Verification in the Codesign process by means of
LoTos based model-checking

Fabrice Baray and Pierre Wodey

ISIMA /LIMOS Laboratory,
Blaise Pascal University Clermont Ferrand II,
BP 10125 F63173 Aubiere, France,

fabrice.baray@isima.fr,pierre.wodey@isima.fr

Abstract. When considering the design of complex systems, the de-
signers use ever more synthesis tools transform formal specifications into
an implementation of the system. Such tools are based on a given de-
scription of the system. The description is based on a model of compu-
tation including behaviour and communication mechanisms. The model
of computation depends on the level of representation of the system and
varies from the specification to the implementation. There exist generally
verification tools associated with the specification level but, for a more
implementation oriented model the verification is often inexistent. But
according to the semantic transformations in the design process (mainly
at the communication level), this verification is needed. As generally im-
plementation model of computation are composed of communicating fi-
nite state machines with datapath (CFSMD) in which the communications
are performed by mean of “hardware” signals (physical connections), we
propose to allow model checking verification on this model of compu-
tation. This paper presents the translation between the CFSMD and an
equivalent LOTOS description in which the communication basic mech-
anism is the rendezvous. Based on process algebra a LOoTOS description
is easily translated into a labelled transition system by existing model
checkers such as the CADP toolbox which we use in our experiment. We
apply this technique on the Cosmos Codesign environment in which the
deadlock free property has to be verified at each step of transformation
in the design, the equivalence of communication semantics being not as-
sured by the transformations. The deadlock free property is described
by temporal logic formulas handled by the XTL model checker included
in the CADP toolbox.

Keywords. Verification, Model-Checking, LOTOS, Communicating Fi-
nite State Machine, Codesign.

1 Introduction

For the design of complex systems the designers use ever more CAD tools working
at the system level [GM93,Wol94,GV95,ELLSV97]. Such tools offer generally the
following capabilities :

— formal or abstract specification of the system,

— verification at the specification level,

— architecture exploration linked with performance analysis,
— automatic synthesis of behaviour and communication,

— automatic code generation,

— simulation of the generated model.

Thus, such tools handle descriptions of the system based on model of com-
putation. A model is composed of a behavioural (control, action) model of indi-
vidual components and a communication model (communication mechanisms)
among components [LSVS98].

The abstraction level of the specification formalism and its model of compu-
tation offer the ability to perform easily formal verification by a model checking
technique for instance.

During the design, starting from the specification to the code generation,
the description evolves together with the model of computation. Actually, the
communication mechanisms at the specification level are quiet different from
those at the implementation level.

Furthermore, at the communication point of view, the generated system does
not implement a semantically equivalent mechanism as the one at the specifi-
cation level (which is too abstract for implementation). This induces that the
implemented system has not an equivalent global behaviour as the specified one.
So, the properties verified at the specification level are no more guaranteed at
the implementation level.

Thus, there is a need to be able to verify properties by applying model check-
ing at the implementation level or at any level in the design process [WB99]. This
needs to be able to generate a verifiable model from the model of computation
at the implementation level. This is the purpose of our paper.

The considered model of computation is the communicating finite state ma-
chines with datapath (CFSMD) where the only communication mechanism is the
“hardware” signal (connection net between components). This communication
mechanism is at a very low level of abstraction.

Model M Lotos |
with) specification |
Trandation| ———

tree XTL !

formulas

—_— &
 Abstract tool

Fig. 1. Tool architecture

From such a description our tool generates (Fig. 1) :

— a semantically equivalent description in LoTos language [ISO88,GL091] in
order to use model checking tools,

— temporal logic formulas allowing to verify the deadlock free property which
is at this time the only one considered.

The choice of LOTOS is motivated by :

— Lotos is an ISO standard [ISO88],

— Lotos is based on process algebra and induces clearly a Label Transition
System (LTS) needed for model checking,

— several verification tools accept LOTOS as entry.

The proposed translation has been applied considering the CADP toolbox
developed at INRIA [GS90,Gar89,FGM*91,Gar98], on one hand, and on the
Codesign environment Cosmos developed at TIMA Laboratory [1J95,VCJ96],
on another hand.

The CADP toolbox accepts LOTOS as entry and performs model checking on
a generated LTs. It includes also logic formula checking described in the XTL
language [SM98,Mat98].

The CosMoOs tool is a good representative of a complete and realistic Code-
sign tool.

This paper is structured as follow :

— introduction of an example used to illustrate the different part of the paper
and also pointing out a deadlock introduction in the CosMOS tool,

— formal presentation of the implementation oriented model of computation
including behaviour and communications (CFSMD),

— the translation of the communications which are based on different mecha-
nism in the implementation model and in the LoTOS model (rendezvous),

— the translation of the behaviour into LOTOS,

— XTL formulas automatically generated for deadlock free checking,

— the application on CosmMos Codesign tool.

2 [Illustrating example

As example, we propose a system composed of three processes : two producers,
and one consumer. The consumer accepts data from the two producers, but in
some states, it limits to one specific producer. The structural representation of
this simple example is given in figure 2.

PRODUCER PRODUCER

CONSUMER

Fig. 2. Structural representation

The behavioural representation of the consumer is given in figure 3. The
system is described in SDL [SDL88] specification language. Each component be-
haviour is described by a finite state machine. At this high level of specification,
the consumer has three possible states. In one state, it waits independently a
data from the two producers and in others states, it waits data only from one
producer. In the communication point of view, in SDL, the components have
gates and are communicating by asynchronous signal exchange through buffer.
In the example, Prodi_-Cons_Value are Prod2-Cons_Value two gates on which
consumer read data. When a component send a data, it is not blocked and the
data is placed in the buffer. When a component received a data, it is blocked

until a data is in the buffer.

process P_Cons

-

fi=1

m

etat_faux_faux

Prod1_Cons_Value
(recu)

<

Prod2_Cons_Value
(recu)

<

fi=f+1

dcl tinteger;
dcl finteger;
dcl temp integer;
dcl recu boolean;

B

Tests

t=t+l

Tests

Prod2_Cons_Value
(recu)

<

Prod1_Cons_Value
(recu)

t=t+1

Tests

fi=f+1

Tests

Fig. 3. Consumer behavioural representation

After one step of synthesis, a new description in a different model of compu-
tation is generated with a FIFO queue between the components (Fig. 4). There

are three differences between the two models :

— The structural view grows with a new component and new connections be-
tween all components.
— The producers and consumer behaviours change in terms of communication
protocol. The new communication principle implements hardware signals in
the computational model which becomes more concrete.
— The initial and generated descriptions are semantically different in term of
communication principle with the FIFO queue insertion.

3 Abstract model of communicating state machines

This section provides an abstract syntactic model definition of the considered
CrsMD. This model is presented by inference rules which are described with

PRODUCER PRODUCER

-
FIFO E

CONSUMER

Fig. 4. Example after one step of communication synthesis

Backus-Naur syntax style. A system is a set of components communicating
through signals. The behaviours of these components are finite state machines.
Let M = {My, My, ... ,M,_1} be a model composed of n = | M| components. A
signal e, used for the communication between components of the system, forms
a part of the global signal set £.

A signal communication is a non-blocking communication. Two components
connected with a hardware signal are communicating by using only two actions :

— a new value can be written on the signal, which contains only one value at
a time ;
— the current signal value can be read.

Hence to implement a more complicated communication protocol, many sig-
nals and many series of actions (read or write actions) are necessary. The blocking
communication is implemented with loop on a state until the expected value is
written by another component.

Each component M; is a tuple (7, V, E, S, \,) where :

— 7 is the component name (identifier) ;

— V is alocal variable definition list. A variable, denoted by v (identifier), has
an initial value vi ;

— FE is a signal definition list. Each signal e € E is used for communication
between M and other components of the system. Furthermore, we have E C
&

— S is the set of states (S = {so,...,5/5/—1})- Let s be a state, and so be the
initial state ;

— A is the “state-action” function ;

— ¢ is the transition function.

With each variable v (respectively signal e) is associated its type t(v) (re-
spectively t(e)). The two functions (state-action and transition function) are
presented by an abstract syntax. The set of terminal symbols is composed of ¢
for a constant value, v for a variable identifier and e for a signal identifier. And
the set of nonterminal symbols is composed of ex for the expressions, ai for the
internal actions (associated to a state), a for the action associated to a transition
in the model, and §, for the transition function definition.

— Expressions (ex)
ex = c|v|e|uopexy| exy bop exy (3.1

The uop and bop are unary and binary operators.
— Internal actions (ai)

ai m=¢|v:=ex; aig | if ex then aiy else aiy (3.2)

e ¢ corresponds to no internal action ;

e ; is the sequential operator ;

e v := ex is the assignment of a variable v with the value ez ;
e if is a conditional statement.

We denote by A the set of all internal actions. The A function of the machine
M is defined by A : S — Ai.
— Actions associated to transitions (a)

a:=¢l|ap; a1 |e:=ex|if exthen ag [else ai] (3.3)

e in action associated to transitions, assignment operation := is only ap-
plied to signals ;
e in the if statement, the expression ex is a boolean expression.

— Transition expressions (4,)
8a = (s,a) | if ex then 0° [else 6.] (3.4)

We denote by A, the set of all transition expressions. The function ¢ is
defined by 6 : S — A,.

The figure 5 shows a part of consumer behaviour presented in figure 3 with
the finite state machine model.

.- (81, a)
ai1
(Slaa) .
~ .= if (cond)
' then(s1,a1)
0a(s2) ais else(sq, as)

Fig. 5. Statemachine example on behaviour example

As example, one producer component (producerl) is defined in our syntac-
tic model by M = (producerl,Vyi, Epi,Sp1, Ap1,0p1) with Vpu = {}, Epn =
{bus_req, wr_req,wr_ack,data} and Sp1 = {so, s1, 2, 83, $4, 5 }. In order to il-
lustrate clearly the translation procedure, only two states s; and s, are detailed.
For these two states, the functions Ap; and d,; are defined in box example 1.

>\p1 (81) = ai; with at; = ¢
)\pl (52) = aiz With aiz =€
day = (52,01)

Op1(s1) = b4, with { and ay = bus.req = true
day = if (wr-ack = true) then d,; else d,;,
(5131(52) = (5a2 with and 6(1’2 = (52,5)

and 6“'2;, = (s3,data := 0; wr_req := true)

EXAMPLE 1. CFSMD example

4 Translation rules

LoTos is a high level specification language based on algebraic models CSP
(Communicating Sequential Processes) and CCS (Calculus of Communicating
Systems). A LoTos model of a system is composed of interconnected pro-
cesses via gates. Each process communicates through gates with rendezvous
communication protocol. For instance, if we consider a gate G, a general ren-
dezvous in LoTOS is written by G Oy ...O, where Oy ...O, are offers defined
by O =1V | ?Xp,... Xy : S. One offer like !V is the V' value emission on gate
G, and one offer like 7 Xg,... X, : S is n 4+ 1 receptions of values of type S on
gate G.

The translated model of CFSMD is composed of interconnected processes.
With each state machine is associated one LOTOS process. This section presents :

— the structure of the LOTOS generated model and the communication princi-
ples between these processes ;

— the translation of the internal behaviour of CFSMD into the LOTOS process
behaviour ;

4.1 Structure and communication principles

In order to reproduce the semantic of hardware signal in our communicating
finite state machine, one LOTOS process named signal is introduced between the
LoTos processes for each hardware signal. In figure 6, the structural view of the
generated LOTOS model of our example is presented.

(o]
PRODUCER
FIFO E

CONSUMER

PRODUCER /

Fig. 6. Structural view of LOoTOS generated model

The behaviour of the signal process, which is defined in a LoTOSs library,
is shown below in the example 2. It reproduces the semantic of the hardware
signal communication. A signal is a physical link which take only one value at a
time. A component can write a new value, or read the current value. The LoTOS
process is based on a choice statement ([]). In the read signal action the current
value is one offer of the synchronization. In the write signal action, the new
value is received and memorized. Hence this is a description of a non-blocking
communication with the rendezvous communication principle.

process signal[s](value : signaltype) : noexit :=
(slereadlvalue ; signal[s](value))
I
(slewrite?v : signaltype ; signal[s](v))
endproc (* signal *)

EXAMPLE 2. LoTOSs description of a signal process

4.2 Translation of internal behaviour of CFSMD

Each crsmbD is translated into one process. The state variable of the state ma-
chine is defined as a LOTOS process parameter. The transition between two states
is reproduced with a final recursive call of the process, with the new state value
in the state parameter.

The translation of the state machine behaviour is described by a set of infer-
ence rules. Only a commented subset of rules is presented in this paper. However,
this section presents some significant rules, in order to give a precise idea of our
translation method!. After three basic definitions, some notations and environ-
ments are defined. Then the global definition of the inference rules is described
for different syntactic parts of the model.

4.2.1 Basic definitions

L It is possible to contact the authors to obtain the global set of rules

Definition 1 (Inference rule). Let <onditions pe ¢ pyle where conditions =
C1,C2,- .- ,Cn must be satisfied to validate the transformation rule of a into b.
O

Definition 2 (Partially defined functions). Let Dy and Ds be two discrete
domains. We consider the function f defined on these domains :

f : Dl — D2
We define :

— L the undefined value. x € D1 ; f(x) =L means that f is undefined for the
value x ;

— let € Dy and y € D2, we denote by [y/x] the function f defined only for
the value x and such that [y/z](z) =y :

ifr; =2
Va; € Dy [y/z)(x;) = {?JJ_ fotherwise

a

Definition 3 (function increase). Let f and g be two functions defined on
domains D1 and D,. We denote by f < g the function defined by :

fﬂg:Dl—)DQ

Ve D, (fag)(x)= {g(w) if g(x) #L

f(x) otherwise

4.2.2 Environment definitions

Let LC be a LoTOs construction, and LC' =1 the empty LOTOS construc-
tion. The set of all LOTOS constructions which can be written is denoted by LC.
Let Id be the set of all identifiers. Two environments are defined :

— a = (m,ids, E,V) is a tuple constructed for each component of the system.
Let m be the component name, id, the state variable name of the component
behaviour, £ and V the signal and variable sets. The LoT0S description of
one component consists of one recursive process, with parameters like the
state variable name, component variables and gates for the signal communi-
cation. The environment « is used in order to translate the recursive call of
this LOTOS process ;

— [is a second environment used to translate the signals contained in the
expressions. The function 3 associates with each signal a local variable name
to contain the signal value :

B:1d— Id
e — v

Let Envg be the set of all possible environments 3. In order to translate
the signal communications, we define the function L used to generate a LOTOS
construct for all signals used in 3.

L:Envg — LC
B8 — LC
with Ve; such that B(e;) = v; L LC; = e;leread?v; : t;
and LC = LCO, LC’l, AN

(4.1)

4.2.3 Global definition of transformation rules

Five rule types are necessary for the translation. They correspond to the
expressions translation, internal actions translation, the action translation, the
transition translation and finally one component and the whole model transla-
tion.

—let B8 F ex — (B, LC) be the rule type for the expression ex translation.
In environment 3 the expression ex is translated into LOTOS construction
LC and returns a micro environment 3’ which contains the variable names
associated to signals used in the expression ;

— let (a,d4,08) F ai — (B, LC) be the rule type for the internal action ai
translation. In the couple of environment «, 3, and considering the d, tran-
sition expression, the internal action ai is translated into LOTOS construction
LC and returns the micro environment 3 ;

—let B+ a — (B, LC) be the rule type for the action a translation. In envi-
ronment 3, action a is translated into LOTOS construction LC' and returns
the micro environment 3 ;

— let (o, B) F 6, — (B', LC) be the rule type for the §, transition translation.
In the couple of environment «, 3, the transition expression é, is translated
into the LoTOs expression LC' and returns a micro environment 3’ ;

—let M — LC and M — LC be the rules for component and model
translation.

4.2.4 Inference rules for the translation

Signal identifier in expressions ez : according to the environment 3, the
translation of a signal identifier e is defined with the help of two rules. If the
signal has been used before, we just have to reuse its associated local variable.
Else we assume that the function “newid” gives a new variable identifier for the
signal e, and a new environment is constructed.

B(e) = ve

BFe— (L,ve) (422)

B(e) =L, ve = newid()
B+ e — ([ve/e],ve)

(4.2b)

Binary operator in expressions : assuming that bop operator is declared
for LoTos language, a constructed environment for the binary operator in ex-
pressions with the addition of environments is defined as follows :

ﬂ - erg — (ﬁl,LC()),
ﬂdﬂ’ F ery —r (ﬂ”,LC&)
B+ exq bopexy — (B < B", LCy bop LC)

(4.3)

Variable assignment for internal actions ai must be translated with
the let LoTOS operator such that :

Bt ex — (5", LC),
(a,éa,ﬂqﬂ’) F G/L.O — (ﬂ”,LCQ)
(a,04,0) Fvi=ex;aig — (B <6, (let v:t=LC) in (LCy)))

(4.4)

Signal assignment for actions a are translated into a LOTOS communi-
cation on gate denoted by e. This communication is prefixed by the word cwrite
defined in the LOTOS model. It means that this is an assignment on the signal.
The LoTOS communication is a rendezvous communication. In order to repro-
duce the signal semantic communication, this rendezvous is not implemented
directly between the signal interconnected components in the model, but with a
“signal LOTOS component” (see rule 4.9) :

BFex— (p,LC)
BFe:=ex — (0, elcwrite!(LC))

(4.5)

For instance, in example 1, the a; signal assignment on bus_req signal in d,,
action is translated with this rules and gives the LOTOS expression :
bus_req!cwrite!true.

Conditional statement for transition function ¢, : three rules are re-
quired to translate the conditional statement. The first one has a restrictive
condition such that it is applied when no else condition is present, and when
the condition is dependent only on one signal. Then a LOTOS communication
is derived with a predicate corresponding to the condition. The second rule is
applied when the condition depends on more than one signal. In this case, it is
not possible to create a LOTOS communication directly, thus a guarded LoTOS
statement is used. The third rule is like the second one, with a else statement and
the use of the L function defined in 4.1 to generate the LOTOS synchronization
operator :

BFex— (B",LCY), 8" =[v/s],
(a,848")F oy — (3', LCo)

(@ B) F if ex then 080 — (3, sleread?o - 7L ECy) -0
ﬁ Fer — <ﬂ”’[601> , ﬂ” 7& [v/s],
(a, B4 B") F 60 — (8, LCy) o

(a, B) Fif exthen 69 — (B < 3", ([LCL] — (LCy)))

B ex — (8", LCy),
(a, Bap") Fdg — (B',LCo) , LCy = L(B'),
(a,8<8")F 6y — (8",LCy) , LC} = L(B")
[LCs] — (LC§; LCY)
[| mot(LC%)] — (LCY ; LCl))>

(4.6¢)
(o, B) Fif ex then 09 else 0L — <ﬂlu,

For instance, the rule 4.6c¢ is used to translate the condition statement of d,,
in the model example 1. In the LOTOS generated expression presented below,
the value of wr_ack is saved in a LOTOS variable v defined with the 4.2b rule :

([v] = producerl]...](s2)
[] [not(v)] = (LCY;producerl]...](ss3)))

Next state, action in transition function §, : this rule generates a
recursive call for the process m, with the new values for all variables and the
next state of the component :

ﬁ"d%(ﬁﬁLC), CK:(’/T,Z-dS,E,V),
E:{eo,... ,e‘E‘,l} V:{UO,...,U|V|,1}
(aaﬂ) + (S,a) — <ﬁI7LC;ﬂ-[607' e 76|E|71](/L‘d871}07 s 7U\V\71)>

(4.7)

For instance, this rule is used to generate the recursive call of LOTOS process
in 64, day and d,y, actions in the model example 1.

Component M : a LOTOS process construction is defined for one compo-
nent. The process gates are derived from the signal set E such that one signal
corresponds to one gate. A variable in the component implies a parameter in the
LoTos process. For each state of component M, the following LOTOS construct
is used in a choice statement based on the sate variable value of the process 7. :

V — LC, N E—)LC2,
Vs; €S ait =X(s;), 6% =68(si) , ((mer,ids, E, V), 8%, L) F ait — (B, LC})
V@i LC{' = L(B3;)

(3

process 7w [LC5](id; : state, LC}) : noexit :=
lids eq so] = LCY ; LC}
(m,V,E,S,\,6) — ...
[l [ids eq s15/—1] = LCIHSI*I ; LC"’SF1
endproc
(4.8)

This rule can be used to generate the whole process statement, with the gate
parameters derived from E,;, the parameters obtained from the state variable
and V1, and with all the LoTOs constructions for all the states in S,i. The
global LoToOs statement for this component is :

process producerl [bus_req, wr_req, wr_ack, data)
(ids : state) : noexit :=
[ids eq so] = ...
[[ids eq s1] — (bus_reqlcwriteltrue ;
producerlbus_req, ... ,data)(s2))
[[ids eq s2] — (wr_ackleread?v : bool ;
([v] — producerl]...](s2)
[| [not(v)] — (datalcwrite!O of int ; wr_reqlcwriteltrue ;
producerl]...](s3))))
[|[ids eq s5] — ...
endproc

ExAMPLE 3. LoTOS description of producer process

System M : whole the system is described in a LOTOS specification and a
library (signallib) which contains signal process definition. The specification is
made up of all the instantiations of the processes associated to the components
and a LoToS synchronization to the signal process instantiation. initvalue is a
function which associates an initial value at each variable.

M={M;|0<i<n=|M|},
Mi = (7ri7 ‘/i) Ei) Si; Ai) 61)7

viel...n—1] Vi={vi} Vje[0...|Vi] - initvalue(v}) = vi’,
E; ={e},... ,e"Ei‘_l}

i=|E]—1
&= UE:L ! E;, &={eo,...,eg-1}

: - : (4.9)
specification 7, [eg, .. ,e‘g|_1] : noexit
library signallib endlib
behaviour
(mo [€B, -+ efpyy_a] (58, vi8, - vty DI
n—1 n—1 n—1 -n—1 -n—1
M -1 [60 yee ,e‘Enil‘il] (sg " vig ... ’M\anllfl))
|[6F), .. ,6‘g|,1]|
(signalleo](Z) |||
signalleie()(2))
where
LCy LCy ... LCy—1
endspec

The simple system shown in figure 4 has been translated in LOTOS by apply-
ing this rule. The generated LoTOS description has about 400 lines. It contains

some processes : two producers, one consumer, the FIFO queue and some signals
components. The structural view of the LOTOS description is given in figure 6.
A part of the global LOTOS statement for this system is in example 4

specification ProdCons[rd_req,rd_ack,bus_reql, wr_reql,wr_ackl,
bus_req2, wr_req2, wr_ack2, data] : noexit

behaviour
(
FIFO2[rd_req,rd_ack,bus_reql,wr_reql, wr_ackl,
bus_req2, wr_req2, wr_ack2, data](q0, nil, 20 fint) |||
Pllbus_reql,wr_reql, wr_ackl, data](q0) |||
P2[bus_req2, wr_req2, wr_ack2, data](q0) |||
Cl[rd_req,rd_ack, data](q0, 0o fint, 0o fint, 0o fint)
)
| [rd-req,rd_ack,bus_reql, wr_reql,wr_ackl,
bus_req2, wr_req2, wr_ack2, data] |
(

signal[rd_req](zvalue) |||
stgnal[rd_ack](zvalue) |||
signallbus_reql](zvalue) |||
signal[wr_reql](zvalue) |||
stgnal{wr_ackl](zvalue) |||
signallbus_req2](zvalue) |||
signal[wr_req2](zvalue) |||
stgnal{wr_ack2](zvalue) |||
stgnal_int[data](0o fint)
)

where

endspec

ExAMPLE 4. LoTOS description of producer process

5 Deadlock free property verification

The CADP toolbox is used for deadlock free property verification. According to
the operational semantics of LOTOS, the LOTOS system specification is trans-
lated into a (possibly infinite) Labelled Transition System (LTs for short), which
encodes all its possible execution sequences [SM98]. Only finite LTS can be gen-
erated with the CADP tool. An LTs is formally defined by :

Definition 4 (LTS). Let L = (Q, A, T, qinit) be a LTS such that :

— Q is the set of states of the program ;

— A is a set of actions performed by the program. An action a € A is a tuple
GVi,...V,, where G is a gate, and Vi,...V, are the values exchanged (i.e.,
sent or received) during the rendezvous at G ;

— T C Qx AxQ is the transition relation. A transition {q1,a,q2) € T (written
also q1 = q2) means that the program can move from state qi to state o by
performing action a;

— Qinit € Q is the initial state of the program.

O

For each state ¢ € Q, we denote by Pathd(q) the set of all distinct paths
(= q) = g1 =5 go ... issued from g (such that Vi, j ¢; # q;)-

Typically, when an expert designs a LOTOS specification, the graph is an-
alyzed by searching deadlocks which appear as states ¢ in the LTS such that
#(q,a,q'). No more communication can be done in the whole system if the be-
haviour reaches this sink state g. This technique is efficient when two conditions
are satisfied :

— the specification is written assuming this search of deadlocks. In other words,
it contains “true” blocking communications with the rendezvous semantics ;

— the deadlocks found are global in the system, meaning that no more com-
munication can be done in the whole system. With this technique, local
deadlocks in some processes are not detected. In a state, if one or more pro-
cesses never have communication, it is possible that they are waiting for
specific signal values. However other processes in the system continue their
communications. This is our local deadlock definition.

In our LTS, a transition corresponds to one signal utilization. A signal uti-
lization can be a reading (labelled cread) or writing (labelled cwrite) task. The
signal processes introduced in the translated specification are designed in order
to respect the signal semantics. Hence, sink states do not appear in our LTS.
Furthermore, local deadlocks detection is an important issue in the context of
systems derived from Codesign design.

Considering these aspects, correctness properties can be expressed with for-
mulas inspired from ACTL temporal logic, and verified on the LTS model using
the XTL model-checker [Mat98]. First, some notations (described in [SM98]) are
presented, and then our deadlock correctness property are discussed.

5.1 Preliminary notations
Definition 5 extracted from [SM98] is presented for comprehension.

Definition 5 (Action Formulas). Let a be an action formula as specified by
the following context-free grammar :

a = true
| {GW,...V,}
|«
| aAnd

where {GV1,...V,,} denotes an “action pattern”, G a gate and all the values
Vi match with the corresponding values exchanged when the action is performed.

An action formula o is interpreted over an action a € A. a satisfaction by
an action a of the model (L1s) L, written with a |=r, a (or simply a |= a when
the model L is understood), is defined by :

a [true always;
a|:{GV1,Vn} iﬁa:le,...Vn;
a E -« iff a £ a;
aEand if a Eaandal=da.

a

The satisfaction of a formula ¢ by a state ¢ € Q of a LTs L is written with
q =1 ¢ (or simply ¢ |= ¢ when the model L is understood).

5.2 The deadlock free property
In order to clearly present our verification, we introduce some formulas and
their semantics. First, consider a process which is waiting for a specific value

of a signal. The signal is read until it takes the expected value. This classical
behaviour induces in the generated L.Ts some state like ¢ in figure 7.

<(§>signal!cread?\/:t

Fig. 7. One loop on a state

The ¢ formula EB, is defined by the equation 5.1. It detects the loop on a
state, with a specific label a. The global deadlocks in our system do not appear
as sink states, the AB, formula (equation 5.2) can be used to characterize a
global deadlock on a state by evaluating ¢ = ABi,.. This formula is almost the
same as FB,, with a forall quantifier.

q = EB, iff 3¢ % ¢ such that ¢’ = ¢ and a |= « (5.1)

¢ AB, iff Vg % ¢, ¢ =qand a = a (5.2)

The XTL implementation of the EB, formula is given as follows :

def EB(LS:labelset) : stateset =
{ S : state where
exists T : edge among out(S) in
((target(T)=S) and (label(T) among LS))
end_ezists

}
end_def

In order to detect local deadlocks, we define a ¢ formula F, by the equation
5.3. A state ¢ satisfies F,, if and only if all the reachable states from ¢ satisfy £ B,,.
The second condition in 5.3 verifies that the transitions between two distinct
reachable states have actions not satisfying «. This is not useful in our translated
model because this is a deterministic model, and this condition is always true
for a state ¢ of a deterministic model which satisfy the first part of F,. Figure
8 illustrates the equation 5.3

g Fyiff VP = (¢ 2% ¢ 2y 22) € Pathd(q), (5.3)
Vi € [0;k] g; |= EB, and Vi € [0;k — 1] a; £~ « '
Hence, if fg € Q such that Ja € A such that ¢ | F,, then the model does
not contain any local deadlock.

s)
Transitions sequence @

o

Fig. 8. Temporal formula illustration

o

Let function succset be a transitive closure of the successor relation, which
can be achieved with a least fixed point function. Assuming that we have imple-
mented the succset function in XTL, the ¢ formula F, is defined with :

def F(LS:labelset) : stateset =
let Bs : stateset = EB(LS) in
{ S : state among Bs where Bs includes succset(S) }
end_let
end_def

This formula must be evaluated with all labels contained in A. These labels
can be automatically obtained with the analysis of the communication in the first
model. In the translation, only the labels used in the XTL formulas are generated.
The verification with this technique is thus a push button like function.

6 Application on COSMOS Codesign tool

6.1 COSMOS presentation

This work has been applied in the scope of the Codesign domain. In our study
we consider the CosMOs tool developed at TIMA laboratory [IJ95]. The main
characteristics of the CosM0s method and tool are the following :

— the specification of the system is independent of the implementation technol-
ogy of the different parts of the system. This high level of abstraction descrip-
tion is written in SDL (Specification and Description Language [SDL88]) ;

— the use of an intermediate format SOLAR, describing the system and the
communication channels among processes (CFSMD like);

— the implementation of processes in hardware or software and the choices
of communications implementation (for instance a choice of a communica-
tion protocol between two or more components) are performed by several
iterations of refinement steps decided manually by the designer ;

— automatic generation of the C-VHDL virtual prototype from the completely
refined SOLAR description of the system ;

— cosimulation environment of the virtual prototype.

CO-DESIGN DOMAIN
COSMOSTOOLS

SYSTEM SPECIFICATION

' VERIFICATION DOMAIN
1
1
(SDL) !
}
1
1
1

AUTOMATIC TRANSLATION

AUTOMATIC STEP To

INTERMEDIATE MODEL 1
(SOLAR)

VERIFIABLE MODEL

USER-CONTROLLED STEP T1 i (LOTOS)

USER-CONTROLLED STEP Tn-w VERIFICATION

TOOLS

INTERMEDIATE MODEL n

(SOLAR) F\\
1
VERIFIABLE MODEL
AUTOMATIC STEP J—‘ﬁ 1

(LOTOS)

1
VIRTUAL PROTOTYPE !
VHDL/C !

Fig. 9. Linking Codesign and Verification Domains

The design flow of the CosMO0s tool is a sequence of refinement steps. At each
step, a decision is taken by the designer, and the tool automatically integrates
this decision by transforming the SOLAR description of the system. Typically
this decision can be a communication synthesis among two components.

In such tools, the verification process is performed either by formal verifica-
tion on the entry specification level or by cosimulation at the virtual prototype

level [VCRT95,LNV*97]. But, as the refinement is decided by the designer, and
as the choice concerns communication synthesis, deadlocks can be introduced
inadvertently in the system at each refinement step. The detection of such dead-
locks is performed at the virtual prototype level. However this task is difficult
and uncertain because :

— deadlocks generally induce active loops in the generated model,

— the link between the generated code and the initial description is not easy
to establish,

— there can be several errors in the design at the virtual prototype level, yield-
ing several decisions to modify, but these are difficult to identify,

— the virtual prototype describes the system at a low level of abstraction, the
description is thus complex.

Our work on the verification of CFSMD can be used to verify the SOLAR
description at each step of Codesign (Fig. 9). Our tool architecture is completed
with a front end analyzer of SOLAR description like shown in figure 10.

| Solar iy r;ltact_ic Model M Lotos |

L file nalysis with _ specification |
- = and yY— Trandation| ———

| ra tool |

| Abstract tree tree XTL |

\ Generation formulas

Fig. 10. Tool architecture

6.2 Example results

Considering the consumer behaviour and the protocol communication choiced,
a deadlock appears in the system. This occurs when a non expected data is in
front of the FIFO queue. Table 5 presents the results of the verification tools on
the example. The graph generated by the CADP tool is minimized modulo strong
bisimulation. The time to compute the graph is calculated on a SUN ULTRA 30.
The last column presents the number of states satisfying the XTL formula F,,
with a = (wr_ack2!cread! false). The signal wr_ack2 is an acknowledgement for
the communication between the FIFO queue and the second producer. The F,
property verifies the correctness of the protocol in all execution cases.

On the reduced graphs, the XTL ABy,.. property gives us one global dead-
lock. But, if the system is considered in an environment of other communications,
this type of sink state disappears. In fact, no more communication is done be-
tween the producers, consumer and FIFO queue, but communications are made
between the environment processes. This is a local deadlock. Hence the XTL
F,, formula is performed on the LOTOS program to successfully find this local
deadlock.

Description Reduced Time to Number of | Number of

graph compute states states
satisfying | satisfying Fy
Batrue
states| trans.

FIFO size 1 322 | 1288 07 1 97

FIFO size 2 652 | 2608 13’ 1 179
FIFO size 2 with || 1304 | 6520 27 0 358

environment

ExAMPLE 5. CADP graph generation - XTL verification

7 Conclusion

In this paper, we have proposed an approach of verification of communicating fi-
nite state machines with datapath (cFsMD). This abstract model of computation
with a communication principle based on hardware signal has been translated
into an equivalent LOTOS description in which the communication basic mech-
anism is the rendezvous. Model checking verification techniques are applied on
the system in order to verify deadlock property.

Then, by using this translation, we propose an approach to link the Codesign
tool Cosmos with the CADP validation/verification toolbox and the XTL model-
checker. CosMo0s is based on refinements of the system and verification is needed
when the designer chooses the implementation of communications. We intend to
implement the verification as a push button function of the system. The results
show the usefulness and efficiency of our deadlock verification with temporal
logical formulas.

In order to apply this work with other tools, the extension of the CFSMD
model to different models of communication is to study. Future work will focus
on some abstractions of the communications. The goal is to study the influ-
ences of abstractions on the size of the generated LTS, and on the deadlocks
search. Furthermore, we will work on larger case studies, in order to examine
the complexity limits of this approach.

The study of other kind of properties which could be verified on such system
will lead to a more powerful tool. Perhaps it will interesting to generate XTL
formula which depend on the step of communication synthesis.

A other aspect is the study of verification based on IF language currently
developed at VERIMAG laboratory [BFGT99]. This language integrates prin-
ciples of communication which are different from the LoTOS rendezvous, and
it is introduced in a complete open validation environment. Then we will work
on the feasibility study of the system modeling with IF, and on the comparison
between the verifications on a LOTOS generated model and the verifications on
a generated IF model.

References

[BFGT99]

M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and
J. Sifakis. If: An Intermediate Representation for SDL and its Applications.
In Proceedings of SDL-FORUM’99, Montreal, Canada, June 1999.

[ELLSV97] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design

[FGM™91]

[Gar89]

[Gar98]

[GLO91]

[GMO3]

[GS90]

[GV95]
[1J95]
[1SO88]

[LNV197]

[LSVS98]

[Mat98]

[SDLSS]

[SM9g]

of Embedded Systems: Formal Models, Validation, and Synthesis. In Gio-
vanni De Micheli, editor, Proceedings of the IEEE, Special issue on Hard-
ware/Software Co-design, volume 85, pages 366-390. The institute of elec-
trical and electronics engineers, inc., March 1997.

Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse,
Carlos Rodriguez, and Joseph Sifakis. Une boite & outils pour la vérification
de programme LOTOS. In Actes du Colloque Francophone pour I’Ingénierie
des Protocoles, pages 479-500, September 1991.

H. Garavel. Compilation et vérification de programmes LOTOS. PhD the-
sis, Université Joseph Fourier, Grenoble, 1989.

Hubert Garavel. OPEN/CAESAR : An Open Software Architecture for
Verification, Simulation and Testing. In TACAS’98, Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, 1998.

S. Gallouzi, L. Logrippo, and A. Obaid. Le LOTOS, Théorie, Outils, Ap-
plications. In O. Rafiq, editor, CFIP’91 - Ingénierie des Protocoles, pages
385-404. Hermes, 1991.

R.K. Gupta and G. de Micheli. Hardware-Software Cosynthesis for Digital
Systems. IEEE Design € Test of Computers, 10(3):29-41, September 1993.
Hubert Garavel and Joseph Sifakis. Compilation and Verification of LO-
TOS Specifications. In R.L. Probert L. Logrippo and H. Ural, editors, 10th
International Symposium on Protocol Specification, Testing and Verifica-
tion, pages 379-394. IFIP, North-Holland, June 1990.

D.D. Gajski and F. Vahid. Specification and Design of Embedded
Hardware-Software Systems. IEEE Design €4 Test of Computers, 1995.
T.B. Ismail and A.A. Jerraya. Synthesis Steps and Design Models for
Codesign. IEEE Computer, February 1995.

ISO-8807. LoTos, a formal description technic based on the temporal or-
dering of observational behaviour. 1988.

C. Liem, F. Nacabal, C. Valderrama, P. Paulin, and A. Jerraya. Co-
simulation and Software Compilation Methodologies for the System-on-
a-Chip in Multimedia. IEEE Design € Test of Computers, 1997. special
issue on ”"Design, Test & ECAD in Europe”.

Luciano Lavagno, Alberto Sangiovanni-Vincentelli, and Ellen Sentovich.
Models of computation for embedded system design. In A.A. Jerraya and
J. Mermet, editors, System-Level Synthesis, chapter Models for system-level
synthesis, pages 45-102. Kluwer Academic Publishers, 1998.

Radu Mateescu. Vérification des propriétés temporelles des programmes
paralléles. PhD thesis, Institut National Politecnique de Grenoble, 1998.
CCITT. Recommendation Z.100: Specification and Description Language,
volume X.1-X.5, 1988.

M. Sighireanu and R. Mateescu. Verification of the Link Layer Protocol
of the IEEE-1394 Serial Bus (“FireWire”): an Experiment with E-LOTOS.
Springer International Journal on Software Tools for Technology Transfer
(STTT), 2(1), 1998.

[VCJI96]

[VCR*95]

[WB99]

[Wol94]

C.A. Valderrama, A. Changuel, and A.A. Jerraya. Virtual Prototyping
For Modular And Flexible Hardware-Software Systems. Journal of Design
Automation for Embedded Systems, 1996.

C.A. Valderrama, A. Changuel, P.V. Raghavan, M. Abid, T. Ben Ismail,
and A.A. Jerraya. A Unified Model for Co-simulation and Co-synhesis
of Mixed Hardware/Software Systems. In The European Design and Test
Conference ED& TC’95, Paris (France), March 1995.

Pierre Wodey and Fabrice Baray. Linking Codesign and verification by
mean of E-LOTOS FDT. In Bob Werner, editor, Euromicro 99, Digital
Systems Design, volume 1. IEEE Computer Society, September 1999.
W.H. Wolf. Hardware-Software Co-Design of Embedded Systems. Proceed-
ings of the IEEE, 82(7), July 1994.

