Development of a Verified Erlang Program for
Resource Locking

Thomas Arts and Clara Benac Earle

Ericsson, Computer Science Laboratory
Box 1505, 125 25 Alvsjo, Sweden

E-mail: {thomas,clara}@cslab.ericsson.se

Abstract. We have designed a tool to simplify model checking of Erlang
programs by translating Erlang into a process algebra with data, called
BPCRL. As a case-study for this tool we focused on a simplified locker
implementation after the locker that is present in the control software of
the AXD 301 switch. The translation algorithm has been developed to
handle this production-like code. We use the tools accompanying pCRL
to generate the transition systems from the specification generated by our
tool. With the C&£SAR/ALDEBARAN tool set, we verified properties for our
case-study.

1 Introduction

Within Ericsson the functional programming language Erlang [1] is used for the
development of concurrent/distributed safety critical software. Faced with the task
of creating support for the development of formally verified Erlang programs, as a
subtask we have built a tool to enable the use of model checking for such programs.
The tool is aimed to be accessible for Erlang programmers without forcing them
to learn an extra language (specific for the model checking tool that is used).

Using model checking for the formal verification of software is by now a well
known field of research. Basically there are two branches, either one uses a spec-
ification language in combination with a model checker to obtain a correct spec-
ification that is used to write an implementation in a programming language, or
one takes the program code as a starting point and abstracts from that into a
model, which can be checked by a model checker. Either way, the implementation
is not proved correct by these approaches, but when an error is encountered, this
may indicate an error in the implementation. As such, the use of model checking
can be seen as a very accurate debugging method.

For the first approach, one of the most successful of the many examples is the
combination of the specification language Promela and model checker SPIN [14].
The attractive merit of Promela is that this language is so close to the implemen-
tation language C, that it becomes rather easy to derive the implementation from
the specification in a direct, fault free way. In case one uses UML as specification
language and Java or C as implementation language, one might need more effort
(apart from the fact that model checking UML specifications is still an unsettled
topic).

Also with respect to the second approach there are many examples, among
which PathFinder [13] and Bandera [6] starting from Java code. There exists even
an earlier attempt to use model checking on Erlang code by Huch [15]. Our ap-
proach could be added to this list, probably with the difference that we use the
knowledge of the occurring design patterns used in the Erlang code to obtain
smaller state spaces (cf. [2]). We follow a similar approach to the translation of
Java into Promela, checked by SPIN [13]; however, we translate Erlang into yCRL
[12] and model check by using C£SAR/ALDEBARAN [9]. Compared to Huch’s ap-
proach we focus much more on the data part and do not abstract case statements
by non-deterministic choices, but really check the data involved. For that rea-
son we can check mutual exclusion and absence of deadlock for a small locker
program that will be the leading example of this paper. If one abstracts from
the data in this program in such a way that case statements are translated into
non-deterministic choices, then mutual exclusion is no longer guaranteed and can
hence not be shown.

One of the main goals of our approach is to be able to deal with Erlang code
that is written according to the design principles as advocated within Ericsson.
Our starting point was a distributed locker algorithm as is running in Ericsson’s
AXD 301 ATM switch [4]. We started re-designing this locker in such a way that
formal verification guides the development. In this paper we illustrate our ideas
with one of the first locker prototypes in this development process.

In Section 2 we describe the locker algorithm that we consider in this paper.
We show in Section 3 how this locker is implemented in Erlang, using the generic
server and supervision tree design principles.

The Erlang modules can automatically be translated into a pCRL specification
and in Section 4 we describe our contribution in the form of this translation tool.
Verification of the pCRL specification for the classical properties: no deadlock,
mutual exclusion and no starvation, is described in Section 5. In the conclusion
in Section 6 we discuss the merits and shortcomings of our approach and put it
in context with respect to other approaches.

2 Designing the algorithm

The case-study we have at hand in this paper is a classical locker algorithm.
Several processes want access to one or more resources from a given, finite set. A
locker process is playing arbiter, responding the requests for access to resources
in such a way that all clients eventually get their demanded access, but no two
clients get access to the same resource at the same time. The client sends one
message containing all resources that are requested, waits until access is granted,
accesses the resource, gives the resource free and starts asking for other resources
again.

Several fault situations are easy to imagine and these should guide us towards
solutions for the most rudimentary problems. We describe the analysis of these sit-
uations as a pre-study for the actual implementation. However, with the tools we
discuss later, one could find these results in an experimenting fashion: implement
an idea in Erlang and obtain all possible runs of the program automatically.

Here we discuss the fault situations, using a special notation for scenarios. A
scenario is a sequence of states of the locker process. A state of the locker contains
a fixed set of resources and for every resource we have three ‘fields’: the name of
the resource, the client that has access to the resource, and the list of clients
that want to access the resource. As an example of this notation, we sketch a
possible starvation situation. There are two resources, A and B, and three clients,
1, 2 and 3. The algorithm is such that if a demanded set of resources is available
for a certain client, then this client gets access to those resources. Here, client 1
requests resource A, client 2 requests resource B, and thereafter client 3 requests
both resources. Client 1 releases and requests resource A again, client 2 releases
and requests B again. A continuous operation in this way causes client 3 to be
waiting for ever to get access, i.e. client 3 is starving.

A B
access 1
pending
access 1 2
pending
access 1 2

pending 3 3

[\V]

access
pending 3 3

no

access 1
pending 3 3

access 1
pending 3 3

access 1 2
pending 3 3

This scenario indicates that in general one has to pay a price for optimal resource

usage: viz. a possibility for starvation. Clearly one does not want starvation in the
program, but one still may accept it in the algorithm. If one has good evidence to
believe that resources are not accessed very frequently, then the above situation
might be very unlikely and one might choose to loose performance for client 3 in
favor of a better over-all performance.

We, however, assume that the frequency of access to the resources can be rather
high and that the different clients may have overlapping demands for resources!.
Therefore, we need to decide upon a solution to this problem. We choose to use
a ‘first come, first serve’ strategy. A resource is only available if there is no client

L If client 1, 2 and 3 would all ask for the same resources, this starvation problem would
not occur.

waiting for it, i.e., both access field and list of pending processes for the demanded
resource is empty.

A B A B
access 1 2
pending 3,1 3
access 1 2 3 3
pending 1
access 1 2 3 3
pending 3 3 1 2
access 2

pending 3 3

Thus, in this solution, a client could have to wait for its resources, even if all
demanded resources are unused at the moment. Some optimizations are possible,
for example to time-stamp the pending processes and give access to the resource
if the first of the pending processes has not yet waited a certain amount of time.
This is more involved and we do not consider this or other optimizations in this
version.

The action upon a client requesting for a list of resources will be:

— Look whether all demanded resources are available. A resource is available if
no other process is accessing it, and there are no processes pending for this
resource.

— If all demanded resources are available, then the client is notified and is given
access to all resources.

— If any of the demanded resources is unavailable, then for every demanded
resource, the client is placed at then end of the list of pending processes.

The client is assumed to release all the previously demanded resources by only
one release message; upon a release, the client is removed from all resources and
a calculation is performed to see whether one of the other clients can get access
to its demanded resources. Similar to the reasoning above, we cannot give access
to just any client for which all demanded resources are available. Even for the one
resource case it is clear that we need to take a ‘first come, first serve’ policy. Thus,
with only one resource and several clients, we would give the client at the head of
the pending list access to the resource. However, one could wonder what happens
if there are two resources and both have one or more clients in their pending list.

A B
access 1 1
pending 2 3,2

Here we need an algorithm to decide whether client 2 or 3 gets access to the
resource after that client 1 releases. The possibilities we could think of boil down
to the construction of one list of the pending processes where the first client in this

list for which all demanded resource are available gets access to these resources
(i.e., is notified and removed from the pending lists and put into the access ‘field’).
Several ways of constructing this combined list are:

1. Merge all list and sort them on the client identifier. This means that the client
with lowest identifier has highest priority. Hence, starvation is an obvious
problem. When, in the above example, client 2 is given access and client 1
requests both resources again, then by the time client 2 releases, client 1 will
be granted access. Repeatedly having 1 and 2 requesting access will cause 3
to starve.

2. Append all lists (and use a small optimization by a unique append, i.e. only
appending the clients that are not yet present in the list). Clearly the same
starvation problem as above occurs for this solution.

3. Construct a list that contains only those heads of the pending lists that do
not occur in one of the tails of a pending list.

The reason why this can work is that we have the clients always request all the
resources at once. Hence, the clients are put in the pending list in a ‘sorted’
manner. A situation like

A B
access
pending 2,3 3,2

cannot occur in this setting, since either client 2 follows client 3 in all pending
lists or vice versa. There might be clients in between, but the order cannot be
reversed.

4. Add a time-stamp to any incoming request and save the client information
with this time-stamp. The list is now obtained by appending and sorting the
time-stamps.

An equivalent approach is to separately store the list of requesting clients and
use the order in which they requested as the priority order for giving access.

We have experimented with both version 3 and 4 and present version 3 here.

3 Locker Implementation in Erlang

The ideas sketched in the previous section are now to be implemented in Erlang.
Clients and locker are implemented as Erlang processes that communicate with
each other by message passing. The locker is implemented as a server, follow-
ing one of the generic design patterns given in the Erlang distribution [8]. This
generic server design pattern prescribes an implementation of the locker as a so
called callback module. The actual loop that saves the state of the server and
receives messages is implemented in a standard module and whenever a message
arrives, the appropriate function in the callback module is executed. These call-
back functions return a new state and a possible reply message, which is by the
standard module part send to the caller. In this way, the generic server prin-
ciple implements synchronous communication on top of Erlang’s asynchronous
communication primitives. For a detailed operational semantics we refer to [2].
The flow of control between clients and locker should be as follows:

— a client requests the locker an exclusive lock on several resources,

— if all requested resources are available, the locker gives an ok to the client,

— when the client has performed the necessary operations on the resources, it
notifies the locker by a release of the locks.

The locker schedules the clients on a first-come first-served basis as explained in
the previous section. Note, however, that this scheduling is relative to the resource.
A client that requests a resource that is taken, may be served later than the client
requesting another, free resource, after it.

The client is programmed as a very simple process, just using the generic
server call principle to communicate with the locker. The gen_server:call func-
tion hides synchronized communication with the server. The second argument
of this function contains the message that is sent to the server, which calls
the handle _call function in the callback module. The client is suspended until
handle_call returns a reply value, which is passed by the server to be the return
value of the gen_server:call. For this particular client we are not interested in
the actual returned value and just use it for synchronization. The spawn_link
function is used to create a new process, in this case running the loop function
with the arguments Locker and Resources.

-module(client).

start (Locker,Resources) —>
{ok,spawn_link(client,loop, [Locker,Resources])}.

loop(Locker,Resources) ->
gen_server:call(Locker,{request,Resources}),
critical_section,
gen_server:call(Locker,release),
loop(Locker,Resources).

The atom critical section between the two synchronous calls for request and

release implements the so called critical section. In a real implementation some

critical code should be placed in this critical section, but we abstract from that.
To implement the locks we use a record with the following fields:

— resource: the name of the resource,
— exclusive: the client which is using the resource,
— pending: a list of clients that want to access the resource.

The Erlang program for the locker process is given by a generic server callback
module that accepts the messages {request,Resources} and release.

-module (locker) .
-behaviour(gen_server).

-record(lock,{resource, exclusive = none, pending = []}).

init (Resources) ->

{ok,map(fun(Resource) ->
#lock{resource = Resource}
end, Resources))}.

The init function returns for every resource in a given list Resources a record
of type lock where the first field contains the name of the resource and the other
two fields are instantiated with the (default value) empty list.

handle_call({request,Resources}, Client, Locks) ->
case check_availables(Resources,Locks) of
true ->
{reply, ok,
map (fun(Lock) ->
update_exclusive(Lock,Resources,Client)
end, Locks)};
false ->
{noreply,
map (fun(Lock) ->
add_pending(Lock,Resources,Client)
end, Locks)}
end;

handle_call(release, Client, Locks) ->
NewLocks =
map (fun(Lock) ->
release_lock(Lock,Client)
end, Locks),
Locks_updated =
send_reply (NewLocks,all_pendings(NewLocks)),
{reply, ok, Locks_updated}.

The generic server automatically supports every message in a gen_server:call
with the process identifier of the sender and a tag (a kind of time stamp to
distinguish different messages from the same client). When obtaining a request,
the locker stores the combination of identifier and tag as a pair in the pending list
(or exclusive field). When releasing, a new tag is used for the pair (since it is a
new message) and removing the pair from the list should be done by only looking
at the process identifier. Note that the locker cannot remove the tag already at
the moment of receiving the request of a client, since the tag is necessary for
a reply, as implemented by send reply. This function checks for every pending
client whether its resources are available. If so, the client is notified and the locks
are updated.

send_reply(Locks, []1) ->
Locks;
send_reply(Locks, [Pending|Pendings]) ->
case obtainables(Locks,Pending) of
true ->

gen_server:reply(Pending,ok),
send_reply (map (fun(Lock) ->
promote_pending(Lock,Pending)
end, Locks),
Pendings) ;
false ->
send_reply(Locks,Pendings)
end.

These are the only functions that contain side effects, viz. the sending and receiv-
ing of messages. All other functions are side-effect free and easy to implement.

In addition to client and locker code we also have implemented a so called
supervision tree, a commonly used design principle to monitor the individual pro-
cesses [8]. Basically the code for the supervision tree describes a process that is
started, which monitors two processes, one is the locker, the other a new supervisor
process, which monitors the clients. The code describes what should happen if one
of the processes crashes and is instructed to restart clients and locker processes.

All processes together can now be started with only one function call, viz.
supervisor:start, with in the arguments the number of clients one wants to
start it with and the list of resources one considers.

4 A uCRL specification

The Erlang modules described in the previous section are automatically trans-
lated into one uCRL specification. The data is directly translated from Erlang to
pCRL without any abstraction. The specification is used to generate the transition
system, which is used for model checking.

The translation is performed in two steps. First we apply a source-to-source
transformation on the level of Erlang, resulting in Erlang code that should be
executable in the same way as the original, but is optimized for verification. Second
we translate the collection of Erlang modules into one uCRL specification. The
advantage of having an intermediate Erlang format is that programmers can easily
understand the more severe manipulations of the code and therefore are better
able to understand the smaller step to f#CRL notation. Moreover, the intermediate
code can be input for other verification tools.

4.1 Erlang to Erlang transformation

The source-to-source transformation of the Erlang modules contains many steps
and we mention only the more relevant ones, skipping trivial steps like removing
the debug statements in the code.

We use the supervision tree structure to obtain a finite set of initial processes.
We start the translator with the same arguments as that we would need to build
and start the supervision tree. This allows us to bind the number of clients and
resources to a certain value. For every different number we need to run a different
transformation. The supervisor processes are taken away and the new initialization

function only creates the processes of locker and clients. The handling of a process
that crashes is left to be detected in the transition system.

We replace (a predefined set of) higher order functions like map by a first-order
alternative, since the target specification language does not support higher order
functions. Thus, a call map (fun(X) -> £(X,Y1,...,¥Yn) end, Xs) is replaced by
a call to a new function map_f (Xs,Y1,...,¥n) which is defined and added to the
code as

map_f([],Y1,...,Yn) ->
0;

map_f ([X|Xs],Y1,...,Yn) ->
[£(X,Y1,...,Yn) | map_f(Xs,¥1,...,¥n)].

In the next phase we determine all functions with side-effects, i.e., those func-
tions that do send or receive a message or call a function doing so. This is a
call-graph problem where we keep a list of side-effect free functions in the library
modules. The gen_server:call function and handle call function are typically
added to the functions that contain side-effects.

The most involved operation is now to get rid of the use of return values of
functions with side-effects. In yCRL a process may have side-effects, but has no
return value; on the other hand, a function in yCRL has a return value, but
may not contain a side-effect. In case an Erlang function (in)directly causes a
side-effect, its computation part and side-effect part have to be split. For the
source-to-source transformation, it suffices to make sure that all return values are
matched in a variable and to provide decomposition of the data structure of this
return value by means of side-effect free functions. Currently we can deal with
basic data types and the compound data types lists, tuples, records and mixtures
of these.

4.2 Erlang to pCRL transformation

Given the Erlang modules that are transformed as described above, we generate
one uCRL specification from these modules. Erlang is dynamically typed whereas
#CRL is strongly typed. Therefore, we construct in uCRL a data type ErlangTerm
in which all Erlang data types are embedded. All side-effect free functions are
added as a term rewriting system with this ErlangTerm data type. A standard
transformation is used to translate Erlang statements into the term rewriting
formalism. In addition we have to define an equivalence relation on data types,
which is rather involved. In this particular case with only 14 different atoms and
7 data constructors, 440 equations are reserved for comparing data types, roughly
two third of the whole specification.

With respect to the part with side-effects, we benefit from the fact that the
Erlang to Erlang transformation was generated for a specific configuration and
contains all information on which processes are started. This allows us to define
the initial configuration in the uCRL specification. The Erlang processes coincide
with the uCRL processes, where a non-terminating Erlang function describes the
main loop of the process in the Erlang case. However, when translating this loop,
we cannot translate recursive calls to Erlang functions with side-effects in a direct

way to wCRL. In gCRL computation and side-effects cannot be intermingled.
The solution is found in the definition of a separate yCRL process implementing
a call stack. Communication with this call stack is used to return the values of
the computation.

Certain restrictions with respect to the pCRL functions have to be taken into
account; there is only one function clause possible, with only sequential com-
position, non-deterministic choice, and an if-then-else statement for control. We
translate case statements and pattern matching by using the if-then-else con-
struct and calls to newly introduced process functions. The handle_call and
gen_server:call are translated into communicating actions in gCRL. The dif-
ferent clauses of the handle_call function are combined in one wCRL loop, using
the state mentioned in the arguments of handle_call as state of the loop. The
unique process identifiers used in Erlang are integrated as an argument (Self) of
all process calls and instantiated by the first call in the initial part.

comm
gen_server_call | handle_call = call
gen_server_reply | returned = return

proc locker(Self: Term,Locks: Term) =
sum(Client: Term,
sum(Resources: Term,
handle_call(Self,tuple(request,Resources),Client).
(gen_server_reply(Client,ok,Self).
locker (Self,
map_update_exclusive(Locks,Resources,Client))
<| eq(check_availables(Resources,Locks),true) |>
locker(Self,
map_add_pending(Locks,Resources,Client))))) +
sum(Client: Term,
handle_call(Self,release,Client).
send_reply(Self,map_release_lock(Locks,Client),
all_pendings(map_release_lock(Locks,Client))).
sum(Locks2: Term,
rcallresult(Self,Locks2).
gen_server_reply(Client,ok,Self).
locker(Self,Locks2)))

send_reply(Self:Term,Locks:Term,MCRLArgl:Term) =
(wcallresult (Self,Locks)
<| eq(equal(MCRLArgl,nil) ,true) |>
(gen_server_reply(hd (MCRLArgl) ,ok,Self) .
send_reply (Self,
map_promote_pending(Locks,hd (MCRLArgl)),
t1(MCRLArg1))
<| eq(obtainables(Locks,hd(MCRLArgl)) ,true) |>
send_reply(Self,Locks,t1(MCRLArgl))))

After this automatic transformation, we can verify a specific configuration,
in which the clients repeatedly request all available resources. In order to per-
form several verifications at once, in particular to verify all situations in which
the clients repeatedly request an arbitrary (varying) subset of the resources, we
modified the pCRL specification by hand. We used uCRL’s possibility to express
non-determinism for this. The yCRL specification is used to generate a transition
system. The number of states for the generated systems depends on the configu-
ration. We tried several configurations, up to three clients and four resources, the
largest resulting in about a million states. Creating such large state spaces takes a
few hours on a single processor workstation. Even though this is time consuming,
improving this has not highest priority; we plan to focus on small examples in the
development phase of the software. Larger examples take more time, but so does
testing. The development of on-the-fly model checking and parallelization of the
model checker might increase performance dramatically in a later stage.

5 Verifying the model

The three properties we want to verify for this locker are: absence of deadlock,
mutual exclusion and no starvation. All are classical properties that are well stud-
ied in literature. The first is trivially shown, the second and third need the right
formulation and the support of a model checker. Mutual exclusion is a safety
property, whereas no starvation is a liveness property. The safety properties are
easier to check than the liveness properties, as is explained later and depends on
the fact that some infinite traces in the specification are excluded in a real Erlang
execution because of the underlying Erlang scheduler.

5.1 Mutual Exclusion

The property for mutual exclusion should express that a resource can only be
accessed by one client at the same time. In order to show this, we added two
actions to the yCRL specification use and free with a resource as an argument.
As soon as we enter the critical section, the use action is applied for all resources
that the client requested. Before leaving the critical section, the resources are
given free again. We use the macro

UNTIL(a1,a2) = [-*.a1.(—az2)".a;1] false

stating that ‘on all possible paths, after an a; action, any other a; action must be
preceded by an a, action’. The mutual exclusion property depends on the number
of resources. In fact we need a different formula for any number of resources. For a

system with two resources, 71 and r2, the mutual exclusion property is formalized
by

MUTEX(r1,r2) = UNTIL(use(r1), free(r1)) A
UNTIL(use(rs), free(rs))

A new version of the model checking tool within the CSAR/ALDEBARAN toolset
[9] is under construction and with this new release, we should be able to formulate
one property for an arbitrary number of resources.

The mutual exclusion property has been shown for configurations with 2 re-
sources and 2 and 3 clients where the clients repeatedly request an arbitrary (none
empty) subset of the resources as well as for the situation with 4 resources and
3 clients. The latter consisted of a model with a million states and it took a few
hours to verify the mutual exclusion property. A recently developed parallel model
checker has been used to check our largest transition system. The few hours have
been reduced to nine minutes on about fifty processors [5]; a promissing develop-
ment for scaling this approach.

5.2 Starvation

Proving that there is no starvation for the processes turned out to be a problem.
This is caused by the fact that there are traces in the transition system that
do not correspond to a fair run of the Erlang program. The Erlang processes are
scheduled by the use of a certain scheduler and in the model we have (on purpose)
abstracted from scheduling and consider all possible sequences of actions, even
those in which one single processes gets all execution time.

We want to base our no starvation property on the notion of an action is
eventually followed by another action. In particular, the request of a resource is
eventually followed by using that resource. One way of formulating this property
is:

EvTFOoLLOW(ay,az) = [-*.a1].uX.({-)true A [-az2]X)

We used this in a context where we instantiated the actions a; and as by the
request for a resource and the entering of the critical section, respectively. For
the latter, we use the confirmation by the locker, i.e., the returned ok message.
The actual property, like in the mutual exclusion case, depends on the number of
clients and resources. For three clients and two resources we have:

NO_STARVATION(Cl,027037i1,i2,i3) = (1)
EvTFOLLOW(c1,41) A EVIFOLLOW(ca, i2) A EVIFOLLOW(c3, i3)

Unfortunately, this property does not hold, even for simple scenario’s where
definitely no starvation occurs. As an example consider the following simple sce-
nario with three clients and two resources. The clients repeatedly request only one
resource, where client 1 and 2 request A, and client 3 requests B. In such a scenario
there is no starvation, since both clients may access their resource, release it and
request it again. In the yCRL specification we have the possibility of a loop in
which client 3 continuously requests and releases resource B. The clients request-
ing resource A simply do not get any scheduling time in this sequence. However,
in the Erlang program this loop is not present, because of the scheduler. Thus,
the problem is to disregard unrealistic loops in the transition system. Removing
such loops from the transition system, if we at all could find a way to do so, is

incorrect. In a realistic setting, such a loop could be executed a few times before
the scheduler enables the other processes. What in a realistic setting is excluded,
is the infinite traversal of only this loop.

We would like to weaken the EVTFOLLOW property, such that non-fair paths,
which exist in the model, but not in the implementation due to the scheduling
by the Erlang run-time system, are ignored. Because of limitations in the model
checking tool (evaluator 3.0) we need to express this property in alternation free u-
calculus. External advice was required to come up with the following reformulation
of EVTFoLLOW, describing that even if a loop exists before reaching as, it is still
possible (from every state of the loop) to reach a, after a finite number of steps
(modality (—*.az2)true).

EvTFOLLOW(aq,az) = [—*.a1.(ma2)*[{—"*.az)true

This property is weaker and in combination with Property (1) it holds for the
above mentioned scenario’s. Unfortunately, it is too weak, i.e., ignores loops that
should be considered. Property (1) with this weaker EVTFOLLOW holds for the
first scenario mentioned in Section 2 in which we have starvation in the Erlang
context. Recall that for that scenario, client 1 and 2 on their turn take priority
over client 3. Thus, there is an ignored loop with only actions of client 1 and 2,
although it causes client 3 to starve.

We need to be more precise in the kind of actions that we ignore in a loop and
which not. Thinking a little longer about this, it turns out that all actions may
appear in the loop. Neither a request nor a release of any other client should be
ignored. No matter with action one would like to ignore, there is always a plausible
scenario possible from which it is clear that one cannot ignore that action. Even
a whole loop should in principle be allowed, as long as it does not occur infinitely
often if other actions along the path are also enabled. In our opinion this goes
beyond the expressiveness of the logic we use.

Currently we investigate several possibilities to work around this problem, viz.
adding explicit scheduling to the pCRL specification, having the model checker
changed, or using a different logic (and model checker) that enables reasoning
with fairness.

One might wonder whether starvation is an important property at all, since
even if a theoretical starvation problem occurs, it might happen that in reality the
process always gets served. In regular implementations a timer is set after sending
a message and the starvation as such shows as a time out on the client site. This
time out is normally followed by a retry and as such the process might get served
after a few attempts. We experimented with that by adding such time outs and
removing the check for the pending list in the function check_available (which
leads to starvation for the scenario which was discussed in Section 2). Running
this program does not show a starvation at first sight. The client does get access
to the resource, occasionally. If we implement the clients with an access time of
say, 500 ms, in the critical section, then starvation will show up in the form of a
time out of some of the clients. The total number of served requests gets lower,
in particular for the clients for which we know that they theoretically starve.

Interesting in this context is that we only detected the performance problem
after sufficiently increasing the time spent in the critical section. Here one can

argue that testing would not have been sufficient and that the error could show
unexpectedly after having the software in use for a long time. Hence, we find
starvation an important property to verify.

6 Conclusions

The main contribution of this work lays in the development of an automatic
translation of a class of Erlang programs into gCRL. This enables a development
of Erlang programs that goes hand in hand with formal verification; leading to
formally verified programs. We do not expect smart abstractions or clever tricks
performed by the users of this tool, assuming from them a limited knowledge on
verification issues. We provide ‘push-button verification’ that fits in the existing
development cycle. As a leading example for developing our tool we used an
implementation of a locker algorithm. Verification of this locker algorithm has
only partly been successful. Absence of deadlock and mutual exclusion could be
proved, but it could not be shown effectively that the algorithm is starvation free.
It is subject to further research to find a way around this problem.

The number of states in our models was not much more than a million, such
that real performance problems were not encountered. It takes a while for a com-
plete verification, but a few hours is still considered acceptable in this stage. The
majority of the work is put in getting the specification right and formulating the
right properties. In this case, in particular for ‘no starvation’, we have spent much
time in the formulation of the, still not satisfactory, property.

We use an approach similar to PathFinder or the Bandera project [13,6]. It
would be interesting to see if a Java version of the same case study could easily
be handled by using those tools, but we have not found the opportunity to do so.
Running the model checking approach of Huch [15] directly on this example is
impossible, since that version does not support the generic server design principle.
We could change the program by removing this generic server implementation and
use a direct implementation in Erlang instead. However, the approach of Huch
would translate the choice whether to return an ok message to the client or to store
the client in the pending list, to be a non-deterministic choice. By abstracting away
the data in that way, mutual exclusion does not hold for the obtained transition
system.

Another approach to verification of Erlang programs which differs from model
checking is the use of a theorem prover for checking properties. The Swedish
Institute of Computer Science have in cooperation with Ericsson developed a
kind of theorem prover specially focussed on Erlang programs [3]. Advantage of
using this tool compared to the model checking approach are the possibility of
using the full p-calculus (instead of alternation free), the possibility to reason
over an unbounded number of clients and resources, and the completeness of the
approach, i.e., if a proof is given, it holds for the program and not only for the
specification. Since model checking allows an easier automation, we aim on using
this technique for prototyping and use the theorem prover approach for the version
we are satisfied with.

With this verification of the locker case-study we posted several questions for
further research and we solved several practical issues on the way. We continue

with adding features to the locker, such as shared locks and fault-tolerance, there-
with increasing the need for an even better translation tools.

Acknowledgements

We would like to thank Radu Mateescu and Hubert Garavel from INRIA Rhone-
Alpes, Izak van Langevelde, Jaco van de Pol and Wan Fokkink from CWI, and
Lars-Ake Fredlund and Dilian Gurov from SICS for taking part in the discussions
on this case study and supporting us with their advises.

References

[1] J.L. Armstrong, S.R. Virding, M.C. Williams, and C. Wikstrom. Concurrent Pro-
gramming in Erlang. Prentice Hall International, 2nd edition, 1996.

[2] T. Arts and T. Noll, Verifying Generic Erlang Client-Server Implementations. In
Proceedings IFL2000, LNCS 2011, p. 37-53, Springer Verlag, Berlin, 2000.

[3] T. Arts, G. Chugunov, M. Dam, T-A. Fredlund, D. Gurov, and T. Noll A Tool
for Verifying Software Written in Erlang To appear in: Int. J. Software Tools for
Technology Transfer, 2001.

[4] S. Blau and J. Rooth, AXD 301 — A new Generation ATM Switching System. Eric-
sson Review, no 1, 1998.

[5] B. Bollig, M. Leucker, and M. Weber, Local Parallel Model Checking for the Alter-
nation Free y—Calculus. tech. rep. AIB-04-2001, RWTH Aachen, March 2001.

[6] J. Corbett, M. Dwyer, L. Hatcliff, Bandera: A Source-level Interface for Model
Checking Java Programs. In Teaching and Research Demos at ICSE’00, Limerick,
Ireland, 4-11 June, 2000.

[7] CWI, http://www.cwi.nl/~mcrl. A Language and Tool Set to Study Communicat-
ing Processes with Data, February 1999.

[8] Open Source Erlang, http://www.erlang.org, 1999.

[9] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireau.
Capp (CmsAR/ALDEBARAN development package): A protocol validation and ver-
ification toolbox. In Proc. of the 8th Conf. on Computer-Aided Verification, LNCS
1102, p. 437440, Springer Verlag, Berlin, 1996.

[10] W. Fokkink, Introduction to Process Algebra, Texts in Theoretical Computer Sci-
ence, Springer Verlag, Heidelberg, 2000.

[11] J. F. Groote, W. Fokkink, M. Reiniers, Modelling Concurrent Systems: Protocol
Verification in wCRL. course lecture notes, April 2000.

[12] J. F. Groote, The syntax and semantics of timed pCRL. tech. rep. SEN-R9709,
CWI, June 1997. Available from http://www.cwi.nl.

[13] K. Havelund and T. Pressburger, Model checking JAvA programs using JAVA
PathFinder. Int. J. on Software Tools for Technology Transfer, Vol 2, Nr 4, pp.
366-381, March 2000.

[14] G. Holzmann, The Design and Validation of Computer Protocols. Edgewood Cliffs,
MA: Pretence Hall, 1991.

[15] F. Huch, Verification of Erlang Programs using Abstract Interpretation and Model
Checking. In Proc. of ICFP’99, Sept. 1999.

