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Abstract—This paper presents a UML 1.5 profile named TURTLE (Timed UML and RT-LOTOS Environment) endowed with a formal

semantics given in terms of RT-LOTOS. TURTLE relies on UML’s extensibility mechanisms to enhance class and activity diagrams.

Class diagrams are extended with specialized classes named Tclasses, which communicate and synchronize through gates. Also,

associations between Tclasses are attributed by a composition operator (Parallel, Synchro, Invocation, Sequence, or Preemption)

which provides them with a formal semantics. TURTLE extends UML activity diagrams with synchronization actions and temporal

operators (deterministic delay, nondeterministic delay, time-limited offer, and time-capture). The real-time dimension of TURTLE has

been further improved by the addition of two composition operators, Periodic and Suspend, as well as suspendable delay, latency, and

time-limited offer operators at the activity diagram level. Core characteristics of TURLE are supported by TTool—the TURTLE

toolkit—which includes a diagram editor, a RT-LOTOS code generator and a result analyzer. The toolkit reuses RTL, a RT-LOTOS

validation tool offering debug-oriented simulation and exhaustive analysis. TTool hides RT-LOTOS to the end-user and allows him/her

to directly check TURTLE modeling against logical errors and timing inconsistencies. Besides the foundations of the TURTLE profile,

this paper also discusses its application in the context of space-based embedded software.

Index Terms—Real-time systems, UML, RT-LOTOS, formal validation.
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1 INTRODUCTION

THE increasing development of computer-based applica-
tions that need to answer external stimuli under timing

constraints has stimulated research work on real-time
system design techniques. Also, life-criticality and tremen-
dous prototyping costs of complex real-time systems
—think, e.g., of aircrafts, satellites, and nuclear plants—has
created potential conditions for deploying formal methods
and a priori validation techniques that enable early
detection of design errors in the life cycle of a system.

Despite of the expected benefits of a priori validation
based on formal modeling, industrial practitioners have
been reluctant to use formal methods. By contrast, an
informal modeling language has received increasing accep-
tance in industry: the Unified Modeling Language [29],
which is now an international standard at OMG (Object
Management Group). This situation has stimulated research
work on coupling UML and formal modeling languages
with the purpose of giving the OMG-based notation a
formal semantics and to enable a priori validation of UML
diagrams (see, e.g., [1], [6], [7], [8], [9], [12], [13], [14], [16],
[18], [19], [20], [21], [25], [35], [38]).

A common way to add formality to UML is to define a
”profile,” i.e., a customization of the OMG-based notation,
in order to meet specific needs in a particular application
domain. In this paper, we define a real-time UML profile
named TURTLE (Timed UML and RT-LOTOS Environment),
which extends UML with structuring capabilities, advanced
logical and temporal operators, and formal validation
procedures borrowed from RT-LOTOS [11]. TURTLE is
compliant with UML 1.5. The profile has a formal semantics
given in terms of RT-LOTOS. TURTLE should not be
viewed as a graphic syntax of RT-LOTOS. Indeed, the
translation of TURTLE models into RT-LOTOS is not
straightforward: Most operators described in this paper
have no direct counterpart in RT-LOTOS. The major
advantage of backing TURTLE on RT-LOTOS lies in the
possibility to reuse RTL [34], the formal validation tool
developed by LAAS-CNRS for RT-LOTOS. A prototype
named TTool has been developed to assist real-time system
designers in diagramming TURTLE models. TTool can
generate a RT-LOTOS specification from TURTLE models.
Once generated, a RT-LOTOS specification can be formally
validated directly from TTool using RTL, making the use of
the formal language RT-LOTOS totally hidden to UML
designers.

This paper is organized as follows: Sections 2 and 3
introduce the TURTLE profile. They present the native
TURTLE operators introduced in [2] and advanced ones
proposed in [28], respectively. Section 4 explains how
TURTLE’s semantics has been formalized in RT-LOTOS.
Formal validation of TURTLE models is the subject of
Section 5. Section 6 reports a successful experience in using
TURTLE for the formal validation of space-based em-
bedded software. Section 7 surveys related work including

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 7, JULY 2004 473

. L. Apvrille is with the ENST, Institut Eurecom, BP 193, 2229 route des
Cretes, 06904 Sophia-Antipolis Cedex, France.
E-mail: ludovic.apvrille@enst.fr.

. J.-P. Courtiat is with LAAS-CNRS, 7 avenue du Colonel Roche, 31077
Toulouse Cedex 04, France. E-mail: courtiat@laas.fr.

. C. Lohr is with the Electrical and Computer Engineering Department,
Concordia University, 1455 de Maisonneuve W., Montreal, Canada H3G
1M8. E-mail: lohr@ece.concordia.ca.

. P. de Saqui-Sannes is with ENSICA and LAAS-CNRS, 1 place Emile
Blouin, 31056 Toulouse Cedex 05, France. E-mail: desaqui@ensica.fr.

Manuscript received 9 Jan. 2004; revised 17 Mar. 2004; accepted 8 Apr. 2004.
Recommended for acceptance by M. Broy.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0007-0104.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



recently released material on UML 2.0. Section 8 concludes

the paper and outlines future work.

2 NATIVE TURTLE

2.1 A UML Profile

A UML “profile” may contain selected elements of the

reference metamodel, a description of the profile semantics,

additional notations, and rules for model translation,

validation, and presentation. A profile definition enhances

UML in a controlled way, in particular using the “stereo-

type” extensibility mechanism. A stereotype extends the

UML metamodel, allowing one to create new kinds of

building blocks derived from existing ones, but specific to a

class of problems.
The TURTLE profile extends two diagrams of the UML

1.5 notation [29]: class diagrams which describe the static

architecture of the system under design and activity

diagrams which describe the internal behavior of the

system’s components.

2.2 Extended Class Diagrams

A TURTLE class diagram is made up of “normal” classes

and stereotyped classes that we call Tclasses. Fig. 1 depicts

the structure of a Tclass. A Tclass is identified by a “turtle”

icon located in the upper right corner of the five-box Tclass

symbol. Communications through public attributes or

method calls are limited to communications between a

Tclass and a normal class, or between two normal classes.

Communication between two Tclasses uses so-called

“gates.” A gate is a particular Tclass attribute of type Gate.

A gate can be used for synchronized communication with

another Tclass, or for an action internal to a Tclass.

The internal behavior of each Tclass must be described
using an activity diagram. The latter is the fifth element in a
Tclass symbol (Fig. 1).

So far, we considered an isolated Tclass that may be used

to represent a single task. In practice, real-time systems

execute tasks that run in parallel and occasionally synchro-

nize their activities. Therefore, we extend UML class

diagrams with high-level operators enabling description

of concurrency, sequence, synchronization, and preemption

between Tclasses. If we refer to the vocabulary used in the

process algebra community, we term these high-level

operators as “composition operators.”

Let us consider two Tclasses T1 and T2. To create a

composition operator between T1 and T2, we create a

relation link between T1 and T2,1 and we decorate that

relation with an associative class labeled by the relevant

composition operator. The TURTLE profile originally

presented in [2] supports the following composition

operators: Parallel (Fig. 2a), Synchro, Sequence (Fig. 2b), and

Preemption. The first three operators are used to describe

tasks that execute in concurrency, tasks that synchronize on

gates, and tasks that are executed in sequence. Preemption

gives a task the possibility to interrupt another task forever.
Note: The association link in Fig. 2b is a directed one. It is

indeed mandatory to explicitly state which task executes
first, and which task executes in sequence (Tclasses T1 and
T2, respectively).

2.3 Extended Activity Diagrams

The TURTLE profile extends UML activity diagrams with
synchronization operators and temporal operators. The
former are used to express synchronizations which are
internal to Tclasses, or synchronizations between Tclasses.
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Fig. 1. Structure of a Tclass.

1. A class may be associated to itself.

Fig. 2. Composition operators: (a) Parallel and (b) Sequence.



The latter are used to describe temporal constraints that

apply exclusively to the internal activities of Tclasses.

2.3.1 Synchronization Operators

In its activity diagram, a Tclass T may perform a call on a

gate g. Three cases may apply:

. g is not synchronized with any other gate. In that
case, a call on this gate models an internal action, see
Fig. 3a.

. g is internally synchronized. For example, in Fig. 3b,
g is synchronized with regards to two subactivities
of T1 starting at a parallel operator whose synchro-
nization gate list is “[g].” The synchronization
occurs when both subactivities are ready to execute
action “g.”

. g is externally synchronized (g must be declared as
public). In that case, T must be linked with a Synchro
composition operator to another Tclass, and g must
be specified as synchronization gate in an OCL
formula attached to the Synchro operator. For
example, in Fig. 3c, T1 synchronizes with T2. The
synchronization gate of T1 is g1 and that of T2 is g2
(cf. the OCL formula). Any relation attributed by a
Synchro operator must be decorated by an OCL
formula stating which gates are connected together.

Two Tclasses may exchange data at synchronization time.

In Fig. 3c, let us consider the two activity diagrams of

Tclasses T1 and T2. When synchronization on gate g1/g2

occurs, the value of x is sent. This value is received by T2 at

synchronization time, and stored in attribute y. Note: A

synchronization action between two Tclasses T1 and T2 is

syntactically valid if and only if T1 and T2 use two

interconnected gates as well as compatible parameter lists.
Let us now focus on gate typing in TURTLE. A Gate

abstract type is introduced and specialized in Ingate and

Outgate that correspond to gates for data receiving and
sending, respectively. Unlike “ports” in Rose RT [32] and
ports in UML 2.0 [30], TURTLE gates are not defined by a
list of authorized messages.

Note: TURTLE activity diagrams include parallel and
synchronization operators which are also available at class
diagram level, but do not include Sequence and Preemption.
Indeed, Suspend and Preemption are dedicated to the
modeling of relations between tasks at structuring level,
i.e., at class diagram level. It is not possible to use a Suspend

or Preemption inside a TURTLE activity diagram. To keep
our profile as close as possible to UML 2.0, TURTLE activity
diagrams only support standard UML parallel and syn-
chronization operators.

2.3.2 Temporal Operators

Four temporal operators are introduced at activity diagram
level.

First, a deterministic delay characterized by a fixed
duration d (see the rectangle in Fig. 4a). The execution of
AD is delayed by d units of time.

Second, a nondeterministic delay based on the
RT-LOTOS latency operator [11]. The associated pictogram
is given by Fig. 4b. Note that unless using proprietary
solutions, UML 2.0 does not make it possible to work with
temporal indeterminism and temporal intervals. The
TURTLE profile does. In TURTLE, a temporal interval is
modeled by putting a deterministic delay operator and a
nondeterministic delay operator in sequence. The nonde-
terministic operator expresses the time latency inside the
time interval.

Third, a time-limited offer which describes the possibi-
lity for an action to be performed before an amount of time
has elapsed (see Fig. 4c).

Finally, TURTLE offers a time capture operator whose
pictogram is depicted on Fig. 4d. The @ operator stores the
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Fig. 3. (a) Internal action on g. (b) Internal synchronization on g. (c) External synchronization on g1/g2.

Fig. 4. Temporal operators supported by TURTLE activity diagrams.



amount of time elapsed between the instant when the Tclass
offers an action (i.e., this action is ready to execute, but it
cannot be performed immediately because it is synchro-
nized with other actions which are not yet ready to execute),
and the actual execution of this action.

The combination of these temporal operators makes it
possible to model temporal behaviors such as timeouts,
watchdogs, and many other mechanisms encountered in
real-time systems.

3 ADVANCED TURTLE

The TURTLE profile originally published in [2] and
outlined in previous section, was missing important
features in terms of object orientation and real-time system
structuring. On the object-oriented side, native TURTLE
lacks a gate-based communication counterpart to method
calls. A solution is proposed hereafter with the so-called
Invocation operator. On the real-time side, native TURTLE
extends activity diagrams with powerful temporal opera-
tors, but still lacks real-time operators at the class diagram
level. In [28], we proposed to endow TURTLE with two
composition operators: Periodic and Suspend/Resume. Defini-
tions of these operators and examples on their use are given
hereafter.

3.1 Invocation

Method call is a fundamental feature of object-oriented

languages and of UML class diagrams in particular. With

native TURTLE, modeling a method call requires the use of

two Synchro operators. Moreover, the activity diagram of

the two Tclasses involved in the two synchronizations must

check for the validity of data exchange performed during

that synchronization. In particular, when returning from a

method call, data should be exchanged only from the callee

to the caller. Such complexity leads us to introduce a novel

operator—called Invocation—which makes it possible for a

Tclass to insert the activity of another Tclass in its execution

flows. Invocation differs from Synchro since the latter

characterizes synchronization between two separate execu-

tion flows.
Fig. 5 depicts an Invocation associative class. The class is

attached to an association starting at Tclass T1 (Caller) and
heading to Tclass T2 (Callee). Then, we say that T2 can be
invoked by T1.

Like synchronization, an invocation involves one gate in
each Tclass it concerns. Let us call g1 and g2 two gates of T1
and T2, respectively. Let us assume the OCL formula {T1.g1
= T2.g2} is attached to the relation. Then, when T1 performs
a call on g1, T1 must wait for T2 to perform a call on g2.
When T2 performs the expected call, data can only be
exchanged from T1 to T2, following the direction indicated
by the arrow. In other words, parameters can be passed
from T1 to T2. T1 is blocked until T2 performs a new call on
g2. Call return values and other data can be passed from T2
to T1. Due to controlled data exchange, the Invocation
operator is more complex than a mere sequence of two
Synchro operators.

Fig. 6 depicts a browsing system model. An Invocation
connects a Browser to a WebServer, playing Caller and Callee
roles, respectively. The values passed by Browser when the
invocation occurs are prefixed by ”!” (port, url), whereas the
returned values are prefixed by ”?” (data).

3.2 Periodic

Native TURTLE lacks a high-level operator for the descrip-
tion of periodic tasks. The Periodic composition operator
makes it possible to characterize the periodic behavior of a
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Fig. 5. Association attributed with an Invocation operator.

Fig. 6. Use of an Invocation operator in a browsing system.



task modeled by a Tclass. This composition operator can
attribute either an association linking two Tclasses or an
association linking a Tclass to itself.

Let us first consider an association between two Tclasses.

The Tclass pointed out by the association starts only after

the Tclass at the origin of the association has completed its

execution. Once started, the pointed Tclass executes its main

activity periodically with regards to the period and deadline

values specified in an OCL formula attached to the

association. For example, in Fig. 7, when T1 has terminated,

T2 starts and executes its activity diagram periodically, with

a period of 100 time units and a deadline of 50 time units.

Note that if the Tclass T2 is started by another Tclass than

T1—let us assume there is a Sequence relation between a

Tclass T4 and T2—then, when T4 completes, T2 is started in

a nonperiodic mode.
Let us now consider a single Tclass with a looping

association. That Tclass always executes its activity diagram
periodically according to the period and deadline values
specified in the OCL formula attached to the association
(see T3 in Fig. 7).

3.3 Suspend/Resume

Native TURTLE includes a Preemption operator which

allows a Tclass T1 to abruptly interrupt a Tclass T2 without

any possibility for T2 to keep track of its current state and

resume later on. Thus, TURTLE lacks a high-level operator

to express the possibility for a Tclass to be suspended and

subsequently resumed with its execution context being

unchanged. The Suspend2 operator introduced in this

section answers that need.

Fig. 8 depicts a Suspend associative class attached to an

association directed from a Tclass T1 (Suspender) to a Tclass

T2 (Suspended). T2 can be suspended and reactivated by T1.

Both operations require a call on gate s (s appears in the

OCL formula associated with the relation from T1 to T2).

When T1 performs a call on s, T2’s activity is suspended.

Then, the next call on s performed by T1 resumes T2. T1 can

suspend and resume T2 as many times as needed.

TaskManager (Fig. 9) implements a basic scheduler which

alternatively switches between TaskA and TaskB, two tasks

sharing the same processor resource. TaskManager can

suspend (or resume) TaskA and TaskB using gates SwitchA

and SwitchB, respectively. When the application starts, both

tasks are “normally” running. The state of these tasks is

termed as “active state.” But, they are immediately

suspended by TaskManager (cf. the calls on SwitchA and

SwitchB at the beginning of TaskManager’s activity diagram).

Consequently, both tasks are in “suspended state.” Then,

TaskA and TaskB are activated one after the other during a

quantum of time. The attribute quantumA (respectively,

quantumB) denotes the quantum of time allocated to TaskA

(respectively, TaskB).

3.4 Suspendable Temporal Operators

Native TURTLE temporal operators have been introduced

assuming a universal time. Time continuously progresses

and cannot be suspended. Further, it uniformly applies to

all components of the system under design. These temporal

operators can be used to model, for example, a timer but

also to model the execution time of an algorithm.
With the Suspend composition operator, it becomes

possible to interrupt the execution of a Tclass. When the

activity of a Tclass is suspended, time progresses anyway

and, consequently, the timers of the Tclass continue to run.

By contrast, the algorithm implemented by the task must be

stopped as soon as the Tclass is suspended. Nevertheless,

the task should be allowed to resume all its activities and,

more particularly, its algorithms at the point where they

were suspended. Therefore, we introduce temporal opera-

tors supporting the concept of time suspension and resume.

We call them “suspendable temporal operators.”
Fig. 10 depicts the four new suspendable temporal

operators: a “suspendable” deterministic delay (Fig. 10a),

a “suspendable” nondeterministic delay (Fig. 10b), a

“suspendable” timed-limited offer (Fig. 10c), and at last, a

“suspendable” time-capture. A small hourglass added to

the original symbols denotes time suspension. For the three

first operators, the suspension stops the elapsing of time.

For the fourth one (suspendable time capture, Fig. 10d), the

semantics is a bit more complex. Indeed, in the nonsus-

pendable time capture, the delay d denotes the time

between the offer on g, and the action on g. For the

suspendable version of this operator, the delay d denotes

the time spent in active state by the Tclass between the offer

on g and the action on g.
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Fig. 7. Association attributed by a Periodic operator.

Fig. 8. Association attributed with a Suspend operator.2. Suspend is an abbreviation for Suspend/Resume.



Fig. 11 illustrates the use of the deterministic and
nondeterministic delay operators in their original and
suspendable versions. The system under design is a DVD
player for Personal Computer. First, the DVD player takes a
disk and then it checks it. The access time to tracks depends
on the mechanical properties of the device. Mechanical
operations cannot be interrupted. Therefore, they are
completed independently of any other computations on
the PC. Conversely, TaskManager can suspend data decod-
ing which follows synchronization on getData. As a
consequence, we associate an hourglass with the determi-
nistic and nondeterministic delays on the left branch of
DVD_Player’s activity diagram.

4 FORMAL SEMANTICS

Native TURTLE has a formal semantics expressed in
RT-LOTOS [11]. Any TURTLE model can be translated to
a RT-LOTOS specification. The semantics of advanced
operators (Invocation, Periodic, Suspend, suspendable tem-
poral operators) is given in native TURTLE which, in turn,
can be translated to RT-LOTOS [28].

A TURTLE modeling structures a system into Tclasses

and associates an activity diagram with each Tclass. We use

a two-step TURTLE algorithm to translate TURTLE models

to RT-LOTOS. At Step 1, an RT-LOTOS process is computed

for each activity diagram. At Step 2, the RT-LOTOS
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Fig. 9. Example of a basic scheduler modeled using the Suspend operator.

Fig. 10. Suspendable temporal operators. (a) Suspendable deterministic delay. (b) Suspendable nondeterministic delay. (c) Suspendable time-
limited offer. (d) Suspendable time capture.

Fig. 11. A PC DVD player model using nonsuspendable and suspendable delays.



processes obtained at the first step are composed using

information supplied by the class diagram. This two-step

algorithm can be sketched as follows:

1. Activity diagrams. Each Tclass contains an activity

diagram that is translated to an RT-LOTOS process.
The latter possibly encapsulates subprocesses that

implement temporal operator, loop, junction, action

state, attributes modification, and parallel/synchro-

nization structures. TURTLE temporal operators

(deterministic delay, nondeterministic delay, time-

limited offer, and time-capture) and synchronization

on gates have quite direct counterparts in

RT-LOTOS. The translation of other operators is far
more complex: It needs additional internal synchro-

nizations and subprocesses. For example, the trans-

lation of the parallel operator P of UML activity

diagrams is done as follows. First, all activities

leading to P are synchronized together on an

additional gate. Then, once synchronized, all these

activities are killed, and a new RT-LOTOS process p

is started. At last, the process p starts in parallel all
activities starting at P.

2. Class diagrams. Associations between Tclasses can
be attributed with composition operators. Let T1 be a

Tclass involved in a relation specified by a composi-

tion operator and P1.1 the RT-LOTOS process

obtained from the translation of T1’s activity

diagram at Step 1. At Step 2, for each Tclass, a new

RT-LOTOS process P1.2 taking into account the

composition operators involving T1 is created. The

body of process P1.2 may call P1.1 using appropriate
RT-LOTOS gates (declaration or renaming). It may

also refer to other processes Pn.2 where Tn denotes

another Tclass related to T1 with a TURTLE

composition operator. Given a class diagram,

Tclasses are processed in the following order:

a. Tclasses at the origin of Preemption operators,
b. Tclasses at the origin of Sequence operators,
c. Tclasses pointed out by Preemption or Sequence

operators,
d. Tclasses at the origin of both Sequence and

Preemption operators, and

e. Subsets of Tclasses connected together either by
Parallel or by Synchro operators.

For example, let us consider three Tclasses T1, T2, and T3.
T2 and T3 synchronize on g, and there is a Sequence relation
between T1 and T2, and T1 and T3. The translation
algorithm generates six processes, P1.1, P1.2, P2.1, P2.2,
P3.1, and P3.2. P1.2, P2.2, and P3.2 contain the translation of
the activity diagram of T1, T2, and T3, respectively. P2.2
and P3.2 just start P2.1 and P3.1, respectively. However, the
body of P1.2 is more complex. Indeed, after completing its
activity, T1 executes P2 and P3 in sequence, P2 and P3 being
synchronized on g. Therefore, the body of P1.2 is P1.1 >>
(P2.2 |[g]| P3.2).

At least, for each instance of Tclass Tn at system startup,
the RT-LOTOS specification instanciates a Pn.2 process.

The TURTLE to RT-LOTOS translation algorithms give
the profile a formal semantics. Their implementation
enables reuse of the RTL [11], [34] validation toolkit.

5 THE TURTLE TOOLKIT

5.1 Methodology

The methodology associated with TURTLE does not cover
an entire life cycle. It is centered on model validation in early
stages of the system’s design trajectory. Fig. 12 depicts the
incremental design trajectory suggested to TURTLE users.

. Specification step. The system’s specification is
expressed as a combination of use-cases and
sequence diagrams.

. Design step. Extended class and activity diagrams
describe the system’s architecture and the classes’
internal behavior, respectively.

. Validation step. In this paper, we address a priori
validation. TURTLE diagrams of a system can be
checked against design errors. For that, TURTLE
class and activity diagrams are translated into
RT-LOTOS. A priori validation includes simulation,
which partly explores the system’s space state, and
verification based on exhaustive analysis. If simu-
lation applies to all syntactically correct TURTLE
models, verification can only be performed on
TURTLE models with finite behavior, modulo a
“reasonable” time for reachability analysis compu-
tation. Thus, verification faces the well-known state
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Fig. 12. Design trajectory.



space explosion problem. As a consequence, its use
is usually limited to verifying core mechanisms
and fundamental algorithms that deserve exhaus-
tive analysis. Simulation is the complement to
verification. It assists designers for detailed design
of complex systems, in particular when the
system’s state space cannot be computed because
of memory overflow.

5.2 Tools

The TURTLE toolkit includes TTool [39] and RTL [34], see

Fig. 13.

. TTool—which stands for TURTLE Tool kit—offers a
TURTLE class and activity diagram editor, a syntax
checker, a RT-LOTOS code generator, and a simula-
tion/verification graphical analyzer.

. RTL—which stands for RT-LOTOS Laboratory—
takes as input a RT-LOTOS specification generated
by TTool and performs either random3 simulation
for a given period of time or verification based on
exhaustive analysis. For “finite” systems of “reason-
able” size, RTL eventually outputs an optimized
reachability graph which explicitly mentions time
progression and clock constraints.

Fig. 14 illustrates the use of TTool for diagramming a
HelloWorld application. A Tclass Greetings executes a
synchronization action named HelloWorld. This action is

delayed from 0 to preparationTime units of time. This
example features a nondeterministic delay (see the symbol
with a spring shape), a temporal operator not available with
UML 2.0.

5.3 RT-LOTOS Code Generation

A TURTLE class diagram and its associated activity
diagrams being edited and checked for syntax, TTool is
ready to generate an RT-LOTOS specification. The user has
just to scroll the appropriate menu and select the “generate
RT-LOTOS” option. Then, he or she obtains a RT-LOTOS
specification ready to be provided as input to the RTL
validation tool. The TURTLE to RT-LOTOS translation
process is completely automated and there is no obligation
for the designer to read the RT-LOTOS code before
launching the validation.

5.4 Simulation

TTool processes simulation traces output by RTL and
establishes correspondences between the RT-LOTOS code
and the original TURTLE model. Fig. 15 gives an example of
a simulation trace obtained for the HelloWorld example
diagrammed in Fig. 14. The synchronization on gate
HelloWorld occurs 7 units of time after the Greetings Tclass
started.

5.5 Reachability Analysis and Property Verification

A reachability graph generated from a LOTOS specification
contains a set of states and labeled transitions between the
states. A transition between two states may involve a
synchronization action between two Tclasses. If so, the
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Fig. 13. The TURTLE validation process is fully automated.

Fig. 14. HelloWorld class and activity diagram edited using TTool.

3. Dates are selected inside time intervals by applying one of the
stochastic laws implemented by RTL.



transition is labeled by an identifier corresponding4 to one
of the gates involved in the synchronization. The purpose of
generating a reachability graph is to verify one or several
properties. A basic solution is to traverse the graph and look
for all the transition identifiers that characterize the
property.

This approach can be extended using the concept of
observers [23]. An observer is a module external to the
modeling of the system under design and usually expressed
in the same language as the system’s modeling. An observer
can access the system’s model components, in particular its
variable. In the TURTLE context, an observer can synchro-
nize with a Tclass on a dedicated gate so that the observer
remains non intrusive. Any synchronization between a
Tclass and its observer appears in the reachability graph
under the form of a labeled transition. Researching Tclass-
to-observer synchronization labels in the reachability graph
makes it possible to analyze properties checked by the
observer.

Formal proofs can be achieved by applying logic formula
on the reachability graph. For that purpose, we used Kronos
[24], a model checker which takes as input a logic formula
and the reachability graph, and answers whether the
property holds or not.

6 EXPERIENCE WITH A SOFTWARE-BASED

SATELLITE SYSTEM

6.1 System Overview

The SAGAM project [33] has investigated new solutions for
communication bandwidth optimization in the context of
multibeam geostationary satellites offering bidirectional
multimedia services. The SAGAM system (Fig. 16) imple-
ments a fast ATM cells switch and a temporal cell
multiplexer on downlinks. User data switching and multi-
plexing are realized according to differentiated QoS.

Under the assumption that management functionalities
are software-implemented and embedded in the satellite,
the system under design implements the following
functionalities:

. Users can initiate new ATM connections by sending
a CAC-sig signal (CAC stands for Connection
Admission Control) to the satellite.

. DAMA (Demand Assigned Multiple Access) and
BAC (Block Acceptance Control) manage the ATM
Variable Bit Rate and Unspecified Bit Rate traffics.

. User signals are sent by CAC-client (CAC-sig),
DAMA-client (DAMA-sig), and BAC-client (BAC-
sig). These services are located at User Earth Stations
(Fig. 15).

. Every 50 ms, the satellite sends a Frame Allocation
Report to let users know their allocated slots in the
next uplink frame.

Details of the SAGAM functionalities can be found in [4],
[10], and [33].

6.2 System Design in TURTLE

The SAGAM system was modeled and checked against
design errors using the methodology depicted in Fig. 12.
For space reasons, the user requirements captured by
sequence diagrams are not reported in the paper. The class
and activity diagrams designed for the SAGAM case study
offer a high level of abstraction therefore enabling the use of
reachability analysis techniques.

SAGAM software functionalities are executed by a set of
real-time tasks that run concurrently, communicate asyn-
chronously, and need to meet real-time constraints (dead-
lines, etc.). Moreover, the system works in various modes
triggered by internal errors and external orders (regular
mode, error mode, recovery mode, etc.). System tasks can be
started or stopped when changing mode.

The system is abstracted as a software architecture
characterized by tasks, communication between tasks, and
various running modes. We also model the tasks’ behavior
(tasks’ internal algorithms).
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Fig. 15. HelloWorld: timelines displayed by TTool from a simulation trace generated by RTL.

Fig. 16. The SAGAM system.

4. The TURTLE to RT-LOTOS translation renames gate identifiers. A
correspondence table constructed during the translation process makes it
possible to identify the TURTLE gates corresponding to a label in the
reachability graph.



In practice, we define one Tclass per software real-time

task, such as DamasigReader that receives Dama-sig user

signals. Consequently, the TURTLE class diagram depicted

in Fig. 17 contains a Tclass named DamasigReader. The

DamasigReader task drives the hardware equipment which

receives Dama-sig, formats received Dama-sig, and for-

wards them to DamasigAnalyzer. For each Dama-sig signal,

DamasigAnalyzer decides whether the allocated bandwidth

of the user who sent the signal needs to be increased or not.

The result is forwarded to FARSender, the task that receives

new allocations from other tasks (DamasigAnalyzer, etc.),

and regularly sends a Frame Allocation Report to users.
Let us now consider relations between tasks. Tasks

communicate by means of asynchronous message ex-

changes. Since the only mean for two Tclasses to exchange

data is to perform a synchronization action, we introduce an

intermediate Tclass which models an asynchronous com-

munication link between two Tasks. In Fig. 17, a Tclass

named Buffer models an asynchronous communication link

between DamasigReader and DamasigAnalyser. Both Damasi-

gReader and DamasigAnalyser synchronize with Buffer. Send

is an OutGate of DamasigReader. in1 is an InGate of Buffer.

Consequently, the synchronization between DamasigReader

and Buffer models a unidirectional communication link

from DamasigReader to Buffer. The link between Buffer and

DamasigAnalyzer1 is unidirectional.

We further need to consider functioning modes where

tasks are possibly stopped or started. Consider, e.g., that, in

error mode, task DamasigAnalyzer1 is stopped, and Damasi-

gAnalyzer2 is started. The model uses a Preemption

composition operator between DamasigAnalyser1 and Da-

masigAnalyzer2. Fig. 17 depicts only a subset of the original

class diagram, which includes 20 Tclasses. The class

diagram in Fig. 17 models real-time tasks (DamasigReader,

DamasigAnalyzer1, DamasigAnalyzer2) and communication

links (Buffer plus two Synchronize composition operators).

With the Preemption composition operator, the diagram in

Fig. 17 also addresses software’s evolution in terms of tasks.

Lets us now focus on the real-time tasks’ behavioral

modeling. Tclasses representing real-time tasks model

algorithms at a high level of abstraction. The latter includes

main input arguments, main results, and the time taken to

compute these results (details of the algorithms are

provided in non-Tclasses not depicted in Fig. 16). Three

methods have been used to estimate algorithms’ duration in

the SAGAM software:

1. Algorithm simulations. For space-based embedded
software, a commonly used simulator is ERC32-SIS
developed by ESTEC [17].

2. Algorithm compilation and test on target.
3. Count of maximum possible operations performed

and conversion to timing constraints that depend on
potential targets.

For instance, consider DamasigAnalyzer1 Tclass on Fig. 17.

It can be stopped and start again (right branch of choice). It

may also get data from gate get (left branch). If so, it

computes received data, and outputs an allocation on gate

sendAlloc. The algorithm which computes the allocation is

modeled with a deterministic delay between get?x and

sendAlloc!x. This delay equals the maximum duration

obtained during simulation [4].

6.3 Formal Validation

Reachability graph analysis was used to check the SAGAM

model against logical and real-time properties. Each action

in the reachability graph is stamped with data exchange

and time information. This makes it possible to check for

trivial properties but not for complex one. For example,

suppose that an action “a” should be performed only every

100ms. One has to search on the graph for each action “a”

and check that all “a” time-stamped are correct, which is a

very tedious task: Reachability analysis cannot be manually
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performed for checking complex properties. The observer

technique helped us overcoming the problem.
Let us consider software has the following two properties:

. Property 1: The frame allocation report is sent every
50 milliseconds.

. Property 2: Every user signals must be computed
before the next frame allocation report is sent.

We use two observers (see Fig. 18) O1 and O2 to verify

prop1 and prop2, respectively. O1 and O2 synchronize with

FarSender to get information data. As long as a property

checked by an observer remains valid, that observer keeps

synchronized with FarSender. Therefore, observers are

qualified as “nonintrusive” with respect to the application.

For instance, gate obs_g1 is always offered by O1 as long as

Property 1 holds. When a property becomes false, the

corresponding observer performs the error action: The

observer is stopped, and so is the observed class the next

time it synchronizes with that observer.

For example, let us consider observer O1. Its purpose is

to check that every frame allocation report is really emitted

every 50 milliseconds. First, O1 executes action obs_1,

which is synchronized with action obs_g1 of FarSender. This

synchronization corresponds to the first sending of a frame

allocation report. Then, two subprocesses which synchro-

nize on the internal gate of O1 are started. The first

subprocess waits for synchronization on obs_1 (next frame

allocation report). Then, either it can execute action internal

immediately (note the time-limited offer operator with the

“0” value) or it is rerouted to action error1. At the same

time, the second subprocess first waits for 50 times units

(1 time unit = 1 millisecond). Then, it executes at once

action internal or action error1. Thus, the first subprocess

waits for the next frame allocation, whereas the second one

checks for the time duration of the first one. If the property

is satisfied, the first subprocess launches again two new

subprocesses, and so on (loop operator). Otherwise, both

subprocesses stop, and FarSender stops the next time it

executes action obs_g1.

Fig. 19 depicts the reachability graph obtained for the

SAGAM class diagram enriched with observers O1 and O2.

Transition error2 proves that property 2 can be violated.

Indeed, all distinct noninfinite transition paths leading from

the graph’s initial state to the error2 transition represent a

set of traces leading to the violation of Property 2.

Reachability graphs were generated for abstract models

in which algorithms were represented by their real-time

profile. Indeed, with its nondeterministic real-time opera-

tor, TURTLE provides an explicit way to model lower and

upper limits of algorithms’ duration.5 Such a modeling is

not possible at all with UML 1.5. The reachability graph for

the case study was computed in less than 5 minutes on a

SUN UltraSparc. The size of the reachability can be reduced

by a limited use of variables and nondeterministic delays.

7 RELATED WORK

This section compares the TURTLE profile with other real-

time UML profiles and proposals of coupling UML with a

formal language. These proposals range from commercial

tools, such as Rose RT which supports an extended UML

with ROOM language [35] to academic propositions which

either gives a precise semantics to UML [7], [18] or couple

UML and a formal description technique such as Labeled

Transition Systems [21], Petri Nets [13], Z [16], Esterel [1],

PVS [38], B [25], and E-LOTOS [8]. Few papers have focused

on verification capabilities: see, e.g., [9], [26] for UML and

abstract machines and [14] for UML and UPPAAL.

7.1 Comparison with UML 1.x-Based Proposals

. Compliance with the OMG Standard. Unlike the

Petri-net-based notation proposed by [13], TURTLE

is fully compliant with UML 1.5 and exclusively uses

the stereotype and tag value extension mechanisms
authorized by the standard.

. Structuring. TURTLE inherits the notion of compo-
sition operator from the RT-LOTOS process algebra.

The idea of composing behaviors is as old as the idea

of composing communicating state machines, as

implemented by Rose RT [32] or Tau G2 [36]. With

these tools, composition is hidden and implicit.

Conversely, TURTLE makes composition explicit.
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Associations between Tclasses are attributed by

associative classes containing composition operators.

. Communication. Unlike Esterel-based Syncharts [1],

TURTLE implements an asynchronous paradigm,

which properly answers our objective to model

distributed systems. With its LOTOS-based rendez-
vous mechanism, TURTLE remains independent

from implementation details, such as the FIFO-

queued communication implemented by Rationale’s

RoseRT, Telelogic’s TAU, and Ilogix’s Rhapsody

[31]. The ACCORD/UML profile described in [20]

also implements an asynchronous paradigm, includ-

ing a broadcast mechanism. TURTLE does not

implement such a broadcast mechanism. TURTLE-P
[3], an enhanced TURTLE with component and

deployment diagrams, overcomes that limitation

and enables description of broadcast links with

quality of service parameters.

. Behavior. The internal behavior of TURTLE Tclasses

is described by means of activity diagrams, not

Statecharts. We miss the hierarchical structuring

facilities of Statecharts, but we make a clear

distinction between structure and behavior descrip-

tions. Nevertheless, a TURTLE activity diagram

may contain parallel execution flows, which means
that TURTLE allows intraclass parallelism and

synchronization.

. Real time. TURTLE offers four temporal operators:
a deterministic delay, a nondeterministic delay, a

time-limited offer, and a time capture operator.

Combining the deterministic and nondeterministic

delay makes it possible to express time intervals.

Therefore, TURTLE is more powerful than UML

profile such as the Rose RT’s one, which is limited

to expressing fixed duration without any imple-
mentation-independent means to express temporal

latency. A deterministic delay operator, which by

essence expresses a fixed duration, is not sufficient

for describing jitter and skew in a networked

multimedia system. This is why TURTLE also has

a nondeterministic delay operator. Further, TURTLE

gives its temporal operators a formal semantics. The

profile enables abstract description with large
independence of implementation target. TURTLE’s

deterministic delay operator thus differs from the

”tm” operator implemented by Ilogix’s Rhapsody. It

also differs from the timeout operator supported by

Artisan Software’s Real-Time Studio [5]. Last but

not least, let us add that TURTLE supports

suspendable timed operators which, to our knowl-

edge, have no counterpart in commercial tools.
Also, the Periodic and Suspend/Resume operators

enable compact descriptions of mechanisms occur-

ring frequently in real-time systems. Moreover, the

Suspend operators make it possible to model

mechanisms related to hardware interruptions.
. Formal Semantics. The TURTLE profile shares with

[8], [16], and [38] the fact that its formal semantics is
given by translation to a formal language. Theelen
et al. [37] states that a “delay” operator suffices to
model real-time systems as soon as that “delay” can
be combined with an “interrupt” operator. Whether
the statement holds for weak urgency semantics or
not, it is no longer valid in the general case where the
four TURTLE temporal operators are necessary.
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. Validation Tools. The importance of a priori

validation or, in other terms model analysis before

coding, has been acknowledged by UML practi-
tioners and real-time system designers in particular.

For instance, the EU-project OMEGA has selected

Rhapsody and TAU to support a development

methodology adapted to real-time embedded sys-

tems [22]. The project addresses a subset of UML

and gives that subset a formal semantics [12]. The

OMEGA profile does not offer any temporal

extension. Also, ACCORD [20] is a UML methodol-
ogy for real-time development based on Softeam’s

Objecteering. ACCORD limits as much as possible

the number of extensions to UML, and stems its

originality in using design patterns and novel

design rules.

Unlike UML tools geared to code debugging, TURTLE

goes beyond code animation and enables formal validation

at high level of abstraction. The validation process

described in this paper has been fully automated. TURTLE

benefits of advances functionalities provided by RTL,

including optimized reachability analysis based on clock

region generation and scheduling automaton generation

(Timed Labeled Scheduling Automaton [27]). Again, the

TURTLE toolkit makes the designer use RTL transparently

thanks to the user-interface offered by TTool.

7.2 Comparison with UML 2.0

UML 2.0 [30] has been adopted as an OMG standard in
August 2003, not much later after we started writing this
paper. UML 2.0 has been designed with real-time systems
in mind, and particularly applies to protocol modeling and

communication architecture validation [15].
In UML 2.0, classes may have ports. Recently released

tools such as Telelogic’s TAU G2, implement queued

communication. In TURTLE, Tclasses may have gates. The
latter enable rendezvous communication which is more
abstract than queuing in UML 2.0, and makes design more
independent of implementation concerns.

UML 2.0 has introduced composite structure diagrams

which enable description of so-called “parts” contained in

classes. “Parts” own ports that can be interconnected by

communication channels. The TURTLE profile may evolve

in the near future in order to integrate composite structure

diagrams. The designer will be advised to use the class

diagram to describe Tclasses and composite structure

diagrams to describe newly named Tparts with their ports

and interconnection between these ports. Communication

will remain based on rendezvous à la RT-LOTOS.
On the behavioral description side, UML 2.0 supports

extended statecharts with an SDL-like, transition oriented
syntax. TURTLE supersedes UML 2.0 by its temporal
operators. In particular, TURTLE has a nondeterministic

delay operator. UML 2.0 is limited to a deterministic delay
operator which expresses a fixed duration. Therefore,
UML 2.0 makes it impossible to work with temporal

intervals unless using proprietary solutions not backed by
any formal semantics.

TURTLE further offers formal verification functionalities

that are unmatched by code animators of recently released

UML 2.0 tools. The profile should evolve to integrate timing

diagrams now include in the OMG standard. In addition,

TTool may represent simulation traces in the form of timing

diagrams. Indeed, simulation traces depict all the actions

performed by the system during a simulation. By restricting

these actions to the one of a particular Tclass, it should be

possible to build all the time-stamped state transitions

(actions) of this Tclass.

8 CONCLUSIONS AND FUTURE WORK

Considering the low usage of formal methods and the

increasing acceptance of the Unified Modeling Language in

industry, the paper proposes a solution to take the best of

the OMG-based notation in terms of diagramming facilities,

and the best of the RT-LOTOS formal language in terms of

structuring capacity. The result is a real-time UML profile

named TURTLE, an acronym for Timed UML, and

RT-LOTOS Environment. TURTLE is based on composition

operators, wide-spectrum temporal operators, and formal

validation functionalities. TURTLE is fully compliant with

UML 1.5.
TURTLE extends UML classes with Tclasses endowed

with synchronization gates. An association between two
Tclasses can be attributed with a composition operator.
Whereas concurrency is implicit in UML 2.0, TURTLE
composition operators enable explicit expression of con-
currency, synchronization, sequence, periodicity, and sus-
pension/resume of tasks modeled by Tclasses.

Each Tclass of a TURTLE class diagram contains an

activity diagram describing the internal behavior of that

Tclass. TURTLE extends activity diagrams with a nonde-

terministic delay, a time-limited offer, and a time capture

operator. Among TURTLE temporal operators, only the

fixed delay operator has a counterpart in UML 2.0. The

three other TURTLE operators do not. TURTLE enables

description of time intervals and timing uncertainty, a

feature of high importance for communication architecture

validation.

The TURTLE profile has indeed been developed with a

priori validation in mind, i.e., with the objective to offer to

real-time system developers a formal support to validate

their design as soon as possible in the system’s design

trajectory. TURTLE is supported by a toolkit made up of

TTool [39] and RTL [34]. TTool integrates a TURTLE

diagram editor, a TURTLE diagram syntax checker, and a

RT-LOTOS code generator. The generated code can be

given as input to RTL throughout the selection of debug-

ging-oriented and exhaustive simulation options offered by

the TTool interface. The press-button approach of TTool

makes RT-LOTOS and RTL hidden to users.

The paper discusses the lessons learned in applying

TURTLE to the design of a space-based embedded software.

The case study particularly illustrates the use of reachability

analysis. This technique faces the well-known state explo-

sion problem. So far, RTL can generate graphs of several
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thousand states. We plan now to develop a new validation

tool that might generate graphs of several millions states.
In conclusion, we plan to make the TURTLE profile

evolve to describe distributed systems [3] and to take into

account the latest development of UML 2.0 at OMG.
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Francophone sur l’Ingénierie des Protocoles (CFIP ’2000), pp. 151-
166, 2000.

[22] J. Hooman, “Towards Formal Support for UML-Based Develop-
ment of Embedded Systems,” Proc. PROGRESS Workshop Em-
bedded Systems, Oct. 2002.

[23] C. Jard, J.-F. Monin, and R. Groz, “Development of Véda, A
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