of
the component.

2.2 Component CoopScan

The component CoopScan is described as a collection box, of max cardinality » which
is the maximum number of users. We describe in the same figure the structure of
the complex component Site, by drawing its two sub-components, UserSession and
Userlnterface. UserInterface is the COOPSCAN interface, aimed at the control of the
collaboration; it is distinct from the shared application user interface. UserSession
is a complex component which encapsulates all the components related to the con-

4 Formal Specification of a Framework for Groupware Development

CoopScan .
Site: 0..N
User Session UserInterface
AddNewConnection
New InitSession
Join
JoinAcknowledged Join JoinSession
Adkdoin Qit QuitSession

GetFloor

GiveFloor

FloorControl .—(Get/Drop Floor

FloorDemand

AskFloor

UIOpGet

UIOpSend

Figure 1 Component CoopScan

trol protocols. The complete description includes 3 complex components and 6 basic
components.

The use of a collection component at the highest level is highly typical of cooper-
ative applications, when we consider a replicated architecture. A centralized archi-
tecture would be described by adding a sub-component corresponding to the shared
application and connected to all the instances of the component Site.

2.3 From components to LOTOS

The first step of the translation from components to LOTOS is to associate with every
basic component an abstraction of its behavior, in terms of the services it presents
in its interface. The next step is to translate the description of complex components
into a LOTOS specification. The graphical description of the COOPSCAN architecture
gives a clear indication on the parallel structure of the LOTOS specification.

Basic component specification A basic component is represented in the LOTOS
specification by a process declaration, where the component’s ports are declared as
the process gates. The body of this LOTOS process is an abstraction of what we know
about the component’s implementation.

Complex component specification The specification of a complex component is basi-
cally the specification of the communications between sub-components. The commu-
nications used in COOPSCAN are either synchronous communications between single
components, where the sender knows the receiver and is blocked until the commu-
nication completion, or one to n communications involving a collection. We make a

Verification)

process CoopScanControl[Join, AddNewConnection,AckJoin,JoinAcknowledged,

GiveFloor,FloorTaken,AskFloor,FloorDemand,
UiopSend,UlopGet](Group : SET) : noexit :=

((* Diffusion of a service call *)

UlopSend ? Site : Siteld 'BEGIN;

Broadcast[UlopGet](Site,Group)>>

(UlopSend ! Site ! END;

CoopScanControll...](Group)

))

((* Notification *)

Join ? Site : Siteld[Site notIn Group];
Broadcast[AddNewConnection](Site,Group) >>
CoopScanControll...](Add(Site,Group))

)

(*other communications *)
) endproc

Figure 2 CoopScan controller (partial) LOTOS specification

distinction between a service call, which is a synchronous communication (sender is
blocked until acknowledgment of all receivers) and a notification, which is an asyn-
chronous communication (sender does not wait for any response from the receivers).

Every potential communication is described inside the controller of the complex
component. This controller is given as a LOTOS process synchronized with every
sub-component for every possible services present in their interfaces.

We present in figure 2 a part of the controller of the component CoopScan , where
we describe the one to n UTopSend * service call, where the sender needs an acknowl-
edgment from all receivers before continuation, and the notification Join, where the
sender 1s not interested in what receivers may do. Furthermore, the session controller
keeps track of the integration of a new user by updating its internal variable Group
on the action AddNewConnection.

The ... notation in recursive calls indicate the same set of gates in the same order
as in the process declaration.

Complete specification The complete specification of the COOPSCAN framework is
about 3000 lines of LOTOS long, when we consider basic protocols for registration
and access control.

3 VERIFICATION

Writing a formal description of this application is in itself a gain, as it allows to
unambiguously expose the architecture and choices made for the implementation.

*Ulop is an operation on shared data, generated by the floor holder and broadcasted to other sites

6 Formal Specification of a Framework for Groupware Development

However, one can go a step further, by using verification tools to analyze and at-
tempt to validate some basic and more advanced requirements. For this work, we
used the CESAR-ALDEBARAN toolbox [FGM192] which integrates a LOTOS compiler
and tools for deadlock detection, simulation, temporal logic checking and behavioral
specifications checking.

3.1 Verification requirements

In the following, we will give only some of the most significant properties, and describe
how we verify them.

Deadlock freedom Deadlock freedom is a crucial property, and one can spend 90%
of the verification/correction cycle just to obtain it (or at least understand why and
how a deadlock occurs).

In our analysis process, we usually alternate between two main tools of the OPEN-
CESAR toolbox for deadlock states search : the Terminator tool, which implements
Holzmann bit-hashing technique [Hol89] for efficient (but partial) model exploration.
When a deadlock is found, the Terminator tool can produce access sequences from
the initial state; these sequences can be replayed by the Simulator tool in term of
the original LOTOS program actions. The second tool we use for deadlock search is
based on a BDD representation of the model. It allows the complete exploration of
the model, but does not provide access sequences playable by the Simulator tool. We
use it essentially as the final step, to prove the deadlock freedom when Terminator
can not find any more deadlocks (or if deadlocks are beyond its reach).

Consistency Consistency concerns two issues : all users have the same view of the
shared space (consistency of cooperation space), all sites have the same informations
on the session status (consistency of organization space). In this phase of our work,
we don’t want to consider a detailed description of the cooperation space, which is
clearly application dependent. Thus we only attempt to validate the consistency of
the organization space, that is the correctness of the control protocols.

Registration protocol ~We will consider one specific operation : the Join operation.
The definition of this operation ensures that the consistency is preserved (any mod-
ification of the organization space is broadcasted to all participants), provided that
there is no communications failure and that the Join operation succeeds. We have
taken the non failure of communications as an hypothesis, so we only have to ver-
ify the property that a join demand eventually succeeds. This is a liveness property.
It is simply expressed by the following formula, expressed in the LTAC temporal
logic [QS83]:

JoinSession!S — Inev(JoinAcknowledged!S)

which means that when a JoinSession action has been issued by the site S, then
any following execution sequences will contain an occurrence of the JoinAcknowledged
action for the same site. The same kind of verification is done for the QuitSession
operation and also for the access control operations, but it will not be described here.

Conclusion 7

Concurrent Access control In COOPSCAN the floor control is given to only one
participant, usually the session creator. Then there can be different floor passing
policy, either based on negotiations or on a fixed protocol. Whatever is this protocol,
the following property must hold: there is always (at least) one floor holder.

This is expressed by the more general property that it is always possible to edit
the cooperative space, i.e. there always exists a site S which can issue a ULopSend !S
command. It corresponds to the following formula:

intt = All(Pot(FEnable(OpSend)))

which means that from all states, there exists an execution sequence containing the
action OpSend. To verify this property, we simply rename all UTopSend !S actions for
any S into the OpSend action and then we hide all actions different of OpSend. We
minimize the resulting model with respect to the branching bisimulation. We must
obtain a LTS reduced to one state with a OpSend loop transition.

Other properties of interest are related to the uniqueness of the token.

4 CONCLUSION

We have presented the formal specification in LOTOS of a framework for the de-
velopment of groupware applications. This formal specification was derived from a
component based description ; these components were themselves defined from the ac-
tual implementation of COOPSCAN. We have given a set of generic properties for this
kind of framework and verified some of them using the CESAR-ALDEBARAN toolbox.
Given this verification basis, we can now integrate and test various control protocols,
and also test a parallel version of some parts of these protocols. It is especially the
case of the registration protocol, which is actually completely sequential: every new
comer is treated one after another, by a unique registration manager ; we would like
to introduce several registration managers and decide how we can decompose the
registration process into several concurrent transactions.

The verification phase of the COOPSCAN description is not a trivial process, as the
model generated is large (over 20 million states at the beginning of the verification
process). We have used with significant success the “on the fly” and BDD based
extensions of the CESAR-ALDEBARAN toolbox, combined with compositional model
generation.

The CoOPSCAN work is used as a case study for a more general project, whose
main aim is to develop the components approach for the conception and management
of cooperative applications. Qur aim in this project is to introduce in a component’s
description behavioral specifications as an abstraction of its dynamic behaviour. This
integration can be made at two levels: in its interface, where we will give a description
of the component’s intended behaviour, with respect to the services it offers and
requires ; in its implementation (if it is a complex component), by a specification of
its controller.

The introduction of these behavioral specifications will help to enforce an important

8 Formal Specification of a Framework for Groupware Development

need, which is the ability to reuse software components, or to replace a software
component by another without interferences. This is actually a growing trend, as can
be seen in [AG94][Sha94][YS93], where the authors focus on the notion of connectors,
and how one can formally describe them.

Thanks ~ We want to thank Roland Balter for his careful reading and useful com-
ments on this work.

REFERENCES

[AG94] R. Allen and D. Garlan. Formal connectors. Technical report, Carnegie Mellon
University, School of Computer Science, Pittsburgh, PA 15213, 1994.

[BAK95] R. Balter, Slim Ben Atallah, and Rushed Kanawati. Architecture for syn-
chronous groupware application development. In HCI, Tokyo, Japan, july 1995.
[BB88] T. Bolognesi and E. Brinksma. Introduction to the iso specification language

lotos. 14(1):25-29, January 1988.

[BBAT95] R. Balter, L. Bellissard, S. Ben Attallah, F. Boyer, D. Demitrescu,
R. Kanawati, A. Kerbrat, E. Lenormand, D. Lutoff, V. Marangozov, M. Riveill,
and J.Y. Vion-Dury. Objectifs et orientations de 1’action olan. Technical report,
Bull-IMAG/Systemes, 2 avenue de Vignates, 38610, Gieres, 1995.

[Ca90] T. Crowley and al. Mmconf: An infrastructure for building shared multimedia
applications. In CSCW;90, page 329, Los Angeles, October 1990.

[Dul94] N. Dulay. Darwin overview. Technical report, DSE Imperial College, London,
1994.

[FGM*92] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis. A toolbox for the verification of lotos programs. In Lori A. Clarke,
editor, Proceedings of the 14th International Conference on Software Engineering
ICSE’1} (Melbourne, Australia), pages 246-259, New-York, May 1992. ACM.

[Gro93] Object Management Group. The common object request broker: Architecture
and specification. Technical report, December 1993.

[Hol89] G.J. Holzmann. Algorithms for automated protocol validation. In Joseph
Sitakis, editor, Proceedings of the 1st International Workshop on Automatic Verifi-
cation Methods for Finite State Systems (Grenoble, France), June 1989.

[MR92] S. Greenberg M. Roseman. Groupkit : A groupware toolkit for building real-
time conferencing applications. In CSCW?’92, page 43, November 1992.

[QS83] Jean-Pierre Queille and Joseph Sifakis. Fairness and related properties in
transition systems — a temporal logic to deal with fairness. Acta Informatica,
19:195-220, 1983.

[Sha94] Mary Shaw. Procedure calls are the assembly language of software intercon-
nection. Technical report, Carnegie Mellon University, School of Computer Science,
Pittsburgh, PA 15213, 1994.

[YS93] Daniel M. Yellin and Robert E. Strom. Interface, protocols and the semi-
automatic contruction of software adaptors. Technical report, IBM T.J. Watson

Research Center, 1993.

