
Global Scheduler Properties derived from Local
Restrictions

Thomas Arts
∗

IT-university
Box 8718, 402 75 Göteborg, Sweden

Juan José Sánchez Penas
LFCIA, Computer Science Department,

University of Corunha
Campus de Elvinha S/N. 15071, A Corunha,

Spain

juanjo@lfcia.org

ABSTRACT
The VoDka server is a video-on-demand system for a Span-
ish cable company. We look at the distributed scheduler of
this system. This scheduler enables that whenever a user
agent is asking for a certain movie, this request is trans-
ferred through the system and a set of possible play-back
qualities is returned to the agent. In case of a non-empty
set, the agent selects one and the movie is streamed to the
user.

The storage subsystem of the server is composed by a
hierarchy of different storage systems, i.e. disks, CD players
or tapes. These devices all have restrictions of which the
process controlling the device is aware of. A second layer of
processes controls a set of devices in one machine and has
restrictions, for example, the bandwidth of its connection.
A third layer may be further out in the network and serve
as a cache to store more popular movies.

Every process in the scheduler of the system has a func-
tion determining local restrictions, given the configuration
and present state of the system. We have built a tool to
construct complete models of several configurations. With
techniques from the area of formal methods (in particular
model checking) these models are used to determine global
properties of the system, such as the maximum number of
a certain class of movies that can be served in parallel.

1. INTRODUCTION
In a design, either concurrent or distributed, where one

has many processes that steer a certain functionality, one
often finds global properties of the system hidden in several
local properties of the running processes. This article pro-

∗Thomas was affiliated with Ericsson when the work de-
scribed in this article was carried out. Juan José was during
that time staying for a three months visit at Ericsson in
Stockholm with an FPU grant from the Ministerio de Edu-
cación y Cultura of Spain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGPLAN Erlang Workshop‘02 Pittsburg, PA USA
Copyright 2002 ACM 1-58113-592-0/02/8 ...$5.00.

poses a method to reveal these global properties by a kind
of exhaustive simulation of the system.

We demonstrate the method by means of a hierarchical
distributed video-on-demand server [5, 4] developed using
Erlang/OTP [1]. We concentrate on the implementation
of the scheduler, where there is neither global state nor a
global decision module. The local properties are restrictions
(on bandwidth and number of connections of disk drives,
CD players, tape storage devices and such), local scheduling
functions (filtering and admission policies) and cost related
functions (state of the component and resources still avail-
able).

Given only these local restrictions, and the rest of the con-
figuration of the system (number of levels and components
in each level), it is far from obvious to extract information
about the behavior and performance of the system. Answer-
ing questions such as how many users can watch ‘Star Wars’
at the same time, is virtually impossible without building
the actual configuration and testing this. Answers to such
questions, however, are what both the operator of the video-
on-demand server and the designers of the system are inter-
ested in. The former want to obtain information about the
capacity of the system, and the later are more interested in
knowing how the different distributed properties of the sys-
tem influence its performance, in order to be able to know
how to improve it (redesign and reconfiguration of the sched-
uler).

Many global properties of the system can be determined
by testing, but testing all possible scenarios of users that
request a movie is rather expensive. Moreover, one tests
a certain configuration. Performing experiments with new
drives, faster network connections and all that, increases the
costs even more.

We used techniques from the area of formal methods to
obtain a model of the scheduler from the Erlang source code
of the system. Formal methods, used in a rather unconven-
tional way, give us the possibility to construct a graph that
represents the system load when users request all possible
sequences of classes of movies. We developed tools to auto-
matically translate the Erlang code into the process algebra
µCRL [8], as an intermediate step for generating the perfor-
mance graph of the system. This graph is a reduction of the
state space generated (by existing tools [13, 14]) from the
µCRL specification.

In this graph the failures of requests are visible and there-
fore, the shortest path to a failure. This answers the ques-

tion on how many users are guaranteed to be able to be
served in parallel. Other questions, such as ‘How many peo-
ple can watch the movie A such that the system can still
serve B?’ or ‘Where should we store the movie A for be-
ing able to serve it to N users?’, can also be expressed as
properties of the graph.

We designed a user interface to guide the whole process:
choosing the parameters of the configuration, generating the
model, constructing the graph and translating human under-
standable global properties of the system into a temporal
logic formula. This formula is checked by model checking
techniques using the Caesar/Aldebaran Development Pack-
age [7] (using the formula as a declarative way of asking for
knowledge of the system and the checking techniques pri-
marily as efficient graph search techniques).

The article is organized as follows. In Sect. 2 we present
the scheduler architecture of the video-on-demand server.
In Sect. 3 our methodology of verifying global properties
of this scheduler is explained and described in detail. We
perform three major steps from Erlang source code to auto-
matically answering global properties of the system. These
three steps are described in Sect. 3.1-3.3. We conclude in
Sect. 4 with some remarks on the performance of the tools
we used/developed and indicate what problems are open for
future research.

2. THE VODKA SCHEDULER
The VoDka system is a hierarchical distributed multime-

dia server. By using a multimedia client, the user can re-
quest from the system a media object (MO) in several possi-
ble streaming protocols. The main goals during the system
development were to create a low cost, scalable, very flexible
and adaptable (to the underlying network architecture) so-
lution, besides of the traditional requirements for this kind
of systems, such as fault tolerance, massive storage capacity,
and being able to serve high bandwidth objects to a a high
number of concurrent users.

The system’s flexible architecture is based on a hierarchy
of specialized levels that can be combined in different ways,
depending on the needs for a given deployment of the server.
A common configuration of the system architecture would
be: a massive storage level ; one or more cache levels, that
are going to reduce the performance requirements (i.e. the
response time or the bandwidth) of the lower levels; and
a streaming level, that implements the protocol adaptation
between the server and the user client. The software of
the system has been developed using Erlang/OTP, and it is
deployed over an architecture of GNU/Linux based clusters
of commodity computers.

In Fig. 1 the general architecture of the system for a linear
configuration is shown. The boxes in this figure correspond
to an Erlang process. Each of the levels is composed by a set
of software components (most of them are Erlang gen server
processes) with a standard API. On top of the generic server
based architecture, a supervision tree is constructed for pro-
viding fault tolerance. The system can roughly be divided
in three levels: storage level, cache level and streaming level.
Any storage level is composed by a storage scheduler and a
hierarchy of storage devices grouped by one or more storage
groups. The storage level is connected to the streaming level,
but one or more cache levels may be in between them. The
structure of the cache level is similar to that of a storage
level; only logically they differ, since media objects are dy-

levels
n cache

Storage

(TAPE)
Driver

Storage
Driver
(File)

Storage
Group

(HTTP)
Driver

StorageDriver
(File)

Cache Cache
Driver
(File)

Frontend
HTTP

Frontend
HTTP

Streamer
HTTP

H.263

RTP

Group
Stream Streaming

Sched
Storage
Group

Storage
SchedSched

Cache

Group
Cache

Monitor Monitor

Monitor

VODKA_slave VODKA_slaveVODKA_slave

VODKA

Figure 1: Configuration example for the architec-
ture of the video-on-demand system

namically copied to it and removed after use. The streaming
level has a hierarchy of components implementing the adap-
tation to the streaming protocols accepted by the system
(HTTP, RTP, H.263, etc.). The processes in the streaming
level create and supervise all the processes needed for per-
forming the actual transmission of data through the system.

All the processes of the system have local restrictions, cost
functions and decision algorithms, and all these configura-
tion values are going to determine the distributed scheduling
of the multimedia server.

Whenever a user requests a given MO with a concrete
quality (bandwidth), this request is received in the stream-
ing level and propagated trough all the levels of the system.
If the MO can be provided by a given level, because the ob-
ject is stored there and it has the resources left to provide
it, then this information is returned. The scheduler is in
charge of elaborating a list of candidate providers, with an
associated cost, that is going to be sent back to the upper
levels of the hierarchy. Finally, after filtering the options in
the different levels on the way back to the user, either a fail
or the opportunity to play the MO is replied.

In this paper a method is described to automatically de-
rive the global scheduling performance properties of the sys-
tem from the local restrictions on the scheduling subsystems.
We concentrate on configurations of VoDka in which we have
one streaming level and one storage level without any cache
level. One may argue that a cache level behaves like a stor-
age level in our performance analysis, since we consider in
the storage level all possible distributions of the media ob-
jects over the devices (i.e., also copies of the same object
on multiple devices). For an average-case scenario, the dy-
namic behavior of the cache may become interesting, but for
a worst-case scenario, where all users start asking for a set
of movies at the same time, the cache can be seen as static
storage.

3. FROM LOCAL RESTRICTIONS TO
GLOBAL PROPERTIES

The goal of our work is to implement a tool that ana-
lyzes an Erlang system in order to obtain knowledge on the
behavior of the system. In particular we aim to derive in-
formation that is difficult or expensive to obtain by testing.
In the case-study at hand, we are interested in the perfor-
mance of several configurations of the video server, without
actually building all possible configurations. Moreover, we
would like to obtain some insight in the behavior, such that

mCRL
Erlang to mCRL to

Checker
mCRL File State Graph

Performance Questions

Erlang
Source Code

(levels, devices, restrictions,...)
Configuration High Level

Graphical User Interface

Model
State Space of the System

Global Properties

Figure 2: Proposed three steps methodology: from
Erlang to global properties

we get an idea on how to improve the software.
The methodology we use is based on the principle of gen-

erating the full state space of the system, i.e., we generate a
graph where the vertices represent all possible states of the
system and the edges express which events cause the system
to go from one state to the other.

We want to obtain this state space directly from the source
code of the system. In more classical approaches in literature
one often uses a formal specification of a system, normally a
manually constructed abstraction of the system. The advan-
tage of the use of Erlang is that we have a rather high-level
of abstraction already, such that we can use the source code
as our starting point. However, even the Erlang source code
would contain too many details to make it feasible to gener-
ate the full state space. We really build upon the existence of
design patterns, like the supervision tree and generic servers
that hide a lot of the details.

We explore in particular the fact that the system consists
of generic servers. Every generic server has an explicit state
defined: the state is passed as a parameter in the call-back
functions. Process state information, like the actual memory
on the heap, the content of the message buffer and such is
hidden for free. The generic server is an abstraction for
debug features that production code typically is attached
with. It is an abstraction for the handling of shutdown,
code replacement and such. By concentrating on the call-
back functions for handling messages, one concentrates on
the basic functionality of the server and abstracts from a
lot of standard features. The full state space of a system
consists therefore of the combination of all possible states
that can occur in the state parameter of a call-back function.
This is a real reduction and in many practical examples it
is a finite state space.

The events in the system are the messages the particular
servers receive and reply/send. In our example the messages
are requests for media objects that are passed from one level
to the other, and a list of choices propagated in return. As
long as the list of media objects is finite, this results in a
finitely branching graph. However, in case of a realistic num-
ber of movies, this would be an enormous graph, impractical
for our purposes. We realized that the level of detail on the
specific movie is unimportant for the analysis of the sys-
tem. What is important is that it is a media object that
is stored on the first disk, or that it is an object stored on
both disk and tape. Hence, we look at configurations of the
system in which we instantiate our storage devices with ab-
stract objects m1, m2, etc. Typically, we have one object
per combination of devices. Thus, there is one object that is
both on tape and on disk; one object only on tape, one only
on disk, etc. The real distribution of movies is a function
from media objects to abstract media objects. The user of
our tools can therefore still ask the question: “Is it possible

Figure 3: The graphical user interface

to have 30 users watch ‘Star Wars’ at the same time?”. The
abstract object is computed and the question translated.

As a real advantage of these abstract media objects, we
get for free that we can answer the user: “No this is not
possible, but if you put one extra copy on CD player 4, then
this is possible”. We just try to answer the question for all
possible abstract media objects and determine the difference
between the given abstract object and the abstract object
for which it succeeds.

The analysis tool consists of three parts that are connected
by a graphical user interface (GUI). First, the user interface
lets the user select a configuration (cf. Fig 3), i.e. the levels
in the system, the storage devices with their limitations and
the media objects stored on each device. The interface then
calls our translation tool that translates the system with
this particular configuration to a µCRL specification (Sect.
3.1). Second, the user interface activates tools to efficiently
generate the state space and reducing it (Sect. 3.2). Third,
several properties are presented in the user interface that
can be checked automatically using the underlying model
checker and some gluing software (Sect. 3.3).

3.1 Erlang to µCRL
In order to generate a state space for an Erlang system,

one needs to have a state space generation tool, i.e., a tool
that can produce all possible runs of the system. Instead
of creating such ourselves, we decided to use a tool that
was demonstrated to be efficient for a language reasonably
close to Erlang. These tools typically exist for specification
languages like process algebras, such as LOTOS [12] and
µCRL.

The advantage of a process algebra language over a lan-
guage like Promela [11] is that the translation from Erlang
to the process algebra is easier to establish: the data part of
the process algebras is based on similar rewriting semantics
as we see in functional languages. Moreover, in the process
algebra attempt one is free to use unbounded data struc-
tures, like lists and natural numbers, in the specification. If
the actual use of these data structures in the program turns
out to have a bounded size, then one is able to generate a
finite state space. However, one need not decide on before-
hand what the maximal size of these data structures is. For
Erlang programs it is quite often the case that lists have a

Graphical User Interface

Configuration
(levels, devices, restrictions,...)

.erl
compiler

.mCRL

.mCRL

MO List and
bandwidth

compiler
etomcrl non−det.

user process
builder

Erlang Source Code
with a mCRL like structure

mCRL code with
deterministic behavior

mCRL code with
non−determinism in

the user process

.erl

Original Erlang Source Code

.erl

etoe

.erl

modifiers

Figure 4: From Erlang to µCRL

fixed maximum length during all possible executions of the
program, but that this length differs for different configura-
tions in which the program is used. This fits seamlessly in
the process algebra framework.

In order to use the state space generation tool for µCRL,
a ‘compiler’ had been developed in an earlier project [2]. At
the time this compiler was developed, we chose for µCRL
over LOTOS, because we had more experience with it [3]
and we were impressed by the little redundance it produced
in the generation of the state space. The language µCRL
and LOTOS are very similar though. The compiler has been
constructed in such a way that it should be rather easy to
create a LOTOS back-end for it.

In Fig. 4 the translation from Erlang to µCRL is sketched.
The first two steps are performed with the compiler that was
developed for the earlier project. The last step is a small
modification to the created µCRL code to obtain a non-
deterministic user process. Here we summarize the basic
principles of the compiler and explain the last step in more
detail.

Serious Erlang software is built upon the OTP design prin-
ciples. Large Erlang systems have about eighty percent of
their processes implemented as servers, using the generic
server design pattern. All processes are put together in a
supervision tree. Other frequently occurring processes are
using the generic finite state machine or the event handler
design pattern. The nice thing from a verification point
of view is that the use of these design patterns make the
state of the process explicit (in an argument of the func-
tion calls). Moreover, a lot of details can be omitted in the
call-back functions, since they are provided once and for all
in the generic implementation. For example, debug features
are provided in the design pattern and need not be imple-
mented in the call-back module; standard error handling is
provided, and so on. Basically the few hundred lines of code
that the generic server consists of would more or less be re-
used in all implementations, if such a generic solution was
not provided. The semantics of the generic servers is embed-
ded in the translation tool, such that a smarter translation
can be produced than when we would analyze arbitrary Er-
lang code.

The Erlang to µCRL compiler is meant for systems that
consists of servers that are implemented using the generic
server design pattern and clients (that might be servers as
well) that are restricted to communicate via the generic
server API (i.e., gen server:call etc.).

A set of Erlang modules implementing the servers and
clients forms the input of our compiler. In Erlang the pro-
cesses implemented by these modules can be dynamically

created and normally a supervision tree will be used to initi-
ate that. In µCRL we have to statically assign the processes
that we consider, thus we need to know them on beforehand.
This is achieved by demanding the natural design choice that
all servers and clients are a child in a supervision tree that
has to be provided as input as well. The first task for the
compiler is to symbolically evaluate the supervision tree for
a given set of arguments (determining the configuration) to
find the processes and their initial arguments that are used
in the system.

After computing the set of processes in the system, every
module implementing one of these processes is translated.
These processes are either simple clients or arbitrary com-
plex generic servers. We use the fact that the message buffer
of these servers is read in a fifo order. The language µCRL
has synchronous communication and buffers are not pro-
vided in the language. The compiler constructs a process
acting as a fifo buffer for each server in the system. Clients
communicate with the buffer to send a message and the
server communicates with the buffer to read the first mes-
sage in the queue. In case two clients have the possibility
to concurrently send a message to the same buffer, this will
result in the state space as two different paths, one where
the first client sends followed by a send of the second client
and the other path where the second client sends followed
by the first client. The server then executes the appropriate
handle call, handle cast or handle info and replies an answer
to the client. This reply does not end up in the buffer; the
generic server semantics prescribes that the client is blocked
waiting for an answer from the server. This is implemented
in Erlang by scanning the message buffer for a message with
the right unique tag. We by-pass this scan of the buffer by
translating a reply to a synchronous communication between
client and server process.

For every server in the system we need to create another
process besides the buffer process: the so called call-stack.
The specification language µCRL strictly separates commu-
nication and computation. A computation cannot have com-
munication as a side-effect. In general this separation of
concerns results in clear, understandable specifications and
we promote to use a similar strategy for Erlang programs
as well. However, sometimes it is really clearer or more effi-
cient to have an Erlang function that has communication as
a side-effect. For example, the storage group process sends a
message to all storage devices it has stored in a certain list.
Assume the list contains tuples with name of the device and
number of request one has send to it. As a result of sending
a new request, one might want to obtain an updated list.
It is more efficient (and probably clearer) to traverse the
list only once and return the updated list as a result and
sending the messages as side-effects. In order to translate
such a construction to µCRL, the function sending values is
translated into a function with accumulator that saves the
updated list in the accumulator. Instead of returning this
accumulator (which is impossible in µCRL) in the base case
of the recursion, the function pushes the value on a stack by
communicating it with the stack process. The calling pro-
cess pops the value from the stack by a communication with
the stack process and uses the value to continue computa-
tion.

The compiler analyzes the Erlang modules and divides the
functions in it in two categories: those that are side-effect
free and those that contain side-effects. A function is said to

have a side-effect whenever it (indirectly) sends or receives
a message. Both parts are translated differently, because
the side-effect free part is translated in rewriting rules in
µCRL, whereas the part with side-effects is translated into
processes.

Down to this point, Erlang has many features that are
not supported by a process algebra, which is a specifica-
tion language, not a programming language. Higher-order
functions, records, list-comprehensions and all these things
that make the Erlang code so readable have to be compiled
to simple first-order functions1, tuple-like data structures
and so on. The compiler performs these transformations as
Erlang to Erlang transformations. On the one hand this
supports debugging of the compiler, on the other hand, it
allows a flexible change of back-end.

Modules are not supported by µCRL either. Therefore,
all imported functions have to be in-lined and name conflicts
have to be resolved. Somehow it is strange that a relative
modern specification language has so poor features for spec-
ifying large software systems on a high level. The language
LOTOS is better in this respect, but also in that language
support for higher-order functions is lacking.

After all these Erlang to Erlang transformations a single
Erlang file is produced. This file is translated into µCRL by
rather straight-forward syntactic manipulations. The only
non-trivial part is that µCRL is a strongly typed language
and Erlang is not. We generate one type in µCRL to repre-
sent all Erlang terms. All side-effect free computations are
rewrite rules on terms of this type.

The obtained µCRL specification can be used to gener-
ate the state space of the Erlang system. However, in our
scheduler we are not ready yet. As our main goal is to au-
tomatically obtain global properties about the performance
and behavior of the system, we only have to analyze the con-
trol core of the video-on-demand server. But for ‘activating’
the system, a special interface that represents the possible
users asking for media objects has to be added to the model.
One direct solution would be to add to the Erlang source
code an abstraction of the user process and to include this
in the supervision structure of the system, thus introduc-
ing the number of users as a parameter in the same level as
the number and configuration of the different devices. The
problem of this approach is that it would be hard to explore
all the different combinations of users, because the fact of
including a lot of new processes would make the state space
to grow exponentially. In the state space with many users
one would get different paths for different orders in which
the users ask for media objects. We are, however, not at all
interested in the difference between user one asking for ‘Star
Wars’ followed by user two asking for ‘Star Wars’ and the
sequence in which they ask it the other way around. The
only thing that is important for us is that two users asked
for ‘Star Wars’ after each other. Another disadvantage with
the solution of many user processes is that it is hard to tell
how many of them will be needed to determine the capacity
of the system.

The solution we choose lays in a different approach for
modeling the users: in the Erlang source code, only one
client process is used to model the user pattern. That pro-
cess asks for a media object with a given quality, waits for

1There is no general solution to translate higher-order func-
tions to first-order functions, but the compiler supports map,
fold, etc.

.mCRL

Graphical User Interface

mCRL code with
non−determinism in

the user process

instantiator
mcrl tools

rewriter
transitions CADP

reduction
tools

The nodes of the graphs
are the states of the system
and the transitions are
the mCRL actions

Hiding and reduction rules

system behavior
Whole graph of the

with user−friendly transitions
Graph of the system

behavioral graph
Reduced high−level

Figure 5: From µCRL to state space of the system

the answer (the set of options provided by the server), and
plays the object or asks again (if the request fails), repeating
this loop all the time. Then, after creating the µCRL file,
we use our tool for automatically adding non-deterministic
behavior to the user process. Instead of asking for a con-
crete movie with a given quality, now the user is going to ask
non-deterministically for one out of all possible media ob-
jects with one out of all the possible qualities. Thus, we use
one non-deterministic user process for modeling an infinite
set of users that constantly request media objects. Since the
user process never releases a media object, this process will
only receive ‘fail’ as a reply after that the system is over-
loaded. As such, there is a natural bound on the number
of users in the system and the creation of an infinite state
space is avoided.

The tool set for µCRL comes with several other tools that
can be used to modify the µCRL specification before gen-
erating the state space [9]. The aim of these modifications
is to end up with a specification that gives less states and
transitions (events) in the generated state space. This can
theoretically be achieved because some events, like the com-
munication with the call-stack or the buffer may be seen
as internal actions and can be hidden in the state space.
Tools like a confluence analyzer can be used to modify the
source code in such a way that only one of the many con-
fluent paths to a result is chosen in the generation of the
state space, provided that the obtained state space is obser-
vational bisimular with the original one. We experimented
with these tools as well, giving reductions of ten to twenty
percent in the generated state spaces.

3.2 Generating a State Space fromµCRL
After generating the µCRL code for the concrete con-

figuration of our system, the second step of the proposed
methodology is to create the state space for that configura-
tion. This step is based on standard tools for µCRL [13],
and tools for hiding and renaming labels as well as the re-
duction tools in the Cæsar/Aldébaran tool set [7]. Fig. 5
depicts which tools are used to create a reduced state space
from the process algebra specification.

In the Erlang scheduler software there are many processes
that communicate with each other. The communication is
rather straight-forward, though. The user sends a request,
this is passed from one process to the other and in the end
a growing list of possibilities is passed back.

For the typical properties we are interested in, we are
only concerned about the messages that the user sends to
the system and the messages that are returned to the user.
In that way, we can judge whether a user can be served
and what the possible choice for the user are. The messages

between streaming level and storage level, between storage
group and devices, are irrelevant for our purpose. However,
the translation from Erlang to µCRL is such that when we
use the instantiator tool on the specification directly, we ob-
tain a state space in which all these irrelevant messages are
visible as well. Therefore, the state space contains at least
4 ∗ (2+#devices) times more events than we are interested
in, whereas in practice this redundancy turns out to be even
larger.

At the moment we generate the full state space. We then
rename the labels of the events we are interested in and
we hide the other events. By using reduction tools we can
perform observational bisimulation reduction on the state
space, obtaining in this way a much smaller state space in
which only the relevant events are shown.

Renaming the labels is useful to create a better readable
visualization of the graph. For small configurations such
visualizations can be illustrative for the designers to look
at. Moreover, the properties that we use later refer to the
renamed labels. If we would not rename the labels, the prop-
erties would be harder to formulate. Hiding the irrelevant
events has the two advantages that the properties can be
formulated configuration and system implementation inde-
pendent (they need not reflect internal behavior) and that
model checking them is faster.

For small examples, the transformation from the Erlang
code and the concrete configuration to the abstract behav-
ioral state space is performed in a matter of seconds. As we
complicate the system configuration, the state space grows
and the computation time is much larger. As an exam-
ple, the state space of a two level configuration, without
cache nor restrictions in the upper levels, with four devices
in the massive storage level and all the possible combina-
tion of movies distributed over the devices in two different
qualities, contains up to a few million states. Its generation
takes some hours and results finally in a reduced state space
of about one thousand states.

Fig. 6 shows a very small illustrative example of a reduced
state space obtained from a simple linear configuration. The
system was configured with two linear levels (streaming level
-with the local scheduler-, and massive storage level -with
the scheduler and the storage group). The storage group
was grouping two devices: a tape with 2 units of bandwidth,
only able to handle one connection at the same time; and
a CD with 3 units of bandwidth able to handle 2 simulta-
neous connections. No extra restrictions were placed in the
hierarchy, other than trivial cost functions able to select the
right providers for the users. In this example, we used the
abstract approach for the media objects, placing in the de-
vices all the possible combinations of MOs. That is, to have
m1 as the abstract kind of MOs that are in both devices, and
m2 and m3 as the MOs that are only in one of them. For
the quality of the MOs we chose to have only two possible
qualities with 1 and 2 units of bandwidth respectively.

For the example configuration, from the original whole
state space of the system, with a total of 2547 states and
2747 transitions, the reduction results in the 8 states and 48
transitions shown in Fig. 6. In the graph, the performance
pattern for this kind of systems can be seen; from the ini-
tial state 0, the transitions explain which are the actions
the users are able to perform (e.g. play(tape,m3,1) means to
serve an MO from the group m3 on the device called tape
using 1 unit of bandwidth). After more users requesting

4

0

5

16

2

7

3

play(tape,m1,1)

play(cd,m2,1)

play(cd,m1,1)

fail(m3,[2])
fail(m3,[1])
fail(m2,[2])
fail(m1,[2])

play(cd,m1,2)

play(cd,m2,2)

play(cd,m2,1)

play(cd,m1,1)

fail(m3,[2])
fail(m3,[1])

play(tape,m1,1)

fail(m2,[1])

play(cd,m1,2)

play(cd,m2,2)

play(cd,m2,1)

play(cd,m1,1)

fail(m3,[2])

play(tape,m3,2)

fail(m3,[1])

play(cd,m1,2)

fail(m3,[2])

play(cd,m2,2)

fail(m3,[1])

fail(m2,[2])

play(cd,m2,1)

fail(m1,[2])

play(cd,m1,1)

fail(m2,[1])

play(tape,m3,1)

fail(m1,[1])

play(tape,m3,2)

play(tape,m3,2)

play(tape,m3,1)

play(cd,m2,2)

fail(m2,[2])

play(cd,m2,1)

play(tape,m1,2)

play(tape,m3,1)

play(tape,m1,2)

play(tape,m1,1)

play(tape,m3,2)

play(cd,m2,1)

play(tape,m3,1)

fail(m2,[2])

play(tape,m1,2)

Figure 6: Abstract graph for a simple configuration

movies, the system is becoming more busy. Some resources
are not available to handle some a user request (e.g. in state
5 the system is not able to provide the user an MO from
group m2 at a quality of 2 units bandwidth, because that
media is only on the CD device, and the device only has 1
unit of bandwidth available at that moment). The last node
of the graph is always representing the maximum load of the
system, where all the resources are being used (the bottle-
necks of the architecture are using their maximum capacity),
and every user request results in a fail as reply.

The main performance limitations of the approach is the
time it takes the state space generation tool of the µCRL
tool set. As we said, our tool is able to handle reasonable
sized real configurations, but when the goal is to analyze a
really complex tree-like hierarchical architecture, with a big
number of devices and restrictions, and thousands of media
objects, the computation time and the use of resources (spe-
cially CPU but also memory handling the states) need to be
reduced as much as possible. During the evaluation of the
tool we also have found some performance problems when
using big numbers in the model, due to the fact that the tra-
ditional µCRL representation of the natural numbers, based
in the successor constructor, is not efficient when evaluating
the model symbolically.

As improvements of this performance limitations, we are
already exploring the use of a kind of theorem proving tools
that are part of the µCRL tool set. As mentioned in Sect.
3.1, these tools are able to automatically prove certain prop-
erties of the µCRL specification, like confluence of a certain
pair of actions. By exploring these properties the µCRL
specification can be modified to a specification that results
in a smaller, but observationally bisimular equivalent state
space. The first experiments have shown promising results

in reducing the size of the whole state space of the system
(both in number of states and transitions). A new more
efficient representation of the natural numbers is also be-
ing explored as a solution to the performance limitation in
numeric computations of the model.

3.3 Verifying Global Properties
Once we have generated the reduced state space, repre-

senting the behavior of the system from a black box point of
view, the last step of the proposed methodology is to extract
the performance properties from this graph by using model
checking techniques.

An important goal in this step is to provide the users of
our tool (both the designers trying to improve the perfor-
mance and the cable operator evaluating the system) with
an understandable set of properties presented in natural
language via a graphical user interface. The user is given
the possibility to ask questions like “How many movies can
the system serve simultaneously?” instead of “What is the
longest path in the state space to the point where only fail
transitions are possible?”. Another desirable feature when
designing this part of the methodology is to provide the user
with some kind of feedback information giving design related
suggestions.

One of the main subsystems of the GUI developed in our
prototype is devoted to this high level interface. The user
can automatically check some properties, and can formulate
others in a very easy way, giving, for example, a description
of a concrete branching scenario in order to know if that can
happen in a real execution of the system. Internally, these
properties are converted to an alternation free µ-calculus ex-
pression, that is going to be model checked using the CADP
tools; therefore, the users do not need to deal directly with
the logic.

The properties we offer the user to be analyzed are di-
vided in three main groups, depending on the way the model
checking techniques are used in order to obtain the informa-
tion from the graph:

1. Counter-example based:

With this method for extracting system information
we propose a new way of using model checking tools.
Instead of checking the property in order to know if it
holds for the graph we are analyzing, we try to find the
negation of the formula that represents the information
we want to obtain. Therefore, a counter-example to
the formula corresponds to an example that the global
property holds, thus the counter-example gives us the
knowledge about the system.

One of the main properties a user would like to know
about this kind of systems is its global capacity, but
the abstract concept of capacity is really measured by
a complex set of properties. One of them would be
‘the worst case scenario in which the system reaches
its maximum load’, that is, translated to the graph
language, ‘the shortest path to the special node where
the system only can fail ’. A way of obtaining that in-
formation, using the counter-example based approach,
is to use a property that we know is only false in the
special node of the system where only fails can take
place, viz. [true*]<not ’fail.*’>true (i.e. starting
at any state of the system, it is always possible to have
a transition that is not a fail). The counter-example

for that property is going to be (with the tools we are
using) one of the shortest paths to that node.

Other properties for the systems, related with its per-
formance and capacity, are obtained using the same
approach. Instead of looking at the whole capacity
of the system, we can focus on a concrete MO, and
know the server performance for that concrete media
object. By using the µ-calculus property [true*]<not

’fail(.*,m1,.*)’>true, the tool can automatically
obtain a counter-example with the shortest path to a
fail for that media object. Some other similar expres-
sions are used in order to check the worst case perfor-
mance for the system where only plays are possible,
e.g. the shortest path to any kind of fail (giving us a
capacity idea about for how long the system is still
able to always serve the user).

Another interesting property is the maximum of me-
dia objects that can be served simultaneously in such
a way that after serving these objects all possible re-
quests can still be honored. Thus, the paths where all
states only have successful successor states. In our lit-
tle example in Fig. 6 this corresponds to the path from
0 to 4. Thus, in that example, the maximum number
of simultaneous users after which a next requesting
user always can be served is therefore ‘one’. In general
one can have several distinct paths in which all users
can still be served. With this counter-example based
approach we automatically determine the shortest of
them by using the µ-calculus formula:
[true*](<’fail.*’>true<true>[’fail.*’]false.
The longest of them can be detected using the loga-
rithmic search approach described below.

Thus, with the proposed technique the user can obtain
automatically, by using a high level user interface, sce-
narios that fulfill global properties of the system be-
havior. All these properties can be combined with the
bandwidth usage in order to extract more detailed in-
formation.

2. Logarithmic search:

Complementing the counter-example based approach,
a different set of global properties of the system can be
obtained by using model checking in combination with
a fast search algorithm with logarithmic complexity.
With the counter-example approach some interesting
results cannot be extracted from the graph, because of
the limitation of the CADP model checker tools, that
are giving always a shortest path to a node where the
property does not hold.

One kind of properties the users of our system are in-
terested in are reflected by questions like: “What is the
maximum number of users that can watch ‘Star Wars’
at the same time?” or “How many simultaneous users
can the system provide such that it still is always able
to play ‘Star Wars’?”. Expressed in a property over
the graph these questions refer to the longest paths to
some special nodes or situations.

As an illustrative example we have the previously men-
tioned maximum number of simultaneous users, such
that the next requesting user can always be served.
The longest path to a state where all requests are suc-
cessful is found by repeatedly proving properties of the

form: <true*.’play.*’.true*...>[’fail.*’]false,
where the length of the sequence of the second true*

occurrence is varied doubled until the property is false
and then we search the exact point of failure by tak-
ing the middle between previous success and previous
failure recursively.

These properties, extracted also from the graph but us-
ing a different approach, complement the information
obtained with the counter-examples for giving the user
global properties of the system. These properties are
again obtained automatically, with only high level user
interaction through the GUI.

3. Scenario based:

Finally, as the third kind, the tool also provides to
the user a more open interface for expressing scenario-
like properties in almost natural language, that later
are transformed internally into µ-calculus expressions.
Examples of this kind of properties are the existen-
tial properties, where the user can describe a concrete
scenario (with MOs and bandwidths) and ask the sys-
tem if that can happen; and the eventually existential
properties, where the user can describe a more complex
scenario in the form ‘after looking at a given sequence
of MOs with a given quality, it is still possible to have
the following scenario: . . .?’.

With these kind of properties, the abstraction of the
MOs placed in the system can effectively be used.
If the user asks the tool whether a given scenario is
possible, the tool checks this scenario for all abstract
movies, instead of just the one that the user asked for.

For example if the users ask whether the system can
provide the following sequence of movies: movie 1,
movie 3, and movie 2. Assuming that movie 1 and
3 are both belonging to group m1 and that movie m2
belongs to group m3, then to answer yes or no to this
question, the property <’play(.*,m1,.*)’.’play(.*,

m1,.*)’,’play(.*,m3,.*)’>true is checked. How-
ever, if the answer to the question is no, then we
can also automatically check the property where we
smartly exchange m1 and m3 by other groups. If one
of these properties is true for the state space, we ob-
tain a result that can be presented as an advice to the
user. In this way, the tool can return a more complete
answer like: “the scenario cannot occur, but moving
movie 2 from the tape to the second CD makes this
scenario possible in the system”.

Thus, by combining three (complementary) ways of using
of model checking techniques a method is given for auto-
matically verifying global properties of the system.

4. CONCLUSIONS
In this paper, the scheduler of the VoDka system, a video-

on-demand server, acts as a case-study for our methodology
to verify global properties of a system. The behavior of the
system is hidden in a complex distributed scheduler, based
on component restrictions (bandwidth, number of connec-
tions), local policies (cost functions, filters), cost related
functions (state of the components and resources still avail-
able), and a flexible hierarchical architecture. By means
of this scheduler, we present a methodology for extracting

High level properties are converted to mu−Calculus expressions

Countere−xample with performance
information about the system

Performance measurement of the

Yes/No answer about a possible
scenario

analyzed system

Counter−example based

logarithmic search alg.

scenario basedbehavioral graph
Reduced high−level

model checking (CADP)

model checking (CADP)

model checking (CADP)

Graphical User Interface

Figure 7: From the behavioral graph to the global
performance properties

global properties of an Erlang system from the local restric-
tions hidden in its processes. The methodology is more gen-
erally applicable than only for schedulers. Many systems
can be seen as a deterministic function over the input (in our
case sequences of users demanding movies). However, these
functions are composed of many small functions: the com-
ponents. These components can have state and are there-
fore hard to statically analyze. However, with our approach,
we simulate all possible runs of the system, as such obtain-
ing the function between domain and range compacted as a
graph.

The methodology is based on three main steps that are all
performed in a completely automatic way. In the first step,
we use our Erlang to µCRL compiler to translate the origi-
nal Erlang source code modules into a µCRL specification.
In the second step, we use the µCRL tool set for generating
the whole state space, which then is reduced to a smaller
one where only the information needed for extracting the
performance properties is shown. Finally, we use the model
checker of the CADP tool set in three complementary ways
for extracting interesting properties for the user from the re-
duced state space. All these steps are performed by the user
with a high level graphical user interface, developed with
the goal of hiding the internal details of the approach. The
tool is even able to analyze the system in order to provide
the user some feedback information with suggestions about
how to improve the system performance.

At the moment our approach is the only one that can au-
tomatically verify this kind of global properties of a system.
Other code level model checkers for Erlang with this accu-
racy do not exist. For Java and C, however, there are similar
approaches when it comes to model checking source code [6,
10, 11]. We are not aware of an attempt to use these source
code model checkers for analyzing a flexible concurrent and
distributed architecture in the way we explain in this paper.
We apply ideas of simulation in a model checking framework.

There are many papers on the analysis of scheduling al-
gorithms and simulation. We have not yet studied this ma-
terial properly. However, we can state that most simula-
tion tools use a simulation specification language that differs
from the programming language the system is implemented
in. We are not aware of an automatic translation from the
source code to the simulation language.

The Erlang source code of the VoDka scheduler contains
approximately 600 lines of code distributed over nine mod-
ules (plus the code of the generic behaviors, of course). This
code implements the kernel part of the video server. We
modified the code by abstracting away the parts that are
not necessary for the performance analysis (e.g. low level

transmission protocols and processes). We also ignore the
release of resources, since we want to look at the overloading
of the system. This means that we are looking at the worst
case performance scenario where users only request and do
not release a media object.

With the approach described in this paper, we are able to
handle configurations of the system that are as complex as
the ones that are being used in the VoDka prototypes that
have been deployed for the cable company (with the manual
abstraction that there single cache level is seen as a storage
level). This means that we are able to extract automatically
performance information about the system from its source
code and configuration parameters.

The proposed approach uses formal methods in a rather
original way: using the µ-calculus as a powerful declara-
tive graph information extraction language; and using model
checking tools as general, flexible and efficient graph search
algorithms. We verified properties for several configurations.
Most time is spent on the generation of the full state space.
The compilation from Erlang to µCRL takes only a few sec-
onds and similarly the reduction of the state space and veri-
fying properties of it only takes a few seconds up to a minute.
Generating the state space, though, may take a few hours
for rather large configurations. For that reason, we are ex-
ploring the best way of using µCRL tools for converting the
process algebra model in the system to a bisimular equiva-
lent one that produces a smaller state space of the system.
We can indicate already in the specification which action
we want to hide and perform transformations on the µCRL
level to obtain a specification that results in a reduced state
space. The first results with these tools are very promising,
being able to reduce more than ten percent of the size of
the state space. Additionally, a new representation of natu-
ral numbers in the process algebra, in order to improve the
performance of the symbolic computation of the model, is
subject of study.

As future work, we plan to add a cache level in order to
be able to handle the complete architecture of the system.
The consequences of adding this level to the architecture,
specially in the aspects related with the abstract analysis of
media objects, is subject to study at the moment.

We also plan to inspect more parts of the whole state
space of the system in order to give the user more complex
feedback information. It is in particular interesting to be
able to extract information about bottlenecks of the system,
i.e. being able to give the user more complete answers (e.g.,
“Thirty users cannot request Star Wars simultaneously with
the proposed configuration of the system, because the band-
width communicating the CD device with the system is too
narrow”).

5. REFERENCES
[1] J. Armstrong, S. Virding, M. Williams, and

C. Wikström. Concurrent Programming in Erlang,
2nd edition. Prentice Hall International, 1996.

[2] T. Arts and C. Benac Earle. Verifying Erlang code: a
resource locker case-study. In Int. Symposium on
Formal Methods Europe, volume 2391 of LNCS, pages
183–202. Springer-Verlag, July 2002.

[3] T. Arts and I. van Langevelde. Correct performance of
transaction capabilities. In Int. Conf. on Application
of Concurrency to System Design, pages 35–42. IEEE
Computer Society Press, June 2001.

[4] M. Barreiro, V. M. Guĺıas, J. L. Freire, and J. J.
Sánchez. An Erlang-based hierarchical distributed
VoD. In 7th Int. Erlang/OTP User Conference
(EUC2001). Ericsson Utvecklings AB, September
2001.

[5] M. Barreiro, V. M. Guĺıas, J. J. Sánchez, and S. Jorge.
The tertiary level in a functional cluster-based
hierarchical VoD system. In Functional Programming
and λ-Calculus Workshop, volume 2178 of LNCS,
pages 540–554. Springer-Verlag, February 2001.

[6] J. Corbett, M. Dwyer, and L. Hatcliff. Bandera: A
source-level interface for model checking java
programs. In Teaching and Research Demos at
ICSE’00, June 2000.

[7] J. Fernández, H. Garavel, A. Kerbrat, and R. Mateesc.
Caesar/Aldébaran development package: A protocol
validation and verification toolbox. In 11th Int. Conf.
on Computer-Aided Verification, volume 1102 of
LNCS, pages 437–440. Springer-Verlag, August 1996.

[8] J. Groote. The syntax and semantics of timed µCRL.
Technical Report SEN-R9709, CWI, Amsterdam, The
Netherlands, June 1997.

[9] J. Groote and B. Lisser. Computer assisted
manipulation of algebraic process specifications.
Technical Report SEN-R0117, CWI, Amsterdam, The
Netherlands, 2001.

[10] K. Havelund and T. Pressburger. Model checking java
programs using java pathfinder. Software Tools for
Technology Transfer, 2(4):366–381, March 2000.

[11] G. Holzmann. The Design and Validation of Computer
Protocols. Edgewood Cliffs MA: Pretence Hall, 1991.

[12] ISO/IEC. Lotos – a formal description technique
based on the temporal ordering of observational
behaviour. In International Standard 8807,
Information Processing Systems – Open Systems
Interconnection. International Organization for
Standardization, September 1988.

[13] SEN group. A language and tool set to study
communicating processes with data. Technical report,
CWI, http://www.cwi.nl/∼mcrl, February 1999.

[14] A. G. Wouters. Manual for the µCRL tool set (version
2.8.2). Technical Report SEN-R0130, CWI,
Amsterdam, The Netherlands, 2001.

