A BUS INSTRUMENTATION PROTOCOL, SPECIFIED IN
LOTOS

P. AZEMA - K. DRIRA - F. VERNADAT

RAPPORT LAAS N° 90191

JUIN 1990

FORTE'90

A Bus Instrumentation Protocol, specified in LOTOS.

Pierre AZEMA, Khalil DRIRA, Frangois VERNADAT
LAAS-CNRS
7 Avenue Colonel Roche, F-31077 Toulouse cedex.

Abstract

This paper analyzes the design of a protocol for distributed process
control. A bus protocol is described, and the wunderlying broadcast
mechanism 1s specified within LOTOS framework. The main point
concerns the study of the service with respect to user requirements.

Global assertions on actual complex configurations are introduced in
such a way that only simple cases have to be verified, that is a minimal
finite configuration needs to be exhaustively checked.

From requirements expressed in natural language, several
constraints on execution sequences (or temporal logic assertions) are

derived. These requirements are analysed with respect to observationaly
equivalent reduced models.

Introduction

The formal specification of a protocol for Factory Instrumentation is
presented by means of Formal Description Technique LOTOS [LOTS89].

The basic service consists of remote updating of values associated
with declared identifiers. The protocol deals with the updating of
distributed buffers by means of broadcast operations [FIP89]. This
protocol 1s 1mplemented at the data link layer (OSI layer 2).

Several stations are interconnected via a bus. The protocol makes
use of a bus arbiter for synchronizing the exchanges of messages. This
arbiter scans periodically every buffer.

A LOTOS specification of this protocol supplies a formal description.
The purpose is to focus on the analysis, in such a way a formal
verification is made possible.

A crucial step is the formal interpretation of user expectations
|AVL89]. Here specific behaviours are translated into constraints on
execution sequences, closely related to temporal logic assertions. These
assertions are interpreted on the reachable state space of the system. To
be manageable, the size of this state space has to be kept limited. This
point results from invariant assertions valid whatever the number of
processes. In this paper, only two single entities need to be considered as
active, the so-called producer and consumer. Furthermore, to be
understandable, the verification will be conducted on a reduced model.
This model 1is derived from the complete behaviour by using
observational equivalence [GS90, MV89]. This allows for comparing the
expected behaviour, 1.e. the service, with respect to the observed
behaviour, derived from the complete protocol.

This paper reports on the way to deal with initial user requirement,

and how 1t i1s possible to refine successively either the specification or
the requirement itself.

T'he basic service 1is introduced in section I. The global system
organization and some user requirements are first informally described.
LOTOS definition of each process is given in Section II. The analysis of

specifications 1s conducted in Section III, and several versions are
considered. Section IV is devoted to test.

Section I. System Organisation.

Real time process control is the main application of protocol
FIP. This environment involves sensors whose data value are to be
periodically sampled and actuators whose command values are to be
periodically updated. The specification of communication protocols which
are depicted 1n this paper represent a part of specification proposed to
UTE by french working group [FIP]. Several devices, sensors or actuators,
are 1interconnected through a bus. Any value, as measured by a sensor,
or as assigned by an actuator, is associated with an identifier.

Let ID be a set of identifiers. The value of an identifier has at most
one producer, that is a device to supply the associated value, and at least
one consumer, that a (possibly many) device to make use of this value.
The communications are synchronized by a bus arbiter. The global

physical organisation is depicted by Figure 1. Any normal station has
two access points: the so-called drop to access the bus, and the so-called
link, as a service access point for the user.

>

bus arbiter -
A

progucer

Fig.1 Physical Architecture.

Two main services are offered to users: either to put a value, or to

get a value, associated with a specific identifier.

T'he user requests occur on interaction point link:
put(id, val), to write value val into a buffer associated with id, get(id), to
read value.

These primitives receive respective confirmations
confirm, confirm(val).

The underlying protocol is under the centralized control of a bus
arbiter. This arbiter scans periodically identifiers ID, by issuing message
id-dat(ID) for every identifier ID. The single producer becomes then
ready to supply the value of the announced identifier and possibly many
consumers become ready to read it. The broadcast of message rp-
dat(VAL) performs this data exchange.

The relationship between the expected service and the
implemented protocol may be interpreted on an abstract architecture, as

depicted by Figure 2.

put(1D,VAL) confirm get(ID) confirm(VAL)

Cprotocol>

Actuator
rpdat(VAL

consumer
Fig.2 Abstract Architecture.

N O DDA

roducer

O e e ™ S e e eSS e e 6 B, K 6, R B

ii F . i]
-.-f.-.-.-:r.-.-:-.-.r:n:-_-:».-;.-:-.-.-.w':-:-:-:-.p.-:-:-:—:-:-.n:!:-:-}.r:-.-:-:-.-:-c’f.:.-ﬁ

Initial Service description.

A simplified view of the way to use the buffer associated with a
single 1dentifier ID considers only two events:

put(val) the writing of a new value, passed as parameter val,

get(val) the reading of value, passed as parameter val.

Let {old, new} be the possible set of values of an identifier, at the
initial state and after updating by primitive put, respectively. The
value which results from the execution of primitive ger is either old,
from i1nitial state O, or new, after the occurrence of primitive put.

Fig.3 expected service.

The expected global behaviour may be depicted by Figure 3. In
natural language, this behaviour may be phrased: you get the last value

4

that has been put into the buffer, that 1s after put(new), only get(new)
may ocCcur.

Any execution sequence which follows the occurrence of event

put(new) must not contain the occurrence of event get(old), but only the
occurrence of event get(new).

Section II. Formal Specification

Three agents are considered: producer prod, consumer cons and
bus arbiter arb. The architecture i1s depicted by Figure 4; the associated
LOTOS specification 1s the following:

prod[p,b](val)

/[b]]
cons[c,b](val)

/[D]]
arb[b](me)

A producer prod, with initial value val, has two gates {p, b}. The
upper layer uses gate p, and lower level uses gate b. A consumer cons,
with initial value val, has two gates {c, b}.

producer consumer

arbiter

Fig.4 Communicating Agents and Gates.

The behaviour of the arbiter consists of cyclically scanning every

identifier.

process arb[b](id : ident) : noexit :=
b !iddat ! id ! rpdat ? v : valeur; arb[b] (suc(id))
endproc

The general definition of function suc defines a cyclic permutation
on the list of identifiers, in such a way each identifier will be
successively considered.

However, from the point of view of a single identifier, only two
cases have to be considered, whatever the number of identifiers. The
behaviour of processes prod and cons are specified in LOTOS by
considering mainly two cases: the arbiter wants to update either the
identifier under concern, i.e. me, or another one, that is other.

In a similar manner, each agent may either perform a
communication with upper layer, via primitive put (resp. get), or
perform a communication with the bus. This decomposition is
represented by the following interleaving of two processes: consme and
consother, prodme and prodother on the other hand.

process cons[c,b](val: valeur) : noexit :=
consme[c,b](val) /|| consother[b]
where
process consme[c,b](val: valeur) : noexit :=
c ! get ! val ; consme[c,b](val)
(]
b ! iddat ! me ! rpdat ? new: valeur ; consme[c,b](new)
endproc
process consother[b] :@ noexit :=
b ! iddat ! other ! rpdat !'moncons ; consother[b]
endproc
endproc

process prod[p,b](val: valeur) : noexit :=
prodme[p,b](val) ||| prodother[b]
where
process prodme[p,b](val: valeur) @ noexit :=
p ! put ! new ; prodme[p,b](new)

[/
b ! iddat ! me ! rpdat ! val ; prodme[p,b](val)
endproc
process prodother[b] @ noexit :=
b ! iddat ! other ! rpdat !'noncons ; prodother[b]
endproc
endproc

In the general case, type valeur may be integer.
However, for analysis purpose only two values will be considered:
{ old, new}.

Section III Analysis.

With respect to single identifier me, only two states of arbiter have
to be considered: either the next identifier to be scanned is me, or the
next 1s not me that is other. Consequently, the definition of type ident
and operation suc is the following.

type ident is
sorts ident
opns
me , other :-> ident
suc : ident -> ident
egns
ofsort ident
suc(me) = other,
suc(other) = me;
endtype

The three agents {prod, cons, arb} are composed by means of
parallel operator /[b]/, that is they are strongly synchronized with respect
to bus events.

Process producer prodme, from initial state O, may either perform
action p!/put, (exclusively) or action b/me, that is update by receiving
iddat(me) followed by sending rpdat(val). A transition system is

associated with this behaviour.

On the left side of Figure 5, the local transition systems of producer
and consumer are represented. From state 0, the occurrence of event
(b!/me) does not change the state, as far as the current data value is not
considered.

This (finite) behaviour may be enumerated and reduced, by using
algorithm for the derivation of minimal automaton with respect to
observational equivalence: the observed events are only events which
occur at gates p or c¢, that 18 put or get. The result of this analysis
produces the automaton depicted by Figure 5.

On the right side of Figure 5, three events have been made visible:
{ put, get(old), get(new) }.

By inspection, it may be checked that it is possible to get the old
value, even after operation put, that is from state 1, although the value

written by operation put is a new value. That contradicts the
requirement.

get(old)

progucer consumer
3 O 0
/ \ pUt
p!put b!me D'me ¢ | get o get(old)
;

put

i
1

o ;
get(new)

pu

Fig.5 Protocol and service (first version).

A correction has to be made. A possible one is to enable operation
put and get only if a transfer of value has been executed, that is to force
a transfert of value after any put or get operation.

Only processes prodme and consme are modified, and a second
version is now considered.

process consme[c,b](val: valeur) @ noexit :=
c ! get! val,
b ! iddat ! me ! rpdat ? new: valeur ; consme/[c,b](new)

[l

b ! iddat ! me ! rpdat ? new: valeur ; consme[c,b](new)
endproc

process prodmel[p,b](val: valeur) : noexit :=
p! put! new ; b ! iddat ! me ! rpdat ! new ,
prodme[p,b](new)
[/
b ! iddat ! me ! rpdat ! val ; prodme[p,b](val)
endproc

I'he analysis of this new specification leads to service depicted by
Figure 6.

producer consumer get(old)
3 Q=%
p'!put b!me b!me c ! get
get(old)
b ! me b ! me |
0 0
Q2
get(new)
0 0
put
Fig.6 Service (revised). 2

The analysis of the observational equivalent automaton shows that

after a put, that is from state 1, get(old) may occur at most once, because
from state 2, only get(new) may occur.

T'he result 1s a better approximation of the expected service,
however the service, as stated in section I, is not yet fulfilled.

In fact, the service as expressed in section I can not be
implemented, as long as the data transfer is explicitely considered in the
model but not in the requirement, because the actual exchange occurs by
means of bus primitives. The relative ordering of occurrences of
primitives put and get cannot be observed at two distinct locations, that
1s, on Figure 5, the transition from state 1 to state 2, labelled by event
get(old), does not implies that primitive get has been issued after
primitive put. The ordering is valid only if the considered events occur
on the same site, at a given level of abstraction.

The events occuring on the bus need to be observed, in particular
with respect to the producer. Let the first occurrence of iddat !me !rpdat
'new be renamed into update. Other occurrences of iddat!/me!rpdat!/new
or iddat!mel!rpdat!old are renamed into refresh. Then this new behaviour
of producer is depicted by the transition system of Figure 7.

A third version of the specification has been written to observe the
first updating of value, from old to new; this version is given in Annex.
With respect to the reduced automaton, event get(new) always

follows event update. Event get(old) never occurs after update
(ct.Figure 7). |

10

get(old)
producer o o
refresh
o ki e N
put
put

|
update it bl

update update
refresh

Fig.7 single put service. A

Section IV. System Test.

This section deals with test generation following the methodology of
refusal testing [Phil87] and more particularly conformance test introduced
in [BR89]. Given a (finite) process S and its implementation I, the purpose
1s to verify that the implementation conforms to the specification.

(I conf §) whenever the following holds:
for every sequence o potentially accepted by S (i.e o in Trace(S)),
1f S after o can not refuse the action "a” then I after o must accept "a” .

The 1dea 1s then to generate a process T(S) (called tester of S) which
accepts the same language as S (in terms of external actions);
which performs the maximum of internal choice (i); and when composed
in parallel , must never deadlock with 1.

To 1llustrate the methodology, the tester of process producer is
given. The unfolded behaviour has been obtained by using caesar [GS90].

The behaviours of Producer and its tester are represented by a transition
system (Figure 8).

11

process testerO[B,P]:noexit :=
i, B liddat !other !rpdat !cons; testerO[B,P]
[] 1, B liddat 'me !rpdat !old; testerO[B,P]
[] i, testerl [B,P]
where process testerl[B,P]:noexit :=
P ! put 'new ; tester2[B,P]
where process tester2[B,P]:noexit :=
i, B liddat !other !rpdat !cons; tester2[B,P]
[/
1, tester3[B,P]
where process tester3[B,P]:noexit :=
B liddat !'me !rpdat !'new; tester4d[B,P]
where process testerd[B,P]:noexit :=
i, B liddat 'other !rpdat !cons; tester4[B,P]

[/
i, B liddat 'me !rpdat 'mew; testerd[B,P]
[/
i1,testerl [B,P]
endproc
endproc
endproc
endproc

12

B liddat !other
Irpdat 'noncons

o P lpuf Inew o

B lid dat !other e
Irpdat !noncon lB liddat !me

e Irpdat 'new
B liddat lother
Irpdat 'noncon

@ B liddat !me

rpdat !old

B liddat 'me
Irpdat 'new

TESTER

B liddat lother B liddat 'me o o

rpdat !noncons B rpdat lold

IMPLEMENTATION

B liddat !other
Irpdat 'noncons

L
—'-‘r'._

B lid dat !me
Irpdat !new

B liddat 'me
Irpdat 'new

B liddat !other
Irpdat 'noncons

Figure 8. Producer and its tester.

Conclusion

In the particular case of a bus instrumentation protocol, this paper
reports on an experiment to define as soon as possible user expectations
with respect to the relative ordering of visible primitives. In this
process, either the specification has to be revised, or the requirement
itself has to be modified, both cases result in a better characterization of
the facility offered by the service.

The basic elementary mechanisms of a bus instrumentation
protocol have been introduced and formally specified in LOTOS. A careful
analysis of the behaviour has been performed with respect to user
requirements. Specific LOTOS techniques, namely observational

equivalent behaviours, have been used to check if the proposed protocol
meets these requirements.

TI'he approach 1s in progress mainly in two directions: firstly to take
Into account various other services currently available in the framework

of FIP; second, attention is paid to the interactivity and friendlyness of
the facilities offered to the designer.

References.

[AVL 90] P.Azema, F.Vernadat, JC.Lloret Requirement Analysis for
Communication Protocols, Int. Workshop on Automatic
Verification Methods for Finite State Systems, LNCS 407,
Ed. J.Sifakis, Springer Verlag 1990, pp.286-293

[BR 89] E. Brinksma A Theory for the Derivation of Tests in
[LOT&9], pp. 235-247

|[FIP] Normes FIP: Couche liaison de données de FIP, Pr C46 603
UTE 46GE6_156, 1989

|GS 90] H.Garavel, J.Sifakis, Compilation and Verification of LOTOS
Specifications, 10th Int. Symp. PSTV, Ottawa, June 1990.

[LOT 89] Formal Description Technique LOTOS. Ed. P.van Eijk & al,
Elsevier Science Publishers B.V. (North Holland), 1989.

MV 89] E.Madeleine, D.Vergamini AUTO: A verification Tool for
Distributed Systems Using Reduction of Finite Automata
Networks, FORTE'89, Vancouver, Dec.89, pp. 77-83.

[Phil 87] I. PHILIPS Refusal Testing Theorical Computer Science 50
(1987) 241-284, North-Holland.

14

l
|

;r

Annex.1 LOTOS source

Specification fip0O[p, ¢, b]:noexit

behaviour (*first specification¥*)
hide b iIn
(prod[p,b](old)
I[b]]
cons[c,b](old)
I[b]]
arb(b](me))
where
process arb[b](id : ident) : noexit :=
b ! iddat ! 1d ! rpdat ? v : valeur;
arb[b] (suc(id))
endproc

process cons|c,bj(val: valeur) : noexit :=
consme(c,b](val) Ill consother[b]

where

process consme(c,b](val: valeur) : noexit
¢ ! get ! val ; consme[c,b](val)

]

b ! 1ddat ! me ! rpdat ? new: valeur ;

consme([c,b](new)
endproc
process consother[b] : noexit :=
b ! 1ddat ! other ! rpdat !moncons ;
consother([b]
endproc
endproc

process prod|[p,b](val: valeur) : noexit :=
prodme[p,b](val) Il prodother[b]
where
process prodme[p,b](val: valeur) : noexit
p ! put ! new ; prodme[p,b](new)
]
b ! iddat ! me ! rpdat ! val ;
prodme[p,b](val)
endproc
process prodother[b] : noexit :=
b ! i1ddat ! other ! rpdat 'moncons ;

prodother|[b]
endproc

endproc
endspec

specification fipl[p, ¢, b]l:noexit

behaviour (*revised specification*
hide b 1n
(prod[p,bj(old)
I[b]l
cons[c,b](old)
I[b]]
arb[b](me))
where
process arb[b](id : i1dent) : noexit :=
b ! i1ddat ! 1d ! rpdat ? v : valeur;
arb[b] (suc(id))
endproc

process cons|c,b](val: valeur) : noexit :=
consme[c,b](val) I[ll consother[b]
where
process consme|c,b](val: valeur) : noexit
c ! get! val;
b ! i1ddat ! me ! rpdat ? new: valeur ;
consmef[c,b](new)
]
b ! iddat ! me ! rpdat ? new: valeur ;
consme|{c,b](new)
endproc
process consother[b] : noexit :=
b ! 1ddat ! other ! rpdat 'noncons ;
consother|[b]
endproc
endproc

process prod|[p,b](val: valeur) : noexit :=
prodme(p,b](val) |l prodother[b]
where
process prodme|p,b](val: valeur) : noexit
p!put!new ;b ! iddat ! me ! rpdat ! r
prodme[p,b](nev
]

b ! iddat ! me ! rpdat ! val ;
prodme([p,b](val
endproc
process prodother[b] : noexit :=
b ! i1ddat ! other ! rpdat !moncons ;
prodother([b]
endproc
endproc
endspec

specification fip3[p, ¢, bu, br, bo]:noexit
(* bupdate,brefresh, bother *)
type prim 1is
SOrts prim

opns 1ddat, rpdat, put, get , conf:-> prim

endtype
type valeur 1s

sorts valeur

opns old, new, noncons :-> valeur
endtype

type 1dent 1s
sorts 1dent

opns me, other :-> ident
suc: 1dent -> ident
eqns ofsort ident
suc(me) = other;
suc(other) = me;
endtype
behaviour (* only update is visible *)
hide br,bo 1In
(prod[p,bu,br,bo](old)
I[bu,br,bo]
where
process arb[bu,br,bo](id : ident) : noexit :=

bu ! 1ddat ! 1d ! rpdat ? v
]
br ! iddat ! id ! rpdat ? v
endproc
process arbo[bu,br,bo](id : ident)
bo ! i1ddat ! i1d ! rpdat ? v

: noexit =

endproc

process cons|[c,bu,br,bo](val: valeur) noexit :=
consme|c,bu,brj(val) Il consother[bo]

where

process consme|c,bu,br](val: valeur) noexit =

c ! get ! val;

(bu ! iddat ! me ! rpdat ! new ;
consnew|c,br]

]

br ! iddat ! me ! rpdat ! old ;
consme([c,bu,br](val))

LI

bu ! i1ddat ! me ! rpdat ! new

[]
br ! 1ddat ! me ! rpdat ! old ;
consme|c,bu,br](val))

, consnew|c,br]

endproc
process consnew([c,br] : noexit :=
c ! get! new ; br! iddat ! me ! rpdat ! new ;
consnew/|c,br]
]
br ! i1ddat ! me ! rpdat ! new ; consnew|c,br]
endproc
process consother[bo] : noexit :=
bo ! iddat ! other ! rpdat 'moncons ;

consother|[bo]
endproc

endproc

|bu,br,bo]l cons[c,bu,br,bo](old)
arb[bu,br,bo](me))

. valeur; arbo[bu,br,bo] (suc(id))

. valeur; arbo[bu,br,bo] (suc(id))

. valeur; arb|bu,br,bo] (suc(id))

process prod|[p,bu,br,bo](val: wvaleur) : n

prodme|[p,bu,br](val) Il
where

process prodme([p,bu,br](val: wvaleur) : nq

prodother|(t

p! put! new ; bu! iddat ! me ! rpdat ! new -
prodnew[br](new)

[]
br ! 1ddat ! me ! rpdat ! val ; |
prodme[p,bu,br](val)

endproc
process prodnew|br](val: valeur) noexit
br ! iddat ! me ! rpdat ! val ;
prodnew[br](val)

endproc

process prodother[bo] : noexit :=
bo ! i1ddat ! other ! rpdat !noncons ;
prodother[bo]
endproc
endproc
endspec

Received: from imag.imaqg.fr by bauges.imag.fr (4.0/5.17)
id AAQ7392; Thu, 12 Jul 90 11:11:38 +0200
Received: by imag.imaqg.fr (5.54/5.17)
1id AA17193; Thu, 12 Jul 90 11:12:03 +0200
Received: from inria.inria.fr by mirsa.inria.fr with SMTP
(5.61+++/IDA~1.2.8) 1d AAD7988; Thu, 12 Jul 90 11:11:54 +0200
Received: by inria.inria.fr (5.61+/89.0.8)
via Fnet-EUnet 1d AA08970; Wed, 11 Jul 90 16:49:45 +0200 (MET)
From: khalil@gina.laas.fr
Received: from gina.laas.fr by laas.laas.fr, Wed, 11 Jul 90 16:4C:09 +0200
Return-Receipt~To: khalil@gina.laas.fr
Received: by gina.laas.fr, Wed, 11 Jul 90 1€:40:42 +0200
Date: Wed, 11 Jul 90 10:40:42 +0200
Message-Id: <9007111440.AA11513@gina.laas.fr>
To: hubert@bauges
Subject: FIPLOTOS
Cc: hubert@fimag.imag.fr
status: K

Salut hubert,

Je t’envoie par mail le sources lotos de fip. Nous avons essaye de

simplifier au naximum les specs pour qu’elles soient comprehensibles. ¢
Je t’ai envoye aussi l’article par poste. Il y a trois specs fip0.lotos,

fipl.lotos et fip3.lotos (et leur fip.h commun). Ils correspondent

aux troils categories de service analysees dans l’article.

Tes remarques et ccrrections sont les bien venues.

Amicalement
khalil
——————————————————————————————— LUDUE o L CIE G015 o 1m0 o, 0 0 A, . 0, S . 0 S A
specification npac(p, ¢, Db):noexit

type prim 1s
sorts prim (*! i1mplementedby PRIM comparedby CMP PRIM
printedby PRINT PRIM *)

opns

1ddat (*! implementedby IDDAT *),

rpdat (*! i1mplementedby RPDAT ¥*),

put (*! i1mpliementedby PUT *),

get (*! i1mplementedby GET *),

conft (*! i1mplementedby CONF *) :-> prim

endtype

type valeur 1s

sorts valeur (*! i1mplementedby VALEUR comparedby CMP VALEUR
printedby PRINT VALEUR ¥*)

opns
old (*! i1mplementedby OLD constructor *),
new (*! implementedby NEW constructor ¥*),
noncons (*! implementedby NONCONS constructor *) :=> valeur
succ (*! 1mplementedby SUCC *) :valeur -> valeur
eqgns
ofsort valeur
succ (new) = old;
succ (o0ld) = new;

endtype

type ident 1s
sorts ident (*! i1mplementedby IDENT comparedby CMP IDENT
printedby PRINT IDENT %)

opns
me (*! i1mplementedby ME *),
other (*! i1mplementedby OTHER *) :-> 1dent
suc (*! 1mplementedby SUC *) :ident -> 1dent
eqgns
ofsort ident
suc (me) = other;
suc (other) = me;
endtype
behaviour
hide b 1n
(prod[p, k] (0ld)
| [D]
cons{c,b] (old)
| [b]
arb(b] (me))

where

process arb(b] (1d : 1dent) : noexit :=
b ! iddat ! 1d ! rpdat ? v : valeur; arb[b] (suc(id))
endproc

process cons[c,b] (val: valeur) : noexit :=
consme([c,b] (val) ||| consother[b]
where

process consme(c,b] (val: valeur) : noexit :=
c ! get ! val ; consme|[C,b] (val) _
[] ; ;
b ! i1ddat ! me ! rpdat ? new: valeur ; ccnsme(c,b] (new)

enaproc

Jrocess

endproc
endproc

process
where

process

enaproc
process

endprocC
endprocC

endspec

_'-—‘—th—I*

COﬂS@th@r[b] - noexit =
b ! iddat ! other ! rpdat :.noncons ; consother [b]

prodme [p,b] (val) ||| prodother (D]

prodme [p, b] (val: valeur) : noexit :=
p ! put ! new / prodme [p, k] (new)

[]
b ! iddat ! me ! rpdat ! val ¢ prodme [p, b] (val)

prodother [b] noexit =
b ! iddat ! other ! rpdat !noncons ; prodotherx [D]

———————————————————————— finl , JOUOR -~ mm sl s i S S

specification atom(p, C, b]:noexit

type prim 18

endtype

sorts prim (*! implementedby PRIM comparedby CMP_PRIM
printedby PRINT_PRIM *)

opns

iddat (*! implementedby IDDAT ™),

rpdat (*! implementedby RPDAI *)

put (*! implementedby PUT *),

get (*! implementedby GET *),

conf (*! implementedby CONF *) :-2 pxYim

type valeur 18

endtype

sorts valeur (*! implementedbDy VALEUR comparedby CMP_VALEUR
printedby PRINT_VALEUR ™)

oOpns

0ld (*! implementedby OCOLD constructor *),

new (*! implementedby NEW constructor *),

noncons (*! implementedby NONMCONS constructor *) =2

SUCC (*! implementedby SUCC *) :valeur -2 valeur
eqgns

ofsort valeur

succ (new) = old;

succ (old) = new;

type ident 1s

sorts ident (*! implementedby IDENT comparedby CMP_IDENT
printedby PRINT IDENT *)

opns
me (*! implementedby ME *),
other (*! implementedby OTHER *) -2 iaent
suc (*! implementedby SUC *) :ident -> 1dent
eqns
ofsort ident
suc (me) = other:
suc (other) = me;
endtype
behaviour
hide b in
(prod([p,] (cld)
| [B]
cons (¢, b] (old)
| (D]
arbl(b] (me))
where
process arb[b] (id : 1dent) : noexlit :=
b ! iddat ! id ! rpdat 7 v ! valeur;:; arb([b] (suc(1id))
enaproc

Process
where

process

endproc
Process

endproc
endproc

cons [c,b] (val: valeur) : noexit =
consme [¢,b] (val) ||| consother[D]

H

consme [c,b] (val: valeur) : noexit
¢ ! get ! val ;
b ! iddat ! me ! rpdat ? new: valeur ; consme [¢c,b] (new)

h | iddat ! me ! rpdat ? new: valeur ; consme [¢c,b] (néew)

consother [b] : noexit :=
L ! iddat ! other ! rpdat noncons ., consother [b]

prod(p,b] (val: valeur) : noexit :=
prodme [p, b] (val) ||| prodother [b]

L

valeur

rocess prodme([p,b] (val: valeur) noexit :=

p ! put ! new ; b ! 1ddat ! me ! rpdat ! new ;¢
prodme (p, b] (new)
L

b ! iddat ! me ! rpdat ! val ; prodme[p,Db](val)
endprocC

process prodother [b] : noexit :=

b ! iddat ! other ! rpdat !noncons ; prodother (D]
endproc
Eﬂdprt:‘}e:

specification fip3[p, ¢, Dbu, br, bo]:noexit (* bupdate, brefresh, bother)

type prim 18
sorts prim (*! implementedby PRIM comparedby CMP_PRIM
printedby PRINT_PRIM *)
opns
iddat (*! implementedby IDDAT ¥*),
rpdat (*! implementedby RPDAT *),
put (*! implementedby PUT *),
get (*! implementedby GET *),
conf (*! implementedby CONF *) 1=~ prim
endtype
type valeur 1S
sorts valeur (*! implementedby VALEUR comparedby CMP VALEUR
printedby PRINT_VALEUR *)

OpnNs
old (*! implementedby OLD constructor =),
new (*! implementedby NEW constructor *),
noncons (*! implementedby NONCONS constructor *) :=> valeur
SUCC (*! implementedby SUCC *) :valeur -2 valeur
eqns
ofsort valeur
succe (new) = ola;
succ(old) = new;

endrype

type ident 18
sorts ident (*! implementedby IDENT comparedby CMP IDENT
printedby PRINT IDENT *)

opns

me (*! implementedby ME *),

other (*! implementedby OTHER *) :-=2> 1dent

SucC (*! implementedby SUC *) :ident =2 ident
eqgns

ofsort ident

suc (me) = other;

suc (other) = me;

endatype

behaviour
hide br,bo 1in
(pr@d[p,bu,br,bojtold}
| [bu,br,bo] |
cons [c,bu, br,bo] (cld)
| [bu, br,bo] |
arb|bu, br,bo] (me))
where

pProcess arb[bu, br,bo] (id : ident) : noexit =

bu ! iddat ! id ! rpdat ? v : valeur: arbo[bu,br,bo] (suc(id))
]
br ! iddat ! id ! rpdat ? v : valeur; arbo[bu,br,bo] (suc(id))

endprocC

process arbo [bu, br,bo] (id : 1ident) noexit :=
bo ! iddat ! id ! rpdat ? v : valeur; arb([bu,br,bo] (suc(id))
endproc

|

process cons|[c,bu,br,bo] (val: valeur) : noexit
consme[c,bu,br] (val) ||| consother [bO)]
where

process consme [c,bu,br] (val: valeur) : noexit
c ! get ! wval ;
(bu ! iddat ! me ! rpdat ! new : consnew[c,br]
[]
br ! iddat ! me ! rpdat ! old ; consme [¢, bu,br] (val))

[]{
bu ! iddat ! me ! rpdat ! new ; consnew[cC,Dr]
[]
br ! iddat ! me ! rpdat ! old ; consme [c, bu,br] (val))

endproc

Process consnew[c,br] : noexit =

¢ ! get ! new ; br ! iddat ! me ! rpdat @ new ; consnew (¢, br)
[]
br ! iddat ! me ! rpdat ! new ; consnew[cC,br]

endproc

process consother [bo] noexit =

bo ! iddat ! other ! rpdat !noncons ; consother [bo]
naproc
endproc

process prod|[p,bu,br,bo] (val: valeur) : noexit :=
prodme [p,bu,br] (val) ||| prodother [bo]
where

process prodme[p,bu,br] (val: valeur) : noexit

p ! put ! new ; bu ! iddat ! me ! rpdat ! new ; prodnew|[br] (new)

L] o

br ! iddat ! me ! rpdat ! val ; prodme(p,bu,br] (val) oy g P
endproc | 'y
process prodnew(br) (val: valeur) : noexit =

br ! iddat ! me ! rpdat ! wval ; prodnew[br] (val)

endproc

process prodother [bo] : noexit :=

bo ! iddat ! other ! rpdat !noncons ; prodother [bo]
endproc
endproc

endspec

——————————————————————————————— T o o g o ot e A A . 55 o 0
typedef enum {iddat, rpdat, put, get, conf} PRIM;
#define IDDAT() iddat

fdefine RPDAT () rpdat

#define PUT() put

#define GET () get

f#define CONF () conf

#define CMP PRIM(T1,T2) ((Tl) == (T2))

char *TEXT[] = {"idaat",“"rpdat®, "put",“"get","cont"};
#define PRINT PRIM(F,T) fprintf (F, TEXT[(T)])

typedef unsigned char VALEUR;

#define OLD() O

#define NEW() 1

#define NONCONS () 2

#define CMP VALEUR(X1,X2) ((X1) == (X2))

#define ENUM“VALEUR(X) for ((X) = OLD(); (X) <= NEW(); ++(X))
#define SUCC(T) (((T)==0) 2 1 : 0)

char *TEXTVAL[] = {"old", "new", "noncons"};

#define PRINT VALEUR(F,T) fprintf (F, TEXTVAL[(T)])

typedef enum {me, other} IDENT;

fdefine ME () me

#define QTHER() other

#define CMP IDENT(T1,T2) ((Tl) == (TZ2))

#define SUC(T) (((T)==me) ? other : me)

#tdefine E’RINT_IDEN"['(F,T} fprintf (F, ((T)==me) 7?7 "me" : "“"other")

———————————————————————————————— FIN DES SOURCES=—=== == mm e e e e

N.B. IL ne manque pas fip2.lotos

(I1 se peut que tu recolive 2 fols ce meme message)

