Systematic Correct Construction of
Self-stabilizing Systems: A Case Study

Ananda Basu?, Borzoo Bonakdarpour®*, Marius Bozga?, and Joseph Sifakis?

! Department of Electrical and Computer Engineering
University of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada, N2L 3G1
? VERIMAG
2 Avenue de Vignate, 38610, Gieres, France

Abstract. Design and implementation of distributed algorithms often
involve many subtleties due to their complex structure, non-determinism,
and low atomicity as well as occurrence of unanticipated physical events
such as faults. Thus, constructing correct distributed systems has al-
ways been a challenge and often subject to serious errors. We present
a methodology for component-based modeling, verification, and perfor-
mance evaluation of self-stabilizing systems based on the BIP frame-
work. In BIP, a system is modeled as the composition of a set of atomic
components by using two types of operators: interactions describing syn-
chronization constraints between components, and priorities to specify
scheduling constraints. The methodology involves three steps illustrated
using the distributed reset algorithm due to Arora and Gouda. First, a
high-level model of the algorithm is built in BIP from the set of its
processes by using powerful primitives for multi-party interactions and
scheduling. Then, we use this model for verification of properties of a
self-stabilizing algorithm. Finally, a distributed model which is observa-
tionally equivalent to the high-level model is generated.

Keywords: Component-based modeling, Verification, Self-stabilization,
Distributed algorithms, Reset algorithms.

1 Introduction

Distributed systems are constructed from a set of relatively independent com-
ponents that form a unified, but geographically and functionally diverse entity.
They remain difficult to design, build, and maintain, because of their inherently
concurrent, non-deterministic, and non-atomic structure as well as the occur-
rence of unanticipated physical events such as faults.

We currently lack disciplined methods for rigorous design and correct imple-
mentation of distributed systems. These systems are still being constructed in

*For all correspondence, please contact Borzoo Bonakdarpour at
borzoo@ecemail.uwaterloo.ca.

S. Dolev et al. (Eds.): SSS 2010, LNCS 6366, pp. 4-[I8]2010.
© Springer-Verlag Berlin Heidelberg 2010

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 5

an ad-hoc fashion in practice, mainly for two reasons: (1) formal methods are
not easy to use by engineers; and (2) there is a wide gap between modeling for-
malisms and automated verification tools on one side, and practical development
and deployment tools on the other side. In fact, it is not clear how existing re-
sults can be consistently integrated in design and implementation methodologies.
Formalisms such as process algebras [I], I/O automata [I3L17], and UNITY [9]
have been used for modeling and reasoning about the correctness of distributed
systems. These methods are either too formal to be used by engineers, or, they
require the designer to specify low-level elements of a distributed system such
as channels and schedulers [I7]. Numerous techniques and algorithms have also
been introduced for adding reliability and fault-tolerance to distributed sys-
tems. Moreover, an interest has recently emerged in verification of distributed
algorithms. While these approaches play an important role in formalizing and
achieving correctness of distributed algorithms, we believe that a more practical
systematic approach for modeling, verification, and as importantly deployment
of distributed systems is still required.

In this paper, we apply a methodology which consistently integrates modeling,
verification, and deployment techniques, based on the BIP (Behavior, Interac-
tion, Priority) framework [43]. BIP is based on a semantic model encompassing
composition of heterogeneous components. In contrast to all other formalisms
using a single type interaction (e.g., rendezvous, asynchronous message pass-
ing), BIP uses two families of composition operators for expressing coordination
between components: interactions and priorities. Interactions are expressed by
combining two protocols: rendezvous and broadcast, which makes BIP more ex-
pressive than any formalism based on a single type of interaction [5]. Supporting
tools of BIP’s theory include techniques for model verification [I5] as well as for
generating from a high-level model an observationally equivalent multi-threaded
or distributed implementation [3L6L[7].

To illustrate our methodology, we focus on self-stabilizing systems. Pioneered
by Dijkstra [10], a self-stabilizing distributed algorithm guarantees that starting
from an arbitrary state, it converges to a legitimate state (from where it satis-
fies its specification) and remains thereafter. As Dijkstra points out in a belated
proof of correctness of his token ring algorithm [11], designing and deploying
correct self-stabilizing algorithms is not a trivial task at all, although it initially
seems straightforward. We describe our methodology to overcome these diffi-
culties using the distributed reset self-stabilizing algorithm [2]. We demonstrate
how refinement of a simple algorithm to a less high-level model involves many
subtleties that may dramatically affect the correctness of the refined model. We
also show how BIP facilitates rigorous modeling, verification, and performance
analysis of the distributed reset algorithm. Our methodology involves three steps:

— The starting point is a high-level BIP model of a distributed system ob-
tained as the composition of a set of components. This model represents
a system with a global state and atomic transitions. Interactions may lead
the system from one global state to another. Modeling a distributed system
in such a high-level model confers numerous advantages such as modularity

6 A. Basu et al.

by using abstract behavioral components and faithfulness as coordination is
directly expressed by using abstract multi-party interactions instead of low-
level primitives. We also show how different functions of a self-stabilizing
system (e.g., normal as well as recovery) can be elegantly modeled in BIP in
an incremental manner.

— We use this compact high-level model for verification of safety and liveness
properties that any self-stabilizing algorithm must satisfy. These properties
include closure, deadlock-freedom, and finite reachability of the set of legit-
imate states. We verify these properties on our BIP model for distributed
reset by using model checking techniques.

— Finally, a multi-threaded or distributed executable C++ code is automati-
cally generated from the high-level model for simulations and experiments
[BLI6L[7]. This C++ code faithfully represents an actual multi-threaded or
distributed implementation of the high-level model. It is obtained by ap-
plying two transformations preserving observational equivalence [3L[6L[7]: (1)
multi-party interactions are substituted by protocols based on asynchronous
message passing; (2) the state of a component is undefined (due to concur-
rency) when it performs some internal computation.

Organization of the paper. In Section Pl we review the distributed reset
algorithm and basic concepts of the BIP framework. In Section [3, we formally
model distributed reset in BIP. Section [is dedicated to verification of distributed
reset. Finally, we conclude in Section

2 Background

2.1 Distributed Reset

Intuitively, distributed reset [2] augments functionality of a distributed system
with a subsystem where each process can initiate a global reset to a predefined
global state. Each process is associated with a set of adjacent processes with
which it can communicate. At any time instant, an alive process may crash
which results in change of the list of adjacent processes. The reset subsystem
consists of the following three layers (see Figure [[la):

In the tree layer, adjacent processes communicate in order to construct and
maintain a rooted spanning tree throughout the alive processes. Thus, any
changes in the adjacency relationship of processes eventually result in corre-
sponding changes in the structure of the spanning tree. The tree layer is self-
stabilizing in that starting from any arbitrary topology and initial structure,
construction of a rooted spanning tree within a finite number of steps is guaran-
teed. Thus, faults such as process failures and local variable corruptions do not
result in permanent destruction of the spanning tree. Communication among
these processes establish Channel 1 in Figure [Tla.

The application layer may locally choose to initiate a global reset. In this
case, the corresponding local component sends a request to the local wave layer
described next (see Channel 4 in Figure [[}a).

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 7

Process 1 Process 2

(4) (4)
(2) (2

(a) Two adjacent processes in (b) A simple BIP model.
distributed reset.

Fig. 1. Preliminary concepts

When the wave layer receives a reset request from the application layer it
forwards the request to its parent in the current spanning tree until the request
reaches the root. Once the root receives a reset request, it initiates a diffusing
computation as follows. First, the root resets its own state and then initiates
a reset wave. The reset wave travels towards the leaves of the spanning tree
and causes the wave component of each encountered process to reset its state.
When the reset wave reaches a leaf process, it bounces as a completion wave
that travels towards the root process. A process propagates the completion wave
to its parent if all its offsprings are complete (see Channel 3 in Figure [la).
When the completion wave reaches the root, the global reset is complete. Each
wave component maintains a session number in order to ensure that concurrent
resets do not interfere. The wave layer is also self-stabilizing in the sense that
starting from any arbitrary configuration of the wave components, the algorithm
guarantees an eventual global reset within a finite number of steps. The wave
layer always assumes the existence of a sound rooted spanning tree. Thus, the
only piece of information that a tree component shares with the corresponding
local wave component is the identity of the parent process in the spanning tree
(see Channel 2 in Figure [Tla).

2.2 The BIP Framework

In the BIP language [16,4], an architecture is characterized as a hierarchically
structured set of components obtained by composition from a set of atomic
components. Composition is parameterized by sets of interactions between the
composed components. The BIP toolset has a compilation chain allowing the
generation of different types of C++ code (e.g., monolithic, real-time, multi-
threaded, distributed, etc) from BIP models. The generated code is modular
and can be executed on a dedicated middleware consisting of one or more

8 A. Basu et al.

Engines that orchestrate the computation of atomic components by executing
their interactions. Hierarchical description allows incremental reasoning and pro-
gressive design of complex systems. Priorities among interactions allow specify-
ing scheduling policies in BIP.

A BIP component is characterized by its interface and its behavior. An inter-
face consists of a set of external ports used to specify interactions. Each port
p is associated with a set v, of variables which are visible when an interaction
involving p is executed. It is assumed that the ports and associated variables
of atomic components are disjoint. The behavior of atomic components is de-
scribed as a finite state automaton extended with data and functions given in
C++. A transition of the automaton is labeled by (1) a port p through which an
interaction is sought, (2) a function f describing a local computation, and (3)
a guard g on local data. For a given control state, a transition can be executed
if its guard ¢ is true and an interaction involving p is possible (we precisely
define the notion of interactions later in this section). Execution of transitions
is atomic: it is initiated by the interaction and followed by the execution of f.
A component may have internal ports as well. Transitions labeled by internal
ports are executed independently and do not require initiation of an interaction.

Composition consists of applying a set of connectors to a set of components.
A connector is defined by:

1. its support set of ports {p1,...,pn} of the composed components;
2. optionally an exported port p by the connector and the associated variables;
3. its set of interactions, that are, subsets of the set {p1,...,p,}. Each inter-
action a = {p;, ...p;, } is annotated by
(a) a guard G, Boolean expression involving variables associated with the
ports p;, involved in the interaction o
(b) an upstream transfer function U specifying flow of data from variables
associated with the support set of ports towards the associated variables
of the exported port;
(¢) and downstream transfer functions D,,,...,D;, specifying flow of data
from the variables associated with the exported port towards variables
associated with the support set of ports.

When it is clear from the context, we simply denote a connector by only its
support set of ports (i.e., (p1...pn)). The set of interactions associated with a
connector is defined using a typing mechanism of ports in its support set of ports.
We distinguish two types of ports: synchron and trigger. Any set of support ports
that is either maximal or it contains a trigger denotes a valid interaction. Intu-
itively, a synchron is a passive port, and needs synchronization with other ports.
In other words, such a port cannot initiate an interaction without synchronizing
with other ports. However, a special case (such as the one in Figure [[Ib) is a
connector that only involves synchrons. Such a connector denotes a rendezvous
and requires all ports to participate. On the other hand, a trigger is an active
port, and can initiate an interaction without synchronizing with other ports. The

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 9

global behavior resulting from the application of a connector to a set of compo-
nents is defined as follows. An interaction o = {p;, ...p;, } of the connector is
enabled only if for each one of its ports p;;, there exists an enabled transition in
some component labeled by p;;. Execution of the interaction involves two steps:

1. a temporary variable v is assigned the value U(vp, ..., Up,,);
2. the variables v;; associated with the ports p;, are assigned values D;, (v).

The execution of an interaction is followed by the execution of the local com-
putations of the synchronized transitions. A composite component is recursively
obtained from a set of atomic or sub-components by successive (i.e., acyclic) ap-
plication of connectors. The support set of any connector contains ports exported
either by sub-components or other existing connectors.

In Figure [Ilb, we provide a simple composite component. It is composed of
three atomic components By, By, and Bs. Each atomic component Bj holds
an integer variable vy, exported through an external port pg. Additionally, the
component has an internal port ix which triggers the execution of an internal
computation defined by the function fj. The ternary connector defines the inter-
action {p1, p2, ps} which is a rendezvous among external ports pi1, pa, and p3. As
a result of this interaction, following the definition of upstream an downstream
transfer functions, each component receives the maximum of the exported val-
ues. Notice that the exported port of the connector belongs to the interface of
the composite component, that is, it can be used for further interactions.

3 Modeling Distributed Reset in BIP

We model distributed reset according to the BIP system construction methodol-
ogy: (1) designing the behavior of each atomic component (i.e., an automaton
extended by variables and ports), (2) applying synchronization mechanisms for
ensuring coordination of distributed components through interactions, and (3)
specifying scheduling constraints by using priorities. We apply this methodology
to model the wave layer and the tree layer in a modular manner in Subsections 3]
and [3.2] respectively. Then, we add cross-layer connectors in Subsection B3l We
also systematically model normal, recovery, and faulty behaviors of distributed re-
set using independent interactions. From the wave and tree components designed
in this section, one can incrementally build a distributed system equipped with
the distributed reset functionality according to a topology of interest.

3.1 The Wave Layer

The wave layer is only concerned with achieving a self-stabilizing diffusing compu-
tation to accomplish a distributed reset. Each process in the distributed system
contains a wave atomic component.

10 A. Basu et al.

@ @
pReset, index. f, sn | [pRequest, index. 1

wyisn+ 1)

pComplete PReset Il
pComplete g s Q
A A HEH 3
HE = W
PpReset o BT f H
NEER b 5
52 2
o PReset KN % 3 8
% . ol z
. /' myReset ; g +
myRequest s, = § =
) &

pPe, index,f | PRequest pComplete, index, |
® ®

(a) Behavior and interface (b) Interactions

Fig. 2. Normal operation of the wave layer

Normal Operation. We start with modeling the normal operation of the wave
layer, where each component works correctly in the absence of faults.

Interface and Behavior

— (Ezported Ports) A wave component has the following four ports: (1)
pRequest for propagating a reset request from a child to its parent, (2) pReset
for enforcing a child to reset its state by the parent, (3) pComplete for in-
forming a node that its subtree has completed diffusing computation, and
(4) pPc for identifying adjacent processes that are neither a child nor a par-
ent. As can be seen in Figure 2la, each port is associated with a subset of
variables of the component.

— (Variables) Each component maintains the following variables: (1) an in-
teger index to represent the unique index of the component, (2) an integer
f to keep the index of the parent process in the spanning tree, and (3) an
integer sn for the session number of the current ongoing reset.

— (Automaton) A wave component has three control states: NORMAL, INIT, and
ReseT (see Figure Bha). Initially, all components are in the NORMAL control
state. A wave component may move to T by either enabling the myRequest
internal port (e.g., from the application layer of the same process) or when a
reset request is received via the pRequest port. This move occurs during the
request wave. Next, the component moves from T to RESET and resets its
state when the port pReset is enabled during the reset wave. A component
may also move from vT to RESET on port pReset, if it was not involved
in the request wave. Finally, a wave component moves back to NORMAL on
port pComplete, when its subtree has completed the completion wave. A
completed wave component is either in NORMAL control state or in it if
another reset has already been initiated in its subtree. The pComplete self-
loop at this control state is added for this reason.

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 11

Interactions

Notice that each process is associated with a set of adjacent processes according
to a topology. The static design of connectors should provide the potential of
communication between any two adjacent processes depending upon the topol-
ogy. Nonetheless, the actual communication in the wave layer should occur only
between processes that are allowed to do so by the parent-child relationship
determined by the tree layer. Let w be a wave component whose adjacent neigh-
bors are wy - - - w,. We categorize the interactions based on the three waves of
the wave layer:

— (Request ~ Wave) The first set of connectors s
{{(w.pRequest)(w;.pRequest)) | 1 < i < n}. These connectors allow
the component w at NORMAL to synchronize with a component w;, that is
already in control state iviT: w; synchronizes with w by taking the pRequest
self-loop at control state miT. Figure @2lb presents an example, where w has
two adjacent processes w; and wy. The connectors between pRequest ports
are associated with a guard to ensure correct parent-child relationship and
bottom-up flow of requests (e.g., w.index = wy.f). Hence, if two processes
are adjacent due to the topology, but not in any parent-child relationship,
they do not interact to send or receive reset requests. This guard is present
in almost all of the connectors in the wave layer. Symmetric conditions in
adjacent processes (e.g., w; is parent of w) are omitted from the figure
for simplicity. Recall that since BIP allows us to associate ports with
variables, evaluation of the above guard does not require explicit use of
shared memory.

— (Reset wave) The second set of connectors is {{(w.pReset)(w;.pReset)) | 1 <
i < n}. Once the root (of the spanning tree) wave component moves to
INIT, it goes to RESET without synchronizing on port pReset. This is man-
aged through specifying an internal transition from ivT to RESET with guard
(w.f = w.index). Once a process is in RESET, its children can go to RESET
from either NnORMAL or iniT by synchronizing on port pReset. In other words,
a child whose parent is in RESET can reset its state regardless of its past
desire to initiate a global reset. A parent synchronizes with its resetting chil-
dren through the pReset self-loop at control state rReseT. The guard of these
connectors ensures that the session number of a child is one less than the
session number of its parent. Finally, when the reset connector gets enabled,
it increments sn of the child component to mark the session number of the
current reset wave.

— (Completion wave) A process declares completion only if all its children are
complete (which essentially means its entire subtree is complete). The com-
pletion mechanism inherently requires a multi-party rendezvous. However,
our design should be flexible in that it allows bypassing adjacent processes
that are neither a parent nor a child. To this end, we construct a hierarchi-
cal connector as follows. First, we include a connector between pPc ports
of w and w;, where 1 < ¢ < n, which gets enabled when w and w; are not
in a parent-child relationship. This connector exports the trigger port pX,,

12 A. Basu et al.

PpRecy, index. f, sn

sn=(sn + rand())3%K

5

PRecyy

=" f5n
sn=(sn + rand())3%K PRecy, index. /. sn PRecys, index. f, sn PRec. index. . sn |
L d L J L4

(a) Faulty behavior (b) Recovery type 1 (c) Recovery type 2

Fig. 3. Self-stabilization of the wave layer

which gets enabled when the completion of w; is irrelevant to w. Now, the
pair of pX, and w;.pComplete constructs another connector, which exports
the port pY,. This port is present in the rendezvous that covers all w; compo-
nents. The full interaction can be characterized by the following rendezvous:
((w.pComplete)pY ;pY,---pY,), where pY, = ((pX,) + (w;.pComplete))
and pX,; = ((w.pPc)(w;.pPc)). The ‘+’ operator denotes a choice between
two enabled ports.

The set of legitimate states for two wave components w; and ws is the following:

Sw = Ywy,ws : ((wr.f = wa.index N\ — wo.RESET) =
(—wy.RESET A wy.sn = wa.sn)) A
((w1.f = we.index N wy.RESET) =>
((—w1.RESET A wa.sn = wi.sn + 1) V wa.sn = wy.sn)).

Faulty Behavior. In distributed reset, faults can lead a process to reach any
arbitrary state in =S, (See FigureBla). The transitions labeled by internal port f
cause a process to go to RESET from either /viT or NORMAL without synchronizing
with its parent. Faults labeled by fSn are self-loops that corrupt the session
number of a process by executing the C++ instruction sn = (sn + rand())
% K, where K is the maximum number of processes. To make the occurrence
of faults a random event, we associate the guard of fault transitions with a
probability prob. Notice that the union of transitions in Figures Zla and Bla may
lead a wave component to reach any arbitrary state. Finally, fault transitions are
labeled by internal ports making their occurrence independent of synchronization
constraints.

Self-stabilization

Interface and Behavior. We model self-stabilization of the wave layer based
on violation of either conjuncts of S,,. Essentially, the recovery mechanism should
ensure that starting from any state in =S, the entire distributed system can
reach a state in S, within a finite number of steps. For the first conjunct

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 13

(see Figure Btb), first, we consider the case where a parent process is not in
RESET, but one of its children is. To resolve this case, it suffices for the child to
(1) move to the control state where its parent is (i.e., either nORMAL through
synchronization on port pRec;; or T through port pRec,5), and (2) copy the
session number from the parent to ensure consistency. Then, to resolve the case
where a parent and its child are in the same control state but their session num-
bers differ, the processes synchronize on port pRec,; and the child copies the
parent’s session number.

For the second conjunct (see Figure Blc), if a process and one of its children
are in RESET, but their session numbers differ, then they synchronize on port
pRecy; and the child copies the session number. Finally, if a process is in RESET,
but one of its children is not in ReseT and the child’s session number is not one
less than its parent’s, then they synchronize on port pRecyy and the child copies
the session number.

Interactions. Recovery connectors define interactions on corresponding ports
between adjacent components. Thus, the set of connectors is
{{(w.pRecj,)(wi.pRecy,)) | (i = 1.n) A (j = 1.2) A (k = 1..3)}, where w; is
adjacent to w.

3.2 The Tree Layer

The tree layer is concerned with a self-stabilizing algorithm for constructing a
rooted spanning tree (see Figures dla and @lb)

Interface and Behavior

— (Exported Ports) Adjacent processes in the tree layer communicate via
three ports: (1) pForest when two adjacent processes identify two different
roots, (2) pNeighbor when two a parent and a child identify an inconsistency
between them (i.e., existence of multiple roots, incorrect shortest distance to
the root, or a root process that is not self-parent), and (3) pPc when a parent
process crashes. Port pCycle is used for cross-layer interactions described in
Subsection

— (Variables) Each tree component maintains the following variables: (1) an
integer index to represent the unique index of the component, (2) an integer
f to keep the index of the parent process in the spanning tree, (3) an integer
root that contains the index of the root process, and an integer d whose
value is the distance of the process to the root. The value of index is equal
to that of the corresponding wave component and is specified statically. The
value of f, however, is determined at runtime across the tree layer. Thus, the
tree and wave components of a process need to communicate to maintain
consistency. We address this issue in Subsection 3.3l Each component also
maintains an array N, which contains the index of all adjacent processes.

— (Automaton) Initially, all processes are alive and in the up control state.
Faults can alter the value of variables f, root, and d arbitrarily through the

14

A. Basu et al.
G: (tr,f= ta.index) A ((tr.root # tproot) v (t.d # tp.d+1))
D: ty.root = ty.root; tr.d = tp.d+1;
G: (ty.root < to.root) v ((t.root = ty.root) A (t.d # t.d+1))
D: ty.root = tyroot; ti.f =tof ; t.d = trdt];
[. A
] 5
pForest, index. /. root, d| | pCycle, index. f < <
- s |
PpNeighbor pPe bt pCycle pPc 5 & pPc_| [pCycle b
D:wif:=tf; | processy process; D:waf:=bf;

pNewParent pNewParent
[pPe.index.s | [pNeighbor. index. . root, d Lz} w2
\J L4
(a) Tree component (b) The tree layer and cross-layer inter-
actions

Fig. 4. The tree layer

internal port fCorrupt. Also, each process may crash and go to the control
state pown through the internal port fCrash. A crashed process may get
repaired and return to the up control state through internal port pRepair.
Thus, faults can potentially break a rooted tree into forests, create cycles,
and cause (local or global) inconsistencies. A tree component participates in
resolving the above issues when it is in control state up. A local inconsistency
is detected in a tree component through the internal port pLocal associated
with a guard which indicates a discrepancy in the value of either root or d.
A cycle can also be detected locally, if the distance of a process to the root is
greater than the maximum number of processes K. A tree component fixes
a local inconsistency and breaks a cycle by setting root = f = indexr and
d=0.

Interactions

Let t be a tree component whose adjacent processes are t1..t,,. The interactions
between tree components resolve the following issues to construct a rooted span-
ning tree. Recall that interactions between tree components construct Channel

1 of Figure [T+a:

— (Process crashes) The set {{(t.pPc)(t;.pPc)) | 1 < i < n} of connectors

are used to inform a process that its parent has crashed. As can be seen
in Figure @ this connector is enabled when one participating component
is in up and the other process is in bown control state. The guard of the
connector enforces the parent-child relationship. Execution of this interaction
invalidates the variables of the child process whose parent is crashed.

(Parental inconsistencies) A connector in the set
{{(t.pNeighbor)(t;.pNeighbor)) | 1 < ¢ < n} is enabled when a child and
its parent either do not agree on the same root, or, the child is not located
one step farther of its parent from the root. In either case, the child simply
fixes the root index and its distance according to the parent through the data

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 15

transfer mechanism of the connector (see the guard G and transfer function
D of the connector in Figure @b).

— (Rooted forests) A connector in the set {{(t.pForest)(t;.pForest)) | 1 <
i < n} is enabled when multiple roots are detected by a tree component.
This situation occurs when there exists an adjacent process whose root has
a higher index or the process offers a shorter distance to the root. In this
case, the process updates its root, f, and d variables via the data transfer
mechanism (see the guard G and function D of the connector in Figure @b).

Finally, we define the set of legitimate states of the tree layer, where a rooted
tree that spans over all alive processes exists, as follows:

S; = (k = max{t.indez | t.ur}) A
(V1 | tr.up:: (tindex =k =
(t1.index = t1.root A ti.index =t1.f A t1.d=0)) A
(ty.index # k=
(Htg €t1.N (tl.f =to.index N t1.d=1ta.d+ 1A
Vi3 € t1.N 1 to.d < t3d))))

3.3 Building Distributed Reset

Given the tree layer and wave layer components, one can easily compose them
and incrementally build a distributed reset system. To this end, we add cross
layer interactions as follows. When a cycle or multiple forests are detected in the
tree layer, a tree component may choose a new parent from its neighbors. In this
case, the wave component of the same process has to update its parent as well,
so the subsequent resets complete maturely (see Channel 2 in Figure [[}a). Thus,
we augment each wave component with a pNewParent port, which synchronizes
with pCycle or an exported port by the pForest connectors to update its parent
(see Figure @lb).

4 Model Checking Distributed Reset

For a finite instantiation of the algorithm by a grid topology, we start by con-
structing a finite representation of its overall behavior as a flat labeled transition
systems (LTs) using BIP state-space explorer [4]. States correspond to configu-
rations reached by the algorithm, and transitions taken to move from one con-
figuration to another are labeled by the interactions introduced in Section Bl On
the LTs model, we have evaluated a set of temporal logic formulas encoding the
key properties of distributed reset, using the EVALUATOR tool of CADP [12/[14].

We express the properties using a generic characterization of interactions (i.e.,
labels). We add a self-loop labeled steady to each legitimate state. For the wave
layer (respectively, tree layer), all these self-loops participate in a global ren-
dezvous interaction whose guard satisfies expression S,, (respectively, S;) intro-
duced in Section[3l We label each internal fault transition introduced in Section
Bl by fault. This labeling makes the occurrence of a fault an observable event.

16 A. Basu et al.

We label the remaining interactions by prog. This includes recovery as well as
interactions that participate in constructing a spanning tree at the tree layer and
interactions that contribute in achieving a global reset at the wave layer.

We provide the exact definition of properties in regular alternation-free pu-
calculus which is the temporal logic formalism handled by the EVALUATOR tool.
This logic is an extension of the alternation-free p-calculus with action formulas
as in ACTL and regular expressions over action sequences as in PDL. The full
syntax and semantics can be found in [I4]. We consider the following properties
that any self-stabilizing system must satisfy:

— (closure) legitimate states are preserved by taking non-fault actions (only
faults may reach an illegitimate state from a legitimate state):
¢1 : [any™] ((steady)T = [prog](steady)T

— (deadlock-freedom) from any reachable state, there exists an outgoing pro-
gram transition:
¢2 : [any*|(prog)T

— (reachability) starting from any state, a legitimate state can be reached by
taking only program actions (there always exist a path from any state to a
legitimate state):
¢3 : [any*](prog*)(steady)T

— (convergence) starting from any state, a legitimate state is eventually reached
by taking only program actions (the algorithm never reaches a cycle outside
legitimate states):
¢4 : [any*]-vX. (—(steady) T A (prog) X)

In order to reduce the complexity of verification of distributed reset, we utilize a
compositional approach. Specifically, we infer the correctness of the composite
distributed reset algorithm by verifying the correctness of the tree layer and wave
layer individually. However, such compositional verification needs demonstration
of interference-freedom between components. Let C; and C5 be two components.
We say that C7 and C5 do not interfere with each other if whenever C satisfies
some property ¢ and Cy satisfies some property ', then their “composition”
(e.g., using BIP interactions) satisfies ¢ A ¢'.

Theorem 1. The composition of the tree layer and wave layer in the distributed
reset algorithm is interference-free for properties ¢;...¢4.

The immediate consequence of Theorem 1 is that we can verify the correctness
of the layers of distributed reset independently. In order to generate L.Ts models
of manageable size for a reasonably large number of processes in the algorithm
we manually applied abstraction, live analysis [8], and we simplified the sequence
of occurrence of faults by allowing multiple types of faults occurring at the same

! We recall that ¢ = (a)y iff 3¢ % ¢’ : ¢ |= @, where ¢ and ¢’ are two states, = is a
transition labeled by a, and ¢ is a formula. Also, ¢ = [a]p iff V¢ = ¢’ : ¢’ |= ¢. The
label any denotes any transition label, i.e., {steady, prog, fault}, T denotes logical
true, and * denotes a sequence. Finally, v and p respectively denote the largest and
smallest fixpoints in the p-calculus.

Systematic Correct Construction of Self-stabilizing Systems: A Case Study 17

Table 1. Verifying distributed reset using classic model checking

n states transitions generation time ¢1 ¢2 @3 Pa

4 56 649 <1 <l<l<lxl
tree 6 7022 81390 29 11 2 3
9 2456936 59409357 4000 10 23 19 145
4 996 5840 <1 <l<l<lxl
wave 6 27590 189523 36 2 2 3 5
9 1539001 7077649 2500 5 7 6 93

time. Table [summarizes the results about the size of the models in terms of
number of processes in the grid. The LTS generation time as well as the time
needed to verify the properties considered are all in seconds. All verification
tasks are run on a PC with a 3.2GHz Intel Xeon processor and 4GB RAM.

5 Conclusion

The paper illustrates the application of a methodology consistently integrating
high-level modeling with verification of functional properties of a distributed im-
plementation in the BIP framework. BIP allows a natural high-level description
of the coordination between atomic components by using structured connec-
tors and multiparty interactions. Consistency is ensured by results guaranteeing
preservation of properties of the initial high-level model by its implementation.
We demonstrated how one can build-up the self-stabilizing distributed reset algo-
rithm [2] by developing a set of independent atomic components and then wiring
them by using connectors by considering functional and recovery tasks indepen-
dently. We also identified and verified a set of safety and liveness properties that
any self-stabilizing algorithm has to satisfy for distributed reset.

Our approach is extremely beneficial for design and implementation of com-
plex concurrency control algorithms. In this context, we are currently working on
a generic component-based framework for modeling and analyzing transactional
memory algorithms using BIP. We are also working on a wide range of trans-
formations from high-level BIP models into low-level actual implementations
such as the Message Passing Interface (MPI), multi-core, and fully distributed
platforms. Another interesting research direction is to automate the procedure
presented in this paper by transforming algorithms in (shared memory) guarded
commands into BIP models.

References

1. Alexander, M., Gardner, W.: Process Algebra for Parallel and Distributed Pro-
cessing. Chapman & Hall/CRC, Boca Raton (2008)

2. Arora, A., Gouda, M.: Distributed reset. IEEE Transactions on Computers 43,
316-331 (1994)

18

10.

11.

12.

13.

14.

15.

16.

17.

A. Basu et al.

. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed semantics and imple-

mentation for systems with interaction and priority. In: Suzuki, K., Higashino, T.,
Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 116-133.
Springer, Heidelberg (2008)

. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in

BIP. In: Software Engineering and Formal Methods (SEFM), pp. 3—-12 (2006)

. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-

tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 508-522. Springer, Heidelberg (2008)

. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Automated

conflict-free distributed implementation of component-based models. In: TEEE
Symposium on Industrial Embedded Systems, SIES (to appear 2010)

. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level

component-based models to distributed implementations. In: ACM International
Conference on Embedded Software, EMSOFT (to appear 2010)

. Bozga, M., Fernandez, J.-C., Ghirvu, L.: State-space reduction based on live vari-

able analysis. Journal of Science of Computer Programming 47(2-3), 203-220
(2003)

. Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley

Longman Publishing Co., Inc., Boston (1988)

Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643-644 (1974)

Dijkstra, E.W.: A belated proof of self-stabilization. Distributed Computing 1(1),
5-6 (1986)

Garavel, H., Lang, F., Mateescu, R., Serve, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158-163. Springer, Heidelberg (2007)
Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo
(1996)

Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming 46(3), 255-281
(2003)

Bensalem, T.N.S., Bozga, M., Sifakis, J.: D-finder: A tool for compositional dead-
lock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV 20009.
LNCS, vol. 5643, pp. 614-619. Springer, Heidelberg (2009)

Sifakis, J.: A framework for component-based construction extended abstract. In:
Software Engineering and Formal Methods (SEFM), pp. 293-300 (2005)

Tauber, J.A., Lynch, N.A., Tsai, M.J.: Compiling IOA without global synchroniza-
tion. In: Symposium on Network Computing and Applications (NCA), pp. 121-130
(2004)

	Systematic Correct Construction of Self-stabilizing Systems: A Case Study
	Introduction
	Background
	Distributed Reset
	The BIP Framework

	Modeling Distributed Reset in BIP
	The Wave Layer
	The Tree Layer
	Building Distributed Reset

	Model Checking Distributed Reset
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

