L I F C

LABORATOIRE D’ INFORMATIQUE DE I’UNIVERSITE DE FRANCHE-COMTE

The tool VeSTA:
Verification of Simulations for Timed Automata

Francoise Bellegarde — Jacques Julliand — Hassan Mountassir — Emilie Oudot

Rapport Technique n° RT2006-01
THEME 2 - 13/07/06

Yks

FRE CNRS 2661

\J

L1 F C

The tool VeSTA:
Verification of Simulations for Timed Automata

Francoise Bellegarde , Jacques Julliand , Hassan Mountassir , Emilie Oudot

Theme 2

Techniques Formelles et a Contraintes

13/07/06

Abstract: This document presents the tool VeSTA, a push-button tool for checking the correct in-
tegration of a component into a composite timed system. Correct integration means here that already
established properties of the component are preserved when it is merged into its environment. VeSTA
checks this correctness by means of a so-called divergence-sensitive and stability-respecting timed
T-simulation. A successful verification of this simulation guarantees that all linear properties which
can be expressed in the logical formalism MITL (in particular liveness and bounded-response) are
preserved by the integration.

Moreover, the development of VeSTA was guided by the architecture of the Open-Kronos tool.
This gives the possibility, as additional feature, to connect the models considered in VeSTA to the
modules of the Open-Caesar verification platform.

Keywords: 7-simulation, integration of components, timed automata, preservation of linear-time
properties.

Laboratoire d’Informatique de I’Université de Franche-Comté,
UFR Sciences et Techniques,

16, route de Gray, 25030 Besancon Cedex (France)
Téléphone : +33 (0)3 81 66 64 55 — Télécopie : +33 (0)3 81 66 64 50

L’outil VeSTA:
Vérification de Simulation pour les Automates Temporisés

Résumé : Ce document présente 1’outil VeSTA, qui permet de vérifier qu’un composant s’inteégre
correctement au sein d’un systeme temporisé a base de composants. Par intégration correcte, nous
entendons que les propriétés locales d’un composant, vérifiées sur ce composant, sont préservées
lorsque celui-ci est plongé dans son environnement. VeSTA vérifie cette intégration par le biais d’une
T-simulation temporisée sensible a la divergence et respectant la stabilité. En d’autres termes, VeSTA
vérifie que le composant a intégrer simule le modele obtenu apres intégration. Lorsque cette simula-
tion est établie, la préservation de toutes les propriétés linéaires (exprimables par la logique MITL)
du composant est garantie.

Notons également que nous avons adopté une architecture pour VeSTA basée sur le modele de
celle de I’outil Open-Kronos. Ceci donne la possibilité de connecter les modeles considérés par
VeSTA aux modules de vérification de la plateforme Open-Caesar.

Mots-clés : 7-simulation, intégration de composants, automates temporis€s, préservation de pro-
priétés linéaires.

Laboratoire d’Informatique de I’Université de Franche-Comté,
UFR Sciences et Techniques,

16, route de Gray, 25030 Besangon Cedex (France)
Téléphone : +33 (0)3 81 66 64 55 — Télécopie : +33 (0)3 81 66 64 50

The tool VeSTA: Verification of Simulations for Timed Automata 7
Contents
1 Motivations 8
2 Overview of VeSTA 9
2.1 Architecture of VeSTA 9
2.2 Quick overview of the Graphical User Interface 10
3 Creating the model 12
3.1 Creating the componentso 12
3.2 Giving the types of the variables used in the components 14
3.3 Specifying the interactions between components 15
4 Generate composite components 16
5 Specifying local properties for basic / composite components 17
6 Checking simulations 18
6.1 Simulation checking options L 18
6.2 Results of the simulation checking 0 . 19
6.3 Tricks e 20
7 Installation notes 21

RT2006-01

8 F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

1 Motivations

Component-based modeling is a more and more popular way to model complex systems. We can
cite for instance timed systems which are often modeled this way. It consists in decomposing the
system into a set of sub-systems, called components. Next, each component is modeled. For timed
systems, a formalism often used is timed automata [AD94]. The complete composite model is ob-
tained by putting together all these components w.r.t. some composition operator. A particularly
often used operator is the parallel composition operator ||, defined as a synchronized product where
synchronizations are done on actions with the same label.

From a verification point of view, two kinds of properties can be checked on these models: global
properties, concerning the behaviour of the global model, and local properties only concerning the
components or some assembling of components. An attractive verification method which can be
used to verify these properties is model-checking. However, it is well-known that this method has
the drawback to be difficult to apply on large-sized models. Nevertheless, in general, for both kind
of properties, the method is performed on the global model, and thus can be difficult and even
impossible to perform.

A way out for local properties would be to check them only on the components, or assembling of
components, they concern. Model-checking would be here still applicable since the size of the com-
ponents is generally small. Obviously, for this alternative to be valid, already established properties
of a component have to be preserved on the global model, i.e., when the component is merged into
its environment. With the parallel composition operator ||, the preservation of safety properties is
guaranted for free. However, this is not the case for liveness or bounded-response properties.

We defined in [BIMOO05] a so-called divergence-sensitive and stability-respecting timed T-simulation
operating between timed automata. We proved that this simulation preserves all linear properties
expressed in the logical formalism MITL (Metric Interval Temporal Logic) [AFH96]. Thus, a success-
ful checking of this simulation between two timed automata C||Env and C (written C||Env <45 C)
ensures that all linear properties established on C' are preserved when C is integrated in its en-
vironment Env. The timed 7-simulation is defined between the traces of C||Env and C, and is
characterized by (1) if C||Env can make an action of C' after some amount of time, then C' could do
the same action after the same amount of time, (2) internal actions of Env, called 7, must stutter.
Divergence-sensitivity ensures that internal actions 7 of Env will not take the control forever and
stability-respecting guarantees that the integration of C' in Env will not create new deadlocks.

We developped the tool VeSTA (Verification of Simulations for Timed Automata) to automate
the verification of this simulation, in the framework of component-based timed models. Moreover,
the architecture of the core of the tool was inspired by the one of Open-Kronos [Tri98], to make
possible the connection of the models described in VeSTA to the verification platform Open-Caesar
|Gar98].

This document presents how to use VeSTA and is organized as follows. Section 2 gives a
global description of the tool. Section 3 presents how to create the component-based timed models
considered in VeSTA. The generation of compositions between components is described in section
4. Section 5 presents an extra feature of VeSTA consisting in specifying the local properties of the
components to optimize the verification of the simulations. This verification as well as its options
are presented in section 6. Finally, section 7 explains how to install and run the tool.

LIFC

The tool VeSTA: Verification of Simulations for Timed Automata 9

2 Overview of VeSTA

VeSTA considers timed systems modeled in a compositional framework. It is a push-button tool for
checking the correct integration of a component in its environment. A correct integration means
that the local properties of the component are preserved when the component is merged into its
environment. VeSTA checks it by means of the divergence-sensitive and stability-respecting timed T
simulation defined in [BJMOO05]. Thus, VeSTA allows users to

e Create a component-based timed model,
e Give the interactions between the components,
e Optionnally, specify the local properties of the components which must be preserved,
e Merge components together by means of the classic parallel composition operator ||,
e Check simulations.
Thus, VeSTA allows to manage projects composed of all these elements: a component-based timed

model, compositions, and the simulations checked.

2.1 Architecture of VeSTA

The architecture of VeSTA is shown in Fig. 1. The models considered consists of three kinds of
elements: the set of components (saved in .aut files), and possibly their local properties (prop), the
types of the variables used in the components and the interactions between components (sync). So-
called composite components, created by parallel composition of components, can be automatically
generated (.exp files). They can also have local properties. All these elements can be captured via
the Graphical User Interface of VeSTA.

‘ COMPONENT-BASED TIMED MODEL

I I
A ! A A ! A
types ! aut aut . aut ! sync
I I
I I
I
I

o]

3 translator

_ Possible connection
DBM library Ccompiler }--------= > to Open/Caesar
OPEN-CAESAR library
simul.a era

verif. modules

Figure 1: Architecture of VeSTA

The core of the tool consists in three modules: translator, simul and profounder. translator
creates a file .c which implements data structures and functions to generate a symbolic graph (the
so-called simulation graph) for each composite components involved in the simulation. Note that
this file .c can be used as input to the modules of the verification platform Open/Caesar. simul

RT2006-01

10 F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

is the executable used to check the stability-respecting timed T-simulation. The previous file .c is
first compiled and linked to DMB and Open/Caesar libraries (DBM libraries permits to manip-
ulate the timing constraints of the model). Then, simul is created. Finally, profounder is the
executable used to check the divergence-sensitive part of the simulation. It was written by Stavros
Tripakis. More informations about profounder and the algorithms implemented in it can be found
in [TYBO5| and [Tri98|.

2.2 Quick overview of the Graphical User Interface

The Graphical User Interface of VeSTA is shown in Fig. 2. The tree on the left is an explorer allowing
to navigate between the different elements of the model, the compositions, and the simulations
checked. The bottom-right part is a log window, displaying informations such as syntax errors. The
top-right part is the main element of the GUI. It consists in five tabs:

e the tab Types displays the different types of the variables used in the model,
e the tab Interactions shows the interactions between the components,
e the tab Basic Components contains all the components of the model,

e the tab Composite Components contains all the compositions already created between the
components of the model,

e the tab Simulations contains the results for each already checked simulation.

Eile Model Run

EIECIEE ENEY

I Model
Types
3k [nteractions
¢ [Basic Components
¥ deposithelt
S feedbelt
¥ plate
¥ oress
& sensor
B3 rable
¥ robot
¢ [Compasite Components
@ robot
e1o press_rokot
an gl
@ press
9 [simulations
press_press_robot
robot_press_robot
press_robot_all

pht2iph3

feedbelt-1p_table new_plagé,plt,pltd

‘ Update Composite Components ‘

[Types L 3 Interactions L? Basic Components | ama Compaosite Components ! Simulations

Log
= §VeSTAfhinftranslator -noreal -sharing -accept error ace all exp;

A T

4 ~
< il [Tl

Current project: korso line: -

Figure 2: Overview of VeSTA Graphical User Interface

LIFC

The tool VeSTA: Verification of Simulations for Timed Automata 11

Menus and toolbar. The File menu presents the usual possibilities for creating a new project
(New), opening an existing project (Open...), saving the current project (Save) and exiting the
application (Exit). The three first items are also represented as buttons in the toolbar (the three
first buttons correspond respectively to the three first menu items). Note that, for the moment,
a VeSTA project is saved into several files (the main project file has extension .ves), and that a
missing file can prevent a further opening of the project. In the future, we intend to use a single
xml file to save a project in order to avoid such situations.

The Model menu concerns the model. It offers the possibility to import types from an exist-
ing file (Import types from file...), add components to the model (Add basic component...),
and create compositions between components, called composite components (Create composite
components...). As for the File menu items, these three Model menu items can be accessed by
the tool bar, with the fourth, fifth and sixth buttons of the toolbar.

Finally, the Run menu only contains one item, Run simulation check, giving the possibility to
check simulations. The last button in the toolbar corresponds to this menu item.

RT2006-01

12 F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

3 Creating the model

This section presents how to create the models considered in VeSTA. The first step consists in
creating each component of the model and giving the types of the variables used in the components.
Then, one has to specify the interactions between these components.

3.1 Creating the components

Adding a basic component. Adding a new component to the model can be done via the menu
item Add Basic Component... or by clicking on the corresponding button in the toolbar. As shown
in Fig. 3, a dialog window appears giving two possibilities: either creating a new component or
importing an existing component. An existing component must be contained in a file with extension
.aut.

Bl Addanew Basic Component |E3

® [Create a hew automaton

) Add automaton from file...

| Ok || Cancel

Figure 3: Adding a new Basic Component

Displaying the basic components. Each component is added in the Basic Components tab.
The components considered in VeSTA are extended timed automata, written using the SMI library
syntax. Fig. 4 shows an example of timed automaton written with this syntax.

xd : clock
db_sta : STATE
des(0,3,3)

(* Timed automaton *)

(* 0 %)

(0, robot_to_deposit_belt xd:=0 db_sta:=move, 1)
(x 1 %)

(1, [xd<=8] move db_sta:=to_take, 2)

(* 2 %)

(2, final db_sta:=wait, 0)

(* Time-progress conditions *)
[0, db_sta=wait]

[1, db_sta=move / xd<=8]

[2, db_sta=to_takel

Figure 4: An example of Timed Automaton, written in SMI syntax

LIFC

The tool VeSTA: Verification of Simulations for Timed Automata 13

Briefly, the first step consists in declaring each variable used in the automaton. The instruction
des(0,3,3) means that the initial state is the state 0, and that the automaton contains 3 transitions
and 3 states. Then, each transition is specified by giving the source state, the guard (facultative)
and the label of the transition, updating variables (facultative), and finally giving the target state.
For each state, time-progress conditions can also be specified, as well as the expected value for the
variables. To get more detailed informations about this syntax, please consult the SMI web site:

http://www-verimag.imag.fr/~async/SMI

All the components of the model are accessible in the Basic Components tab, as shown is Fig.
5. Fach component is displayed in a corresponding tab, where the top part of the tab contains the
specification of the component and the bottom part allows to give local properties of the component.
This feature is explained in details in section 5.

depositbelt | feedbeit | plate | press | sensor | table | robot |

[

#*d : clock
dh_sta: STATE

desi0,3,3)
™ Timed automaton ™

"o =
{0, rokot_to_deposit_kelt et =0 dib_sta=mowe, 1)

17
{1, [xd<=8) move db_sta =to_take, 2)

2Ty 1
(2, final dia_sta: =wait, 0)

* Time-progress conditions ™) z
[l I [Tl

[Add Propeny

Properties

Types | i interactions | ¥ Basic C s | % composite C s | E) simulations

Figure 5: The Basic Components Tab

Renaming and/or deleting a component. When a new component is created, a name is given
to it by default. To rename a component, right-click on the component in the tree on the left part
of VeSTA. A popup menu appears allowing to rename the node, but also to delete it, as shown in
Fig. 6.

¢ [Basic Compaonenis

o deposi

%8 foonnd Rename..
W plate | Delete
W press

% sensor

Figure 6: Renaming and/or deleting a component

RT2006-01

14 F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

3.2 Giving the types of the variables used in the components

As for components, the syntax used for the types is the SMI syntax. There already exists some
predefined types in SMI:

® bool for boolean variables,
e nat for integer variables,
e clock for clock variables.

User can also defines enumerate types, which must be defined in the Types editor of VeSTA, as
shown in Fig. 7. Note that, when nat or clock variables are used, it is necessary to define an upper
bound for these variables in the Types editor. In the example above, this bound is set to 100 thanks
to the declaration nat{100}.

nat {100}
I
enum STATE {wait, movel, mowe2, pass, pl2, mowve, to_take, pl, wait2, mowe_back, move_twist, st, temp, at_table, wait_table, to_press
, af_press, waitl, turn_90, at_press2, at_press3, to_dep_belt, wail_dep, at_dep_belt, 1o tabled, to wait2, towaitl, at_ wail, to_press2, t
0_tablez, create, wai?, waild, wait0}

| @ Types [3 nteractions | % Basic ¢ s | ®© Composite C s | Bl simulations

Figure 7: The Types Tab

LIFC

The tool VeSTA: Verification of Simulations for Timed Automata 15

3.3 Specifying the interactions between components

The last step in the definition of the model is the definition of the interactions between the com-
ponents. The components interact by synchronizing on common actions. The interactions can be
given by the user via the Interactions tab of VeSTA. As shown in Fig. 8, VeSTA uses a graph to
draw these interactions. Each node of the graph represents a component, and a line between two
components means that these components interact by synchronizing on the actions which label the
line.

plt2ipht3

new_plage,plt,pltd

‘ Update Composite Components

Types \3ﬂ" Interactions | ?Basi((‘ s | oo Composite C s | Simulations

Figure 8: The Interactions Tab

The components are automatically added in the graph when a new component is created in
VeSTA. Creating an interaction between two components is done by clicking in the center of one
component, and next in the center of the second component. The line is then drawn. Its label
can be given by double-clicking on it. If this label consists in more than one action, the actions
must be separated using commas. A line can be suppressed by selecting it and typing the delete key.

The interactions given in this graph will be used to create compositions between the compo-

nents. The button Update Composite Components in the bottom of the tab allows to update the
compositions which are already created if the interactions are modified.

RT2006-01

16 F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

4 Generate composite components

Once the model is created, VeSTA offers the possibility to automatically generate compositions
between chosen components, w.r.t. the given interactions. The operator considered for composition
is the parallel composition operator, written ||. Informally, it is defined as a synchronized product,
where the synchronizations are done on actions with the same label (the ones which are specified
in the Interactions tab), while other actions interleave, and time elapses synchronously for each
component involved in the composition.

Choosing the components. The compositions can be created from the Create Composite
Components menu, or via the corresponding button in the toolbar. As shown in Fig. 9, a dia-
log window appears allowing to select components from which the composition will be created.

[depositbely
[] feedbelt

] prate

[press

[l senser

Figure 9: Choosing components to create a composite component

Displaying the composite components created. The composite components created this way
appears in the Composite Components tab. As for the basic components, each composite component
is displayed in a corresponding tab. The top part of the tab gives a textual representation of the
composition (still in SMI syntax), while the bottom part allows to specify its local properties (see
section 5). Fig. 10 shows the Composite Components tab.

[robot | press_robot | all | press |

Lotos-Behavior
((eeposite)
1

feedbelt)
[final,new_plate, pit, pito]]
plate:

|leh2, phiz]|

press)
I[sensor_cesection]|
sensor)
|lfeedhel_to_table,pll]|
table)

\[rohie_to_deposit el plate_taken_by_robot, press_get_plate, rear tale_to_robot]|
robory

Add Propery

Types | 3+ interactions | % Basic ¢ | e composite € | B simulations

Figure 10: Choosing components to create a composite component

Renaming / deleting composite components. As basic components, composite components
can also be renamed or deleted, by right-clicking on them in the tree on the left of the GUI.

LIFC

The tool VeSTA: Verification of Simulations for Timed Automata 17

5 Specifying local properties for basic / composite components

VeSTA offers the possibility to specify the local properties which has to be preserved after integration
of a basic/composite component in an environment. For the moment, only response properties of
the form O(p = Oq) can be specified. They are called Response 1 in VeSTA.

Local properties are specified in the bottom part of the tab corresponding to a basic or composite
component. To add a property, click on the button Add property. A new line appears in the
bottom part. The list on the left allows to choose the kind of property to add. Then, a formula
appears in the text field on the right. For instance, for response 1 properties, the formula is

[=> <>q)

User has next to replace the variables appearing in the formula (p and ¢ in the above example) by
expressions written using SMI syntax. The property can also be removed by clicking on the Remove
button. Fig. 11 shows examples of local properties specified for a basic component.

| depositbelt | feedbelt | plate ‘ press i'sensul | table rmhm |

Xr i clock
r_sta: STATE
P& nat

PE: nat

PP nat

I

des(0,23,18)
(" Tirned automaton

o™
(0, read r_sta; =wair_takle, 1)

1"
(1, table_to_robot r_sta =to_press PA =1 xr=0, 2)

4] 1 BER

Add Property |
Properties
‘Respunse 1 ‘v| |[](PE= 1=3» <>r_sta=to_dep_bel) | Remove ‘
Response 1 ‘v |[](PA=1=> <>rsla=at_press2) | Remove ‘

[m Types | 3 Interactions | % Basic Components | °© Composite Components | [E] Simulations

Figure 11: Specifying local properties of a basic/composite component

RT2006-01

18 F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

6 Checking simulations

The main feature of VeSTa is to check the correct integration of a (basic/composite) component C
in its environment Enwv. This integration is checked by means of a divergence-sensitive and stability-
respecting timed T-simulation. To check the simulation, click on the menu item Run simulation
check... or on the corresponding button in the toolbar. A dialog window appears to set the
options of the simulation checking, as shown in Fig. 12.

Simulation check

Check integration of... In...
) robot I robot
) press_robot) press_robot
Can Can

) press) press
[_] Check w.r.L the properties of the integrated component(s)
[7] Check divergence-sensitivity

Check H Cancel

Figure 12: Setting the options of the simulation check

6.1 Simulation checking options

The first step is to choose the components for which simulation will be checked. For this, choose a
component C on the left of the dialog window, and the composite component C||Env in which it is
integrated. Note that only composite components appear in this window. Thus, basic components
must be transformed into composite components to be available for simulation checking. This can
be done by creating a composite component only consisting in one basic component. Once the
two composite components are chosen, it is possible to check the simulation, by clicking on the
button Check. At this moment, the executable simul is created, and the stability-respecting timed
T-stmulation will be checked.

The option Chech divergence-sensitivity allows to create the executable profounder to
check the divergence-sensitive part of the simulation. To launch this verification, internal actions of
the environment Env must be clearly specified in all the basic components involved in C||Env. A
boolean variable tau must be declared (in the first component involved in C), and set to true on
the transitions representing internal actions of the environment Enwv or to false on the transitions
corresponding to actions of C' (i.e., on all transitions of C'). The divergence-sensitivity verification
will then search for cycles only containing the internal actions.

The option Check w.r.t. the properties of the integrated component(s) allows to ver-
ify the simulation only for the local properties given for the composite component C (this also takes
into account the local properties given for the basic components involved in this composition).
This option allows to optimize the simulation checking, by performing the verification only on the

LIFC

The tool VeSTA: Verification of Simulations for Timed Automata 19

paths of C||Env concerning the specified local properties. In return, only the preservation of these
properties can be ensured.

6.2 Results of the simulation checking

For each simulation checked, a new tab is created in the Simulations tab of VeSTA. Two kinds of
results can appear after a simulation checking: either the verification is successful, or it failed. In
the first case, a message is displayed in the tab corresponding to the simulation, giving informations
about the verification time. Fig. 13 shows this case.

robot_all |

Checking simulation of all lry robat. B

Simulation checked successfully
time : 0hOm1s185
space | no information available

Divergence-sensitivity checked successiully =
time : 0hOmOs37
space : noinformation available
States: 1981 Transitions: 4102 Cyiles: 268
max_depth_reached: 285

@ Types | 3k Interactions | % Basic C s [g ite € s i i [

Figure 13: Successful simulation checking

Figure 14 shows what is displayed when the verification failed. In this case, a message explaining
the error is displayed in the simulation tab, as well as a graphical diagnostic.

robot_all | press_press_robot
Simulation checking failed
time : 0hOmO0s462
space © no information available
Error found at depth 21
Deadlocks found. Clocks walues for these deadlocks : S0<xp< =390
Available transitions from step 21 in press_robot: "arm_B_full"
l:m\ahln 1ransitinns fram sien 21 in nress” "nress oet_nlate! I l:
sl [l »
] I
SO
relad ‘
wedas. 00 e
uill illl
lahle_l‘j;_mhnl ‘
e~ = i -
I ‘ariahles Value in press_rabot Value in prass
press state 0 0 -
rohbot state o I
p_sta wait wait
tau false false 5
r_sta wait -
P a -
FB a - 4
PP o - |
matrix ¥p< =80 ¥p< =90 -

@ Types | 3 interactions | 5 Basic Components | @12 Composite Components | E) Simulations

Figure 14: Diagnostic for a failed simulation checking

This graphical diagnostic consists in a trace of C||Env which is not simulated by any traces of
C, and the trace of C' to which it had to correspond. The two traces are displayed as sequences of

RT2006-01

20 F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

states and transitions. The trace of C||Env is on the left, while the trace of C' is on the right. Note
that some transitions do not have any label in the trace of C' (these transitions are simple lines,
instead of arrows). This means that the source and target states of these transitions are the same.

The table at the bottom of the diagnostic indicates the values of the variables for each state of
the traces. When a state is selected by clicking on it, the values of the variables in this state are
displayed in the table, as well as the timing constraints (in the matrix variable).

Note that, for convenience, it is possible to open the diagnostic in a new window, by clicking on the
button containing a diagonal arrow.

6.3 Tricks

Running a simulation checking creates the files presented in section 2.1 which compose the core
of the tool: the file .c containing a symbolic representation of the two composite components for
which simulation is verified, and the two executables simul and profounder. These elements are
only deleted when the project is saved or when a new simulation is checked. Thus, to gain memory
for the verification, it is possible to close the GUI of VeSTA, and manually launch the executables.
They can be found in the directory where the project has been saved.

LIFC

The tool VeSTA: Verification of Simulations for Timed Automata 21

7 Installation notes

VeSTA is available for Linux systems at the following URL :
http://lifc.univ-fcomte.fr/~oudot/VeSTA

It was developped using Java and C languages. The GUI of VeSTA is written for Java VM 1.5. The

core of the tool (translator, simul and profounder) was tested with the compiler gcc 3.3.2. A
good functioning of the tool is for the moment only ensured with these versions.

To install VeSTA, uncompress the file VeSTA .tar.gz. For this, open a terminal window and type
the following command:

tar -xzvf VeSTA.tar.gz
A directory VeSTA is created, with the following elements:

e VeSTA jar: the file to be run to launch the Graphical User Interface,

e Images: directory containing the images used by the GUI,

e org: directory of the package jgraph.jar', used to draw graphs in the GUI,

e bin: directory containing the executable translator,

e include: directory containing SMI libraries,

e lib: directory containing VeSTA libraries,

e Matrix: directory containing files .h of the Matrix library,

e Examples: two examples provided to test VeSTA. The first one is the well-known example of
the railroad crossing, and the second one is a case study concerning the modeling of a produc-
tion cell [Bur03]. This second example shows a case when the verification of the simulation
fails: when checking the integration of press in all.

e documentation.pdf: this user manual.

You have to create a variable VeSTA in your bashrc, containing the path to the directory VeSTA

which has been created. CADP is also needed to run VeSTA, thus make sure that CADP is in-
stalled, and that a variable CADP, containing the installation path of CADP, exists in your bashrc.

Then, run VeSTA by typing the following command:

java -jar VeSTA.jar

"http://www. jgraph.com

RT2006-01

22

F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

Credits

This work was realized at the
Laboratoire d’Informatique de I'Université de Franche-Comté (LIFC)
16 route de Gray
25030 Besancon Cedex, France
Tel: +33 (0)3 81 66 64 55
Fax: +33 (0)3 81 66 64 50
Web: http://lifc.univ-fcomte.fr

By Emilie Oudot, directed by Francoise Bellegarde, Jacques Julliand and Hassan Mountassir.
We would like to thank Stavros Tripakis for having sent to us the distribution of Open-Kronos, and
particularly the executable profounder and some (useful!) source files. Thanks also for the time

spent answering questions.

Contact: {oudot,bellegar,julliand,mountass}@lifc.univ-fcomte.fr
Web: http: //lifc.univ — fcomte.fr/ ~ oudot/VeSTA

References

[AD94]

[AFH96]

[BIMOO5]

[Bur03]

[Gar98|

[Triog]

[TYBO05]

LIFC

R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. Journal of
the ACM, 43:116-146, 1996.

F. Bellegarde, J. Julliand, H. Mountassir, and E. Oudot. On the contribution of a
7-simulation in the incremental modeling of timed systems. In Proceedings of the 2™
International Workshop on Formal Aspects of Component Software (FACS’05), pages
117-132, Macao, Macao, October 2005. Accepted for publication in ENTCS, Elsevier.
To appear.

A. Burns. How to verify a safe real-time system: The application of model-checking
and timed automata to the production cell case study. Real-Time Systems Journal,
24(2):135-152, 2003.

H. Garavel. OPEN/CAESAR: An Open Software Architecture for Verification, Simula-
tion and Testing. In Bernhard Steffen, editor, Proceedings of 15! International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’98), Lis-
boa, Portugal, March 1998.

S. Tripakis. The analysis of timed systems in practice. PhD thesis, Universite Joseph
Fourier, Grenoble, France, December 1998.

S. Tripakis, S. Yovine, and A. Bouajjani. Checking Timed Biichi Automata Emptiness
Efficiently. Formal Methods in System Design, 26(3):267-292, May 2005.

L1 FC

Laboratoire d’Informatique de 1’université de Franche-Comté
UFR Sciences et Techniques, 16, route de Gray - 25030 Besangon Cedex (France)

LIFC - Antenne de Belfort : TUT Belfort-Montbéliard, rue Engel Gros, BP 527 - 90016 Belfort Cedex (France)
LIFC - Antenne de Montbéliard : Centre de développement du multimédia, cours Leprince-Ringuet - 25201 Montbéliard Cedex (France)

http://lifc.univ-fcomte. fr

