
Composing Components with Shared Services in
the Kmelia Model

Pascal André, Gilles Ardourel, and Christian Attiogbé

LINA - UMR CNRS 6241 - University of Nantes
F-44322 Nantes Cedex, France

{Pascal.Andre,Gilles.Ardourel,Christian.Attiogbe}@univ-nantes.fr

Abstract. TheKmelia abstract componentmodel is extended to allow the
description of component compositionswithmultipart interactions leading
to simultaneous communications between more than two services. Shared
services are defined to explicitly control multipart interactions. Accord-
ingly the communication actions of Kmelia are extended.The formal defini-
tions of the Kmelia model, the composition of components via their services
and their analysis are revisited to integrate the extension of the model. An
example illustrates the need and the usage of shared services.

Keywords: Component, Composition, Shared services, Multipart
Communication.

1 Introduction

The Kmelia component model [3] was introduced as an abstract formal compo-
nent model dedicated to the specification and development of correct compo-
nents. The model is equipped with a language which is evolving together with
the expressive power of the model. In [3] we have distinguished two semantics for
the link between component services. Only one, monadic semantics, was treated
in this previous article. The second one, polyadic semantics, was not treated.
The hypothesis for the monadic semantics is: only one provided service may be
associated to a required service; a component is both a component type and the
unique instance of it; a required service may be linked to at most one provided
service; only one instantiation of a service exists at any time.

In the current article we consider the polyadic semantics: a provided service
may be linked with various required services (allowing broadcast communica-
tions); as an example, a chat system provides an interaction service for multiple
clients. In the same way a required service may be linked to various provided
services. We present the new features of our Kmelia model, the language aspects
that support these features and how these improvements are integrated with the
previous works on Kmelia.

Motivations. The modelling of various real life systems such as auction systems,
chat systems, distributed brokers, etc requires the use of several components
of the same type or several services with identical functionalities but coming

C. Pautasso and É. Tanter (Eds.): SC 2008, LNCS 4954, pp. 125–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 P. André, G. Ardourel, and C. Attiogbé

from different components. This leads to the need of interaction means to sup-
port the assembly and the composition w.r.t to the multiplicity of services that
may be connected. The current Kmelia model and language provide a one to
one service/component interaction even if several components participate in the
assembly. This does not cover the kind of systems listed above.

Contribution. The contribution of this article is the improvement of the expres-
sivity of the Kmelia component model with shared services, multipart interac-
tion based on synchronous n-ary communications. We extend Kmelia to support
multiple connections between services. Also, we explicitly distinguish between
component types and components (as elements), hence we may use several com-
ponents of the same type in an assembly. Accordingly, the interaction between
Kmelia services is updated.

The article is structured as follows. In Section 2 we give an overview of the
Kmelia abstract model and we mention some new features introduced in this
article. Section 3 is devoted to multiple links on the same service and the impact
on the interaction between services. In Section 4 we deal with shared services
and their impact on the assembly description. Section 5 shows an example of a
component-based system with shared services and related interactions; Formal
analysis issue is treated. The article is concluded in Section 6 where we discuss
related works and give some perspectives to this work.

2 Overview of the Kmelia Model and New Features

2.1 Overview of the Kmelia Component Model

In [3,2] we have presented various aspects of our abstract component model called
Kmelia. Here we recall the main elements of this component model and we build on
them in order to improve the model according to the new communication features.

A Kmelia abstract component is a mathematical model of an open multiservice
system that supports synchronous communication with its environment.

The main specification of a component [3] is preserved and referred to as the
specification of a component type. The interface of a component is still made of
required services and provided services. The core specification of a service is not
changed. We recall the definition of a component; it stands now explicitly for a
component type.

Component Type Specification. A component type (C) is a 8-tuple 〈W ,
Init, A, N , I, DS , ν, CS〉 with:
– W = 〈T, V, VT , Inv〉 the state space where T is a set of types, V a set of

variables, VT ⊆ V ×T a set of typed variables, and Inv is the state invariant;
– Init the initialisation of the VT variables;
– A a finite set of elementary actions;
– N a finite set of service names;
– I the component interface which is the union of two disjoints finite sets: Ip

the set of names of the provided services that are visible in the component
environment and Ir the names of required services. We have I ⊆ N .

Composing Components with Shared Services 127

– DS is the set of service descriptions which is partitioned into the provided
services (DSp) and the required services (DSr).

– ν : N → DS is the function that maps service names to service descriptions.
Moreover there is a projection of the I partition on its image by ν:
n ∈ Ip ⇒ ν(n) ∈ DSp ∧ n ∈ Ir ⇒ ν(n) ∈ DSr

– CS is a constraint related to the services of the interface of C in order to
control the usage of the services.

The behaviour of the component relies on the behaviours of its services. A
service is activated by a call; It may activate other services during its evolution.
Only one action of an activated service may be observed at time. Due to de-
pendencies between services and interaction between components, the actions of
several activated services may interleave or synchronise. The constraint CS de-
scribes general conditions on the service usage: it can be an ordering of services
or a predicate (safety properties, ...). Specific Kmelia provided services (called
protocols) can implement a Component Behaviour Protocol in the sense of [9,13].
Kmelia allows the use of several protocols for the same component.

A service of a Kmelia component is defined with an interface and a behaviour.
The interface is made of a signature, a pre-condition, a post-condition, a service
dependency which gives the services on which the current one depends (subs:
the subprovided services, cals: the service required from the caller, reqs: the ser-
vices required from any component, ints: the internal services). The behaviour
of a service is described with an extended labelled transition system. The labels
may be either elementary actions (assignments, function call, ...) or communi-
cation actions which support the interaction between Kmelia services. Therefore
a Kmelia service is not reduced to a single running stream from its start to its
termination, when a service is called, it may have interaction with the caller or
with other services.

A communication action is either a service call/response or a message send/
receive. The Kmelia syntax of a communication action (inspired by the Hoare’s
CSP) is: channel(!|?|!!|??) message(param*). Therefore communication ac-
tions are matching pairs:

send message(!) - receive message(?),
call service(!!) - wait service start(??),

emit service result(!!) - wait service result(??)

We use the channel identifier CALLER to denote the channel associated to a
service for a call.

A Kmelia service s has callers (the services that call s) and callees (the required
services that are called by s). When a service reqServ is required by a service
s, the latter uses the channel named reqServ to communicate with the service
linked with reqServ in assemblies.

Assembly. An assembly is a set of components that are linked (composed)
through their services; they interact via their activated services which commu-
nicate through the abstract channels that support the links established between
the services. Graphically, a component is depicted as a box (See Fig. 1). On the

128 P. André, G. Ardourel, and C. Attiogbé

frontier of the component box, required services are depicted as empty small
boxes included in the component box (like rs1). Provided services are depicted
as empty small boxes outside the component box (like ps1).

2.2 New Features of the Kmelia Model

Component. A component is one element of a component type (see above
Sect. 2.1). A component is referred to with a variable typed using the component
type; for example c1: CT where c1 is a variable and CT a component type. Several
components of the same type will be denoted with c[n]:CT where n is a natural
number. In the same way an assembly is one element of an Assembly Type.

Shared Service. Sharing is concerned with services and at low level with com-
munication actions: several services may be involved in a communication, like in
the broadcast messages.

A shared provided service is a provided service that can simultaneously inter-
act with several services from other components. Therefore a subset Isp of the
interface I (where I = Ip ∪ Ir) of a component constitutes the shared provided
services of the component. Accordingly, Isp ⊆ Ip.

As far as required services are concerned, we now allow that a (provided)
service performs a simultaneous communication with the (provided) services
that are linked to its required services. Therefore required services may also
be shared. Sharing a required service forces the synchronisation of the linked
services. A subset Isr of the interface I of a component constitutes the shared
required services of the component: Isr ⊆ Ir .

Multipart communication. Within an assembly, a service may be linked to
several other services, leading to a multipart communication between the in-
volved services. For instance a provided service may send a message simultane-
ously to several callers or wait for a message coming from several callers. In the
same way a service may simultaneously call all the services linked to its required
service (reqServ) using the channel named reqServ. A shared provided service
may wait using ?? (resp. ?) for a call (resp. a message emission) from several
other services linked with it. Consequently the shared provided service sends a
response (resp. a message) with !! (resp. !) to all its callers.

We also introduce the role concept to qualify some links and the related
interactions.

In the following we give the details, the constraints of these kinds of interaction
and the associated communication actions.

3 Shared Services: Impact on Service Interactions

The context here is multipart interaction between components via their services.
The actions performed by the interacting services are interleaved but the services
synchronise on communication actions. In our previous work, pairwise interac-
tions are considered between components; only one-to-one linked services are

Composing Components with Shared Services 129

involved, and only one provided service may be linked to a required one. We
consider now the cases where the interactions between several components are
not restricted to one-to-one links between the services.

In the following we examine the various interaction cases with multiple ser-
vices with respect to the expressivity of the Kmelia model. First we consider
several provided services linked to one required, and one provided related to
several required services. Then we generalise to a service interacting, even with
synchronising communications, with several callers or several callees.

3.1 Linking Several Provided Services with one Required Service

A service rs required by a component may be fulfilled by one or several other
services ps from one or several components (see Fig. 1). Each one of the ps
services should be compatible with the requirement. Thus, at the specification
level all the provided services linked with rs should be compatible with rs. The
compatibility between services is already defined in [3].

Fig. 1. Assemblies with Shared Required Services

If the provided services are from the same component (Fig. 1 (a)) or from differ-
ent components (Fig. 1 (b)), the interaction may result in a synchronous multipart
communication between, on the one hand, the provided services and on the other
hand, the service that uses the required one (which should then be shared).

If the provided services are from components of the same component type
(Fig. 1 (c)), the interaction may be specifically done with one component (pro-
vided that there is only one at time) or with several (or all) components if the
caller service (associated to the required one) is designed to behave like this.

The expressive power of the Kmelia model had to be extended to cover the case
depicted in Fig. 1 (a) and Fig. 1 (b) by considering simultaneous calls, message
sending, call response, or message receiving from the provided services via the
shared required service.

To handle the case represented by Fig. 1 (c), a service may call simultane-
ously all the provided services linked with it1; the called services may respond to
1 There are other hypothesis that do not involve all the provided services; they are

not considered here.

130 P. André, G. Ardourel, and C. Attiogbé

their common caller. Specific communication actions are needed to handle this
kind of interaction which should be distinguished from those already existing in
the Kmelia model (they are binary). From the semantic point of view, the called
services evolve simultaneously and send their results back to the caller. We main-
tain here the use of a synchronous communication. The needed communication
actions are introduced later in this section.

3.2 Linking one Provided Service with Several Required Services

In an assembly of components, several components may use one component and
its provided services. In this case a given provided service may be linked with
several required services (see Fig. 2). Practically, several services may call their
shared provided either in exclusion with the other callers or simultaneously.

Fig. 2. Assemblies with Shared Provided Services

If we assume the exclusion between the running of the actions of the in-
teracting services, the cases depicted with Fig. 2 (a) and Fig. 2 (b) will be
correct interactions with respect to the current Kmelia model; but in this case
the provided service (not shared) does not use multipart synchronous commu-
nication actions. However, sharing the provided service may force to multipart
synchronous communication using a wait for all. Thus we consider simultaneous
calls to the shared provided service (this also includes the case depicted in Fig. 2
(c), where several services of components of the same type are interacting with
the same provided service), then the interaction between the provided service
and the linked required services is not straightforward. We have a one-provided
to n-required relationship. In this case the provided service should be shared: its
communications are shared among the n callers which either belong to different
components types (Fig. 2 (b)) or are components of the same type (Fig. 2 (c)).
It does not matter to link a non-shared provided service to several callers, be-
cause each caller will interact separately in its call context. It is the provided
service designer which should consider the ability to interact with several callers,
otherwise there is no sharing.

To sum up we have to deal with the composition of a shared provided service
with several services. The new feature to be treated is the composition of one

Composing Components with Shared Services 131

shared provided service with several required ones. From the caller side, there
is no new requirement for the interaction. From the callee side, the interaction
may be performed either with one specific caller, or with any caller, or with all
the callers; it depends on the designer.

In the following we present the proposals to improve the communication ac-
tions of Kmelia in order to encompass the new communication needs.

3.3 Interaction with Shared Services

In this section we extend the communication actions of the Kmelia model to deal
with the new kinds of interaction due to shared services.

Consider sp as a shared provided service; it may be called by several other
services (the callers). The service sp may communicate with one specific caller,
all the callers, or one among the callers. The interaction between the linked
services is explicitly achieved from the shared provided service using different
identifiers for the caller services. The communication actions (see Sect. 2.1) are
now extended as multipart communication actions using a channel selector:

channel[<selector>](!|?|!!|??)message(param*)
The values of <selector> are: ALL, i and :i. For instance, CALLER[ALL] identi-
fies all the callers; CALLER[i] identifies precisely the caller i where i is a natural
number; CALLER[:i] will identify one of the callers, the identifier of which is
then bound to i. These two last cases of communication are not detailed in this
article. ALL stands for all the callers that are currently linked to a channel end.
We introduce in Kmelia, additional communication actions (Tab. 1) to support
the interaction between a shared provided service and its callers.

Table 1. Communication actions from a shared provided service to its callers

CALLER[i]!msg(val) Emission of msg(val) to the caller i
CALLER[ALL]!msg(val) Broadcast of msg(val) to all the callers
CALLER[i]?msg(x: x Type) Reception of a value from the caller i
CALLER[:i]?msg(x: x Type) Reception of a value from any caller i; the other

received values are not taken into account.
tab x := Reception of values from all the callers,
CALLER[ALL]?msg(x: x Type) the received values are collected in a structure

tab x indexed with the identifiers i of the callers
CALLER[i]!!subServ(val) Call of a sub-service of the caller i
CALLER[ALL]!!subSerb(val) Broadcast of a sub-service call to the callers
CALLER[i]??subServ(x: x Type) Wait the return of a sub-service from the caller i
CALLER[ALL]??subServ(x:x Type) Wait the return of all sub-services from all the

callers

In the current case, the communications are all synchronous. The case of
CALLER[:i]?msg(x: x Type) may be asynchronously treated but this is not
the concern of the current article; only the synchronous semantics is considered.

132 P. André, G. Ardourel, and C. Attiogbé

As far as a shared required service sr is concerned, the services linked to sr
are referred to using the default channel sr. The extensions of communication
actions are similar to those in the Tab. 1 replacing the channel CALLER with sr.

3.4 Adding Roles to Interactions

When several services call a shared provided service, they may play different
roles in the interaction. For example in a chat system where several members
achieve a connection to a server and participate in discussions, one member
may play the role of moderator. Distinguishing between several callers’ roles
gives more flexibility in the assemblies. Roles can be shared or not: for instance,
moderator could be a non-shared role. A shared provided service can support
multiple roles by suffixing the channel by the role identifier in communications
that only concern a specific role. From the syntactic point of view we use the
following form for the communication actions.

channel:<RoleId>[<selector>](!|?|!!|??)message(param*)
<RoleId> is a role identifier that qualifies the communication channel.
All the roles supported by a service ps should be fulfilled and every caller of

the service should assume a role. Therefore considering a role of ps from a service
cs can be done in two ways: either in the behaviour of cs by using a <RoleId>
suffix in all its communication actions with ps or in the assembly by assigning
<RoleId> to the link.

4 Shared Services and Component Assembly

4.1 Specification of Shared Services in Kmelia

It is the role of the specifier to qualify a provided or required service as shared. In
the behaviour of a shared service, some transitions are labelled with the multipart
communication actions described in Sect. 3.3. But a service may be declared to
be shared without using the specific communication actions; it does not matter.

In the same way as it was done for the use of protocols in our model [2], we
propose the use of qualifier. Therefore the interface of a shared provided service
has the following forms (the same holds for shared required services):

shared provided serviceName(parameters)
{... specification of the service ...}

or equivalently

provided serviceName(parameters)
properties = {shared, ... }
{... specification of the service ...}

An analysis of a service behaviour may lead to determine that it is shared or
not. Formally we check that a provided service is effectively shared by checking
the type of communication actions used in its behaviour. In the same way, we

Composing Components with Shared Services 133

formally check that a required service is effectively shared, by examining the
communication labels of the services that use it.

A shared service (or subservice) may be used by a non-shared service
(sub-service).

4.2 Composition: Component Assembly

The new communication means do not impact the definition of the assembly of
components but they do impact the assembly correctness.

We recall that the composition of services is based on the links that support
the interaction between the services. According to the use of component types,
components and shared services, the following points are revisited:

– Assembly of components (explicitly the elements of given component types).
An assembly as it is defined until now [3], is specified by considering com-
ponents; therefore there is no changes to the assembly specification.

– Assembly of component types. It is an assembly defined from component
types; it results in an assembly type and should be instantiated by specific
components in place of the component types used in the assembly. A com-
ponent type may appear more than once in an assembly.

– Component Composition. A component composition (via their services) is
defined until now by considering the links and sublinks established via an
assembly of components, by linking required and provided services. Now, we
also permit the link of one provided service with several required ones. But,
as shared provided/required services are provided/required services (inclu-
sion property), the link and sublink definitions are still correct; they include
shared provided services.

– Interaction and simultaneous evolving. The services in different components
may evolve simultaneously with interleaving; an activated service may in-
teract with another activated one which is linked to it. With the current
improvement of the Kmelia model, a service may synchronise with several
activated services from different components via the introduced communica-
tion actions (see Sect. 3.3).

In the following formal definitions, we use a set theory notation close to that
of the Z or B languages where X ↔ Y denotes the relation from X to Y (a set of
pairs); dom and ran denote respectively the domain and the range of a relation;
a �→ b denotes the pair (a, b).

In the remainder let C be a set of Ck components with k ∈ 1..n and Ck =
〈〈Tk, Vk, VT k, Invk〉, Initk, Ak, Nk, Ik, DSk, νk, CSk〉 as defined in Sect. 2. Let N
be the set of service names of C (N =⋃

k∈1..nNk).
The formalisation of an assembly [3] remains mainly unchanged (for com-

ponent and assembly) when we integrate the new communication actions of the
Kmelia model. However we now distinguish explicitly components and component
types; therefore we update here the involved parts of the existing formlisation.

134 P. André, G. Ardourel, and C. Attiogbé

Component Assembly Type. An assembly of components (recall from [3])
results in an Assembly Type; it is a composition of components described by a
tuple A = (C, links, subs) where C is a set of components, links is a set of links
between the component services and subs is a relation from links to sublinks. It
may be abstracted as (CT , links, subs) by considering in CT the types of the
components C:

links ⊆ Link ∧
(1) (∀(Ci, sn1, Cj , sn2) : links • Ci ∈ C ∧ Cj ∈ C ∧

((sn1 ∈ Ipi ∧ sn2 ∈ Irj) ∨ (sn1 ∈ Iri ∧ sn2 ∈ Ipj)))
subs : Link ↔ SubLink ∧
(2) dom subs = links ∧
(3) (∀((Ci, sn1, Cj , sn2) �→(Ck, sn3, Cl, sn4))∈subs • Ci = Ck ∧ Cj = Cl) ∧
(4) (∀(Ci, sn1, Cj , sn2) : ran subs • ((νi(sn1)∈DSpi

) xor (νj(sn2)∈DSpj
)))

The linked components are the components of the assembly (1). The sublinks
are related to links (2) that concern the same components (3). Provided services
are linked to required services (1 and 4).

The links (Link) and sublinks (SubLink) between component services are
specified as follows. The links are 4-tuple of component and service names with
the following properties: (1) the service names are those of their owner compo-
nents, (2) any component service is not linked to itself (not recursive).

BaseLink : IP (C × N × C × N)
(1) ∀(Ci, sn1, Cj , sn2) : BaseLink • sn1 ∈ Ni ∧ sn2 ∈ Nj

(2) ∀Ci : C, sn1 : Ni • (Ci, sn1, Ci, sn1) /∈ BaseLink

A link connects two services of the interfaces of their owner components.

Link ⊆ BaseLink ∧ ∀(Ci, sn1, Cj , sn2) : Link • sn1 ∈ Ii ∧ sn2 ∈ Ij

Assembly of Components. In the same way as a component is an element
of a component type, a component assembly is one element of a component
assembly type (viewed as a set of possible values of the defined assembly type
and related properties, see above). A component assembly is referred to with a
variable typed using the component assembly type; for example ca: CAT where
ca is a variable and CAT a component assembly type.

Well-Formed Assembly Revisited. The well-formedness is modified as fol-
lows. A component assembly described by the triple A = (C, links, subs) is a
well-formed component assembly if the following properties hold:

– all the members of C are components;
– the services in the sublinks are not in the involved component interfaces, but

they are in the dependencies of the involved services (w.r.t sublinks).

(5) ∀(l, sl) ∈ subs | l = (Ci, sn1, Cj , sn2) ∧ sl = (Ck, sn3, Cl, sn4) •
((sn3, sn1) ∈ dependsi

∗ ∨ (sn4, sn2) ∈ dependsj
∗)

Composing Components with Shared Services 135

where dependsi
∗ is the transitive closure of dependsi. The relation dependsk

between component services is defined as a part of the service dependency
in a component Ck where sm = νk(m):

dependsk : Nk ↔ Nk

∀(n, m) : dependsk • (n ∈ calsm) ∨ (n ∈ reqsm) ∨ (n ∈ subsm)

Practically a link establishes an implicit communication channel between the
involved services. This channel is shared with the sub-services.

– when a service with a dependency (subs: the subprovided services, cals:
the service required from the caller, reqs: the services required from any
component, ints: the internal services) is shared, its dependencies subs are
also shared.

– shared provided services are linked with one or several required services from
one or several components. But non-shared provided services may also be
linked with several required service. Therefore there is no specific assembly
constraints. Correctness is checked w.r.t behaviours.

– only shared required services may be linked with several provided services.
Let linkedWithC(C, sn) be the set of links with the service sn of the com-
ponent C; we have to check for the services linked to several other services
(hence the use of card, the cardinal of a set).

linkedWithC(C, sn) = {(Ci, sni, Ck, snk) ∈ link | Ci = C ∧ sni = sn}

Let sharedRequired(C) be a function that denotes the set of the shared re-
quired services of the component C. They are the services of Ir (the required
services of C) which have the property shared.

(6) ∀(C, sn) | C ∈ C ∧ sn ∈ N ∧ sn ∈ Ir •
card(linkedWithC(C, sn)) > 1 ⇒ sn ∈ sharedRequired(C)

From the practical point of view, the parser-compilers of Kmelia specifications
should be updated in order to raise some errors when the added well-formedness
rules are not respected.

4.3 Composition: Composite Component

An encapsulation of a well-formed component assembly within a component type
results in a composite component type. We have defined an operator named com-
pose that builds a new component type by combining one or several components
(see [3]). Inner component services are promoted at the interface of the compos-
ite component; the properties of the services are preserved by the promotion (for
instance a shared service remains shared). In this paper, we do not emphasize
other aspects of composition such as the access rules to inner components.

A well-formed assembly type cannot be used to build a composite component.
It should be first instantiated with components. Informally, the instantiation of
an assembly type AT = (CT , links, subs) consists in replacing each component
type CT of CT by a component with the type CT.

136 P. André, G. Ardourel, and C. Attiogbé

4.4 Revisiting Behavioural Compatibility Analysis

The behavioural compatibility of an assembly of components with multipart
communication actions follows the general principle already formalised in the
previous version of Kmelia [3], where we defined composability and behavioural
compatibility analysis. The principle is: first, to consider a service si of a compo-
nent Ci, one required service req of si, and one service sj (of a component Cj)
that is linked to req; the triple (si, req, sj) constitutes the analysis context to
check each service of Ci. Second, considering the labelled transitions Bi and Bj ,
that describe the behaviours of si and sj , after checking the composability at
service and component level, one should ensure compatible(Bi, Bj) which is the
interleaving of elementary actions and the matching of communication actions.

Now, the matching of communication actions is extended to multipart com-
munications. To capture this aspect, we proceed as follows. The context of a
service analysis, previously defined as a triple, is extended to: one service si, one
required service req of si, and SJ the services linked to req. The third element
of the triple may now be a set of services. Therefore checking the behavioural
compatibility of (si, req, SJ), with Bi the behaviour of si and BJ the set of
behaviours of the services sj in SJ , results in:
i) checking (si, req, sj) for each sj ∈ SJ ; that is denoted with:

compatible gen(si, SJ) ⇔ ∀sj ∈ SJ | compatible(Bi, Bj)
with Bi the behaviour of si and Bj the behaviour of sj

ii) checking one-to-n matching between si and SJ . They match if at each com-
munication point we have the following matching conditions:
when si performs req[ALL]?msg(...) each sj in SJ performs CALLER!msg(...);
when si performs req[ALL]!msg(...) each sj in SJ performs CALLER?msg(...);
when si performs req[ALL]??srv(...) each sj in SJ performs CALLER!!srv(...);
when si performs req[ALL]!!srv(...) each sj in SJ performs CALLER??srv(...).

Formally this results in a synchronous communication between n commu-
nicating entities, where one of the entities synchronise with the other entities
considered together. Recall the specification of the extended labelled transition
system of a service si (from [3]): si =̂ 〈Ssi , Lsi , δsi , Φsi , S0si

, SFsi
〉. The set S0si

contains the initial state of si; it may be used as the current state of si. Thus
if S0si

is {csti} then ((csti, ll), nsti) ∈ δsi means that there is a transition
labelled with ll from the current state csti to the state nsti.

Using the previous matching conditions, we specify one-to-n matching(si, SJ)
as follows (only the first condition is expressed, the other ones are similar):

si =̂ 〈Ssi
, Lsi

, δsi
, Φsi

, {csti}, SFsi
〉 ∧ ((csti, req[ALL]?msg(...)), nsti) ∈ δsi

∧
∀sj ∈ SJ | sj =̂ 〈Ssj

, Lsj
, δsj

, Φsj
, {cstj}, SFsj

〉 ∧

((cstj , CALLER!msg(...)), nstj) ∈ δsj

one-to-n matching(si, SJ)

Consequently behavioural compatibility is generalised to (si, req, SJ) with:

compatible gen(si, SJ) ∧ one-to-n matching(si, SJ)
beh compatible gen(si, SJ)

Composing Components with Shared Services 137

From now on, the Kmelia model includes multipart interactions, synchronous
synchronisation of several interacting services, and an up-to-date behavioural
compatibility checking.

5 Experimentations and Formal Analysis

5.1 A Chat System with Shared Services

Consider a chat system made of a server component with the type CHAT SRV
and several client components with the type CHAT CLT, see Fig. 3.

COMPONENT CHAT_SRV

INTERFACE

provided: {connection,interaction}

required: {}

SERVICES

provided connection()

{...}

shared provided interaction()

// sends ’news’

// receives ’msg’, ’close’

{...}

news ()

{...}

END_SERVICES

COMPONENT CHAT_CLT

INTERFACE

provided: {chat_session}

required: {interaction}

SERVICES

required interaction()

// receives ’news’

// sends ’msg’, ’close’

{...}

provided chat_session()

{...}

END_SERVICES

Fig. 3. The components CHAT SRV and CHAT CLT

In this system the server provides the services: connection to wait for connec-
tion from clients and interaction to exchange with the clients. Several clients
may simultaneously interact with the server (the service interaction of the
server is then shared). The actions performed during the interaction are: msg
to receive/send messages from/to clients, news to broadcast messages to clients,
etc. At any time a client may connect to the server, close the connection, send a
message to the server, receive (and display) a message received from the server.
Consider an assembly with one server (srv1) and three clients (clt[3]). The
assembly is specified in Kmelia as depicted in Fig. 4. The behaviour of the main
service (chat session) of a chat client is depicted in Fig. 5.

COMPOSITION
{ srv1: CHAT_SERV

clt[3]: CHAT_CLT }
{ (p-r srv1.interaction, clt[3].interaction) }

Fig. 4. An assembly with one chat server and three clients

138 P. André, G. Ardourel, and C. Attiogbé

Fig. 5. A part of the behaviour of the chat session service of the chat client

The behaviour of the service interaction, provided by the server component
(CHAT SRV), is depicted in Fig. 6.

Fig. 6. A part of the behaviour of the interaction service of the chat server

5.2 Formal Analysis

Since the beginning we have designed the Kmelia model with the sake of prag-
matism. For that purpose the COSTO toolbox [1] is being built.

The toolbox already enables us to parse Kmelia specifications, and to check be-
havioural compatibilityusing external tools suchasLOTOS [10].Wedefinedbridges
that translate Kmelia service specifications into LOTOS processes and we use the
LOTOS/CADP2[6] toolbox to check service properties including behavioural
compatibility. Now, we have extended the expressive power of the Kmelia model;
we have to provide or extend the tools to analyse Kmelia specifications. As far as
behavioural compatibility is concerned we have to deal with multipart interactions
involving synchronous n-ary communications.

N-ary communication supports are not generally provided by formal analysis
frameworks. However LOTOS offers the negotiated multiway rendez-vous [10,7]
that can be used for instance to model broadcast. We target this n-ary communi-
cation mechanism to partially analyse Kmelia multiway communications. Indeed
several LOTOS processes may synchronise on the same gate G to exchange
values. Thus the following communication actions from four LOTOS processes
2 www.inrialpes.fr/vasy/

Composing Components with Shared Services 139

synchronise: G!val, G?var1:T, G?var2:T and G?var3:T. After the synchronisa-
tion the variables var1, var2, var3 receive the value val sent by one of the
processes on the gate G.

Processes may use negotiation to wait for a specific value; this is expressed
with a guard (a predicate) following the wait action (G?var:T [guard]). The
negotiated value is the one that satisfies the predicate of all the involved guards.
It is also possible to synchronise with more than one emitted values (but they
should be the same).

The new multipart communication actions may be performed using LOTOS
processes. It is the case with CALLER[ALL]!msg(...) and CALLER[ALL]!!srv(...)

which are broadcast. They are translated as a multiway communication between
the processes associated to the caller services and the current process. The case
of CALLER[ALL]?msg(...) is not straightforward; we have to collect all the values
proposed by the environment; therefore we have to generate matching actions
w.r.t the involved processes.

The current work in this direction is the extension of our translation mod-
ules of the COSTO tool in order to generate the LOTOS processes with the
communication actions appropriate to the new features.

6 Discussion and Conclusion

Summary. In this paper we have presented some extensions to the Kmelia ab-
stract component model: multipart interaction with synchronous communica-
tion; shared services; composition of component with shared services and mul-
tiway communication. The formal specification and analysis of the model are
revisited accordingly.

Related works. In [12], a survey of component-based specification and architectur-
ing languages is presented. The distinction between component types and their
elements is widely used, it is the case for example with Wright[8], SOFA[13] and
Fractal[4]. But some architecture description languages use a specific language
to deal with type (Rapide[11] for instance). To our knowledge, component mod-
els do not support simultaneous interaction at the service level, but they allow
multiple components connection (via connectors). SOFA and CCM3 permits a
connection from one to many components but no multipart communication be-
tween the services. Sharing is treated at component level in Fractal, in Kmelia we
deal with communication and sharing at service level. More generally, the mul-
tiway communication among component services is not well-studied; one reason
for that is the fact that several component models consider programming level
instead of specification level. Component models based on the CSP process al-
gebra may benefit from the synchronising n-ary rendez-vous to handle multipart
synchronising interactions. Component models relying on programming levels
(EJB, .NET) implicitely base synchonisation on execution threads. The current

3 www.cca-forum.org

140 P. André, G. Ardourel, and C. Attiogbé

work engages a long-term investigation on this challenging subject through dif-
ferent abstraction levels.

Perspectives. Many aspects remain to deal with regarding sharing and the re-
lated properties, composition and correctness of component assemblies. We plan
to investigate further the issues on multipart communication by considering the
cases on selecting specific entities for a given communication. Another challeng-
ing point is the support for interoperability with other component models. The
ideas under investigation are the structuring of the component interface (which
should be more expressive) and the adaptation of the models with respect to the
structuring of the information coming from other component model interfaces.

References

1. André, P., Ardourel, G., Attiogbé, C.: A Formal Analysis Toolbox for the Kmelia
Component Model. In: Proceedings of ProVeCS’07 (TOOLS Europe), Technical
Report. ETH Zurich, 567 (2007)

2. André, P., Ardourel, G., Attiogbé, C.: Defining Component Protocols with Service
Composition: Illustration with the Kmelia Model. In: 6th International Symposium
on Software Composition, SC 2007. LNCS, vol. 4829. Springer, Heidelberg (2007)

3. Attiogbé, C., André, P., Ardourel, G.: Checking Component Composability. In:
Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089. Springer, Heidelberg
(2006)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The Frac-
tal Component Model and Its Support in Java. Software Practice and Experi-
ence 36(11-12) (2006)

5. Bruneton, E., Coupaye, T., Stefani, J.: Recursive and Dynamic Software Composi-
tion with Sharing. In: Proceedings of the 7th ECOOP International Workshop on
Component-Oriented Programming (WCOP 2002) (2002)

6. Fernandez, J.-C., Garavel, H., Kerbrat, A., Mateescu, R., Mounier, L., Sighireanu,
M.: CADP: A Protocol Validation and Verification Toolbox. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 437–440. Springer, Heidelberg (1996)

7. Garavel, H., Hermanns, H.: On Combining Functional Verification and Perfor-
mance Evaluation Using CADP. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME
2002. LNCS, vol. 2391, pp. 410–429. Springer, Heidelberg (2002)

8. Garlan, D., Allen, R.: Formalizing Architectural Connection. In: Proceedings of
the 16th ICSE, pp. 71–80. IEEE Computer Society Press, Los Alamitos (1994)

9. Giannakopoulou, D., Kramer, J., Cheung, S.-C.: Behaviour Analysis of Distributed
Systems Using the Tracta Approach. ASE 6(1), 7–35 (1999)

10. ISO LOTOS. A Formal Description Technique Based on The Temporal Order-
ing of Observational Behaviour. International Organisation for Standardization -
Information Processing Systems - Open Systems Interconnection, Geneva (1988)

11. Luckham, D.C., et al.: Specification and Analysis of System Architecture Using
Rapide. IEEE Transactions on Software Engineering 21(6), 336–355 (1995)

12. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software En-
gineering 26(1), 70–93 (2000)

13. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components, 2002. IEEE
Transactions on SW Engineering, 28(9) (2002)

	Composing Components with Shared Services in the \textsf{Kmelia} Model
	Introduction
	Overview of the \textsf{Kmelia} Model and New Features
	Overview of the \textsf{Kmelia} Component Model
	New Features of the \textsf{Kmelia} Model

	Shared Services: Impact on Service Interactions
	Linking Several Provided Services with one Required Service
	Linking one Provided Service with Several Required Services
	Interaction with Shared Services
	Adding Roles to Interactions

	Shared Services and Component Assembly
	Specification of Shared Services in \textsf{Kmelia}
	Composition: Component Assembly
	Composition: Composite Component
	Revisiting Behavioural Compatibility Analysis

	Experimentations and Formal Analysis
	A Chat System with Shared Services
	Formal Analysis

	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

