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Abstract

This work presents a practical Java program analysis framework that is obtained by combining a Java virtual
machine with a general-purpose verification toolbox that we previously extended. In our methodology,
Datalog clauses are used to specify complex interprocedural program analyses involving dynamically created
objects. After extracting an initial set of Datalog constraints about the Java bytecode program semantics,
our framework transforms the Datalog rules of a particular analysis into a Boolean Equation System (Bes),
whose local resolution using the aforementioned extended verification toolbox corresponds to the demand-
driven computation of the analysis.
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1 Introduction

Static program analysis extracts semantic information from a given program without
running it. An example of such an analysis is the definition-use analysis that is used
to analyze data-flow program dependencies. The analysis is run on an abstract
representation of the program that contains the variable definitions as well as their
use at each program statement.

In this work, we focus on static reference analyses of Java programs and, more
generally speaking, on any object-oriented programming language that is character-
ized by data abstraction, inheritance, polymorphism, dynamic binding of method
calls and/or dynamic loading of classes. A reference analysis, also called points-to
analysis, determines information about the set of objects to which a reference vari-
able or field may point during the program execution. There is a real interest in
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using such kind of analysis in program understanding tools (e.g. semantics browsers
or program slicers), in software maintenance tools and also in testing tools that rely
on coverage metrics.

Recently, a large number of rule-based specifications of program analyses have
been developed in a simple relational query language called Datalog, see [10,13].
This language has shown to be rich enough to describe complex interprocedural
program analyses involving dynamically created objects.

The advantages of formulating dataflow analyses as a Datalog query are twofold.
On the one hand, analyses that take hundreds of lines of code in a traditional lan-
guage can be expressed in a few lines of Datalog [13]. On the other hand, a number
of important optimization techniques for Datalog have been studied in the areas of
logic programming and deductive databases [1,4]. Unfortunately, even after those
optimizations, direct implementations of the analyses based on logic programming
are often slower than the corresponding imperative versions. Recently, a very effi-
cient Datalog program analysis technique based on binary decision diagrams (Bdds)
has been developed in the Bddbddb system [13], which scales to large programs
and is competitive w.r.t. the traditional (imperative) approach.

In this work, we present Datalog Solve, which is a fully automatic and effi-
cient demand-driven Datalog-based program analyzer developed within the Cadp

verification toolbox [6]. Datalog Solve analyses the satisfiability of a Datalog
query that represents the points-to analysis on a considered Java program. The
front-end of Datalog Solve encodes a set of Datalog rules (a particular analysis)
in terms of a Boolean Equation System (Bes) [3] implicitly described by its succes-
sor function. The analysis is run on a set of Datalog constraints (facts) which are
automatically extracted from Java source code by using the Joeq compiler frame-
work [12]. The back-end of our tool carries out the demand-driven generation, res-
olution and interpretation of the Bes by means of the generic Cæsar Solve [8] li-
brary of Cadp, devised for on-the-fly Bes resolution and diagnostic generation. This
architecture clearly separates the implementation of Datalog-based static analyses
from the resolution engine, which can be extended and optimized independently.

1.1 Related work

The description of data-flow analyses as a database query was pioneered by Ull-
man [10] and Reps [9], who applied Datalog’s bottom-up magic-set implementation
to automatically derive a local implementation.

Recently, a very efficient Datalog program analysis technique based on binary
decision diagrams (Bdds) has been developed in the Bddbddb system [13], which
scales to large programs and is competitive w.r.t. the traditional (imperative) ap-
proach. The computation is achieved by a fixed point computation starting from the
everywhere false predicate (or some initial approximation based on Datalog facts).
Datalog rules are then applied in a bottom-up manner until saturation is reached,
so that all solutions satisfying each relation of a Datalog program are exhaustively
computed. These sets of solutions are then used to answer complex formulas.

In contrast, to solve a set of queries with no a priori computation of the deriv-
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able atoms, our approach focuses on demand-driven techniques. In the context
of program analysis, note that all program updates, like pointer updates, might
potentially be inter-related, leading to an exhaustive computation of all results.
Therefore, improvements to top-down evaluation remain attractive for program
analysis applications. Recently, Zheng and Rugina [14] showed that demand-driven
Cfl-reachability with worklist algorithm can compare favorably with an exhaus-
tive solution, especially in terms of memory consumption. Our technique to solve
Datalog programs based on local Bes resolution goes towards the same direction
and provides a novel approach to demand-driven program analyses.

Plan of the work.
The remainder of this article is organized as follows. In Section 2, we introduce

the Datalog language and its adequacy to specify points-to analyses. Section 3
describes the translation of a demand-driven evaluation of Datalog queries in terms
of boolean equation systems, as well as the tool architecture. A set of experimental
results obtained with Datalog Solve on large Java programs from Sourceforge
are given in Section 4. Finally, we draw some conclusions and describe several lines
of future work in Section 5.

2 Datalog specification of a program analysis

The Datalog approach to static program analysis [13] can be summarized as fol-
lows. Each program element, namely variables, types, code locations, and function
names, are grouped in their respective domains. By considering only finite program
domains, Datalog programs are ensured to be safe (i.e., query evaluation only gen-
erates a finite set of answers). Each program statement is decomposed into basic
program operations, namely load, store, assignment, and variable declarations. Each
kind of basic operation is described by a relation within the Datalog program. A
program operation is then described as a set of tuples satisfying the corresponding
relation. In this framework, a program analysis consists in either querying extracted
relations or computing new relations from existing ones. Let us show an example
of analysis specification in our approach.

Example 2.1 Consider the Datalog program (pa.datalog [13]) that defines a spe-
cific context-insensitive points-to analysis given in Figure 1. The program consists
of three parts:

(i) A declaration of domains where domain names and sizes (number of elements)
are specified.

(ii) A list of relations, i.e., predicates, specified by a predicate symbol, its ar-
guments over specific domains and whether it is derived from an applicable
Datalog rule (value outputtuples), or extracted from the program bytecode
(value inputtuples).

(iii) A finite set of Datalog rules, defining the outputtuples relations.
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### Domains

V 262144 variable.map
H 65536 heap.map
F 16384 field.map

### Relations

vP_0 (variable : V, heap : H) inputtuples
store (base : V, field : F, source : V) inputtuples
load (base : V, field : F, dest : V) inputtuples
assign (dest : V, source : V) inputtuples
vP (variable : V, heap : H) outputtuples
hP (base : H, field : F, target : H) outputtuples

### Rules

vP (v, h) :- vP_0 (v, h).
vP (v1, h) :- assign (v1, v2), vP (v2, h).
vP (v2, h2) :- load (v1, f, v2), vP (v1, h1), hP (h1, f, h2).
hP (h1, f, h2) :- store (v1, f, v2), vP (v1, h1), vP (v2, h2).

Fig. 1. Datalog specification of a context-insensitive points-to analysis

In the example of program analysis given in Figure 1, domain V represents local
variables and method parameters while domain H represents heap objects. Finally,
domain F is used for field identifiers. These domains are extracted from the Java
bytecode.

In the second part of the program, the relations vP 0, store, load and assign
are labeled as inputtuples since they are extracted from the Java bytecode (by
using a modified version of the Joeq compiler). For example, the relation vP 0
consists of initial points-to relations (v,h) of a program, i.e., vP 0(v,h) is extracted
as a fact of the Datalog program if there exists a direct assignment within the Java
program between a reference to a heap object h ∈ H and a variable v ∈ V (e.g.,
along the Java program occurs a statement v = new String()). The other Datalog
constraints (inputtuples) are computed similarly. Relations vP and hP are labeled
as outputtuples since they are inferred from the rules.

The last part of the program specifies which kind of information are we able to
infer by using the information extracted from the program. In this case, the four
rules infer possible points-to relations from local variables and method parameters
(Datalog variables of the domain V) to heap objects (Datalog variables of the do-
main H), as well as possible points-to relations between heap objects through field
identifiers (Datalog variables of the domain F). In summary, the rules model the
effect of the input relations over the heap.

Finally, a Datalog query consists of a set of goals over the relations defined in
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the Datalog program, e.g., :- vP(x,y)., where x and y are variable arguments of
vP. This goal aims at computing the complete set of variables x that may point to
any heap object y at any point during the program execution. The Datalog query
is not specified in the Datalog program, but provided independently by the user.

3 BES evaluation of a Datalog query

In this section we describe Datalog Solve, our Datalog query evaluation frame-
work. As we can see in Figure 2, the resolution engine Datalog solver takes three
inputs: (i) a set of Datalog facts (the input relations), which represent the informa-
tion relevant for the analysis and are automatically extracted from the Java program
by means of a compiler (in the case of Java programs we use a modified version of the
Joeq compiler [12]) 3 , (ii) the analysis specification consisting of the set of Datalog
rules defining the output relations, and (iii) the analysis invocation consisting of a
set of Datalog goals (Datalog rules with empty head). As we have already said, the
domain definition states the possible values for each predicate’s argument in the
query.

Compiler Datalog solver

true / false

+

computed answers

Input relations

store, load, assign)

(p=new Object(),

p.f=q,p=q.f,p=q)

Points-to analysis
Analysis

specification

(Datalog rules)

Analysis

invocation

(Datalog goals)

(Datalog facts:vP 0

(Java) program

Fig. 2. Datalog Solve framework for Java program analysis.

The Datalog solver in the figure is the resolution engine that checks the satisfi-
ability of the Datalog query and/or extracts the solutions to that query. Thus, the
output of the tool when the query is not ground is the set of instances of the query
that are satisfied within the Datalog program. Let us now show more in detail how
the Datalog solver has been implemented.

Datalog Solve (120 lines of Lex, 380 lines of Bison and 3 500 lines of C code)
proceeds in two steps: 1) translation of the Datalog query to Bes (Datalog query
representation), and 2) generation and interpretation of the solutions to the query
(solutions extraction). We can see in Figure 3 the process.

3 The domain definitions are also extracted by Joeq and provided to the resolution engine.
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Fig. 3. Datalog Solve implementation.

First of all, the Joeq compiler generates two kinds of files: .map files repre-
senting the domains of Datalog variables, and .tuples files, one for each relation,
representing the facts of the Datalog program (the information regarding the anal-
ysis extracted from the Java program).

The Datalog Solve engine takes these files, together with the points-to anal-
ysis, and generates an implicit Bes that represents the Datalog program. The
implicit Bes is provided to the Cæsar Solve library that is available within the
Cadp toolbox and is able to solve it. Finally, our Datalog Solve interprets and
explores the solutions provided by the Cæsar Solve library, and then generates
the output files. In the case of executing a ground query, the output is simply yes
or not; otherwise Datalog Solve generates a set of files .tuples, one for each
non-ground goal, representing all the instantiations of these goals satisfied by the
program.

In the following subsections, we illustrate how the Datalog program representing
the points-to analysis can be transformed into an implicit Bes. For a more detailed
explanation, the reader can consult [2].

3.1 Datalog query representation

Datalog Solve uses an elegant and direct intermediate representation of the
Datalog query (rules and goals) as an implicit Bes parameterised with typed boolean
variables. Let us illustrate this transformation by means of an example.

Example 3.1 Consider again the Datalog program given in Figure 1 that defines a
context-insensitive points-to analysis (pa.datalog [13]). The Bes transformation
of the Datalog-based program analysis for the goals vP(x,y) and hP(z1,w,z2)
consists in the following equation system:

x0
μ
= vP(x,y) ∨ hP(z1,w,z2)

vP(v:V,h:H)
μ
= vP 0(v,h) ∨
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(assign(v, v2) ∧ vP(v2,h)) ∨
(load(v1,f,v) ∧ vP(v1,h1) ∧ hP(h1,f,h))

hP(h1:H,f:F,h2:H)
μ
= store(v1,f,v2) ∧ vP(v1,h1) ∧ vP(v2,h2)

Boolean variable x0 encodes the set of Datalog goals, whereas (parameterised)
boolean variables vP(v:V,h:H) and hP(h1:H,f:F,h2:H) represent the set of
Datalog rules in the program. Note that, since the predicate vP is defined by
three rules, the corresponding boolean variable vP(v:V,h:H) is defined as three
disjunctions of conjunctions, one for each Datalog rule.

Formally, being G the set of Datalog goals and R the set of Datalog rules, the
transformation is defined as follows:

x0
μ
=

∨

:− p1(d1), ..., pm(dm)∈G

m∧

i:=1

pi(di)(1)

p(d : D)
μ
=

∨

p(d) :− p1(d1), ..., pm(dm)∈R

m∧

i:=1

pi(di)(2)

Boolean variable x0 encodes the set of Datalog goals G, whereas (pareme-
terised) boolean variables p(d : D) represent the set of Datalog rules R. Since the
Cæsar Solve library requires as input a parameterless Bes, we can obtain it by
applying the instantiation algorithm of Mateescu [7] on the implicit Pbes represen-
tation. However, the direct transformation resulted too expensive. Therefore, the
final parameterless Bes used in our implementation is an optimized version inspired
by the Query-Sub-Query optimization for Datalog of [11]. The idea is that variables
are instantiated to values only when they are shared by more than one subgoal in
the body of a rule. This optimization generates less boolean variables than with
the basic, direct approach. The next example clarifies the intuition behind the final
transformation (see [2] for details).

Example 3.2 Let us consider the implicit representation in the Example 3.1. As-
sume the following carrier for the variable domains: carrier(H) = {heap1,heap2},
carrier(F) = {a,b}, and carrier(V) = {var1,var2}. Then, the parameterless repre-
sentation for the boolean variable hP(h1:H,f:F,h2:H) is the following:

xr
hP(h1:H,f:F,h2:H)

μ
= rstore(v1,f,v2), vP(v1,h1), vP(v2,h2)

rstore(v1,f,v2), vP(v1,h1), vP(v2,h2)
μ
= rpc

store(var1,f,var1), vP(var1,h1), vP(var1,h2)∨
rpc
store(var1,f,var2), vP(var1,h1), vP(var2,h2)∨

rpc
store(var2,f,var1), vP(var2,h1), vP(var1,h2)∨

rpc
store(var2,f,var2), vP(var2,h1), vP(var2,h2)

rpc
store(var1,f,var1), vP(var1,h1), vP(var1,h2)

μ
= xstorevar1,f,var1

∧
xvPvar1,h1

∧
xvPvar1,h2

rpc
store(var1,f,var2), vP(var1,h1), vP(var2,h2)

μ
= . . .
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Boolean variables r instantiate variables in the body of the Datalog rules to its
possible values, returning a disjunction of all the possible combinations of variable
instantiations. However, it does not instantiate all the variables (namely variables
f, h1 and h2). Note that all the variables in the body of the rule would have been
instantiated with the direct transformation. Boolean variables rpc check whether
all the instantiated subgoals in the query of the rule are satisfied. Note that the
Cæsar Solve library generates these equations on-the-fly by using very efficient
algorithms for Bes, thus it does not generate unnecessary boolean variables.

3.2 Solutions extraction

The back-end of our system carries out the demand-driven generation, resolution
and interpretation of the Bes by means of the generic Cæsar Solve library of
Cadp [6], devised for local Bes resolution and diagnosis.

The tool takes as a default query the computation of the least set of facts that
contains all the facts that can be inferred by using the rules that define the program
analysis. This represents the worst case of a demand-driven evaluation, where all
the information derivable from a Datalog program is computed.

Considering the parameterless Bes illustrated above, the query satisfiability
problem is reduced to the on-the-fly resolution of boolean variable x0. The value
computed for x0 indicates whether there exists at least one satisfiable goal in G. In
order to deduce all the different solutions of a given Datalog query, it is necessary to
use a breadth-first search (Bfs) strategy for x0 to force the solver to compute all the
solutions for the query. Since the Cæsar Solve library offers an optimized depth-
first search (Dfs) strategy for the kind of system generated, we chose this strategy
to solve all p(d : D) boolean variables. Upon termination of the Bes resolution,
query solutions are all the boolean variables whose value is true. Datalog Solve

subsequently converts them into tuples (combinations of variable values, one for
each atom of the query, that lead to a satisfied query) represented numerically
in an output file. Datalog Solve also allows for an iterative enumeration of
the solutions with symbolic value names instead of numbers mainly for debugging
purposes.

4 Experimental Results

The Datalog Solve framework was applied to a number of Java programs by
computing the context-insensitive pointer analysis described in Figure 1.

Table 1
Description of the Java projects used as benchmarks.

Name Description Classes Methods Bytecodes Vars Allocs

freets speech synthesis system 215 723 46K 8K 3K

nfcchat scalable, distributed chat client 283 993 61K 11K 3K

jetty server and servlet container 309 1160 66K 12K 3K

joone Java neural net framework 375 1531 92K 17K 4K
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To evaluate the scalability and applicability of the transformation, we applied
our technique to four of the most popular 100% Java projects on Sourceforge that
could compile directly as standalone applications. These projects were also used
as benchmarks by the Bddbddb system [13], one of the most efficient deductive
database engine, based on binary decision diagrams (Bdds), that scales to very large
Java programs. The benchmarks are all real applications with tens of thousands of
users each. Projects vary in the number of classes, methods, bytecodes, variables,
and heap allocations. The figures shown in Table 1 are calculated on the basis of a
context-insensitive callgraph precomputed by the Joeq compiler.

Table 2
Times (in seconds) and peak memory usages (in megabytes) for each benchmark and context-insensitive

pointer analysis.

Name time (sec.) memory (Mb.)

freets 10 61

nfcchat 8 59

jetty 73 70

joone 4 58

All experiments were conducted using Java JRE 1.5, Joeq version 20030812, on a
Intel Core 2 T5500 1.66GHz with 3 Gigabytes of RAM, running Linux Kubuntu 8.04.
The analysis times and memory usages of our context insensitive pointer analysis,
shown on Table 2, illustrate the scalability of our Bes resolution on real examples.
Actually, Datalog Solve solves the (default) query for all benchmarks in a few
seconds. The analysis results were verified by comparing them with the solutions
computed by the Bddbddb system on the same benchmark of Java programs and
analysis.

5 Conclusion and Future Work

This work described a practical Java program analysis framework that re-
lies on checking rule-based specifications by using a general purpose verifica-
tion engine. The system, called Datalog Solve, uses Datalog for encoding
complicated program analyses in a few lines, and Bes resolution for evaluat-
ing the Datalog rules. The tool architecture is based on the well-established
verification framework Cadp, which provides a generic library for local Bes

resolution with linear-time complexity. The system is publicly available on
http://www.dsic.upv.es/users/elp/datalog solve.

We plan to optimize Datalog Solve with further improvements, such as
rewriting the Datalog rules in order to support goal-directed bottom-up evalua-
tion, as in the Magic sets approach. We also plan to endow our solver with the
capability to deal with Java programs containing reflection, by using the rewriting
logic framework implemented in the functional programming language Maude [5].
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