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1 Introduction

This document presents the syntax and formal semantics of the Fiacre language. Fiacre is
an acronym for Format Intermédiaire pour les Architectures de Composants Répartis Embarqués
(Intermediate Format for the Architectures of Embedded Distributed Components). Fiacre is a
formal intermediate model to represent both the behavioural and timing aspects of systems —in
particular embedded and distributed systems— for formal verification and simulation purposes.
Fiacre embeds the following notions:

• Processes describe the behaviour of sequential components. A process is defined by a set of
control states, each associated with a piece of program built from deterministic constructs
available in classical programming languages (assignments, if-then-else conditionals, while
loops, and sequential compositions), nondeterministic constructs (nondeterministic choice
and nondeterministic assignments), communication events on ports, and jumps to next state.

• Components describe the composition of processes, possibly in a hierarchical manner. A com-
ponent is defined as a parallel composition of components and/or processes communicating
through ports and shared variables. The notion of component also allows to restrict the ac-
cess mode and visibility of shared variables and ports, to associate timing constraints with
communications, and to define priority between communication events.

Fiacre was designed in the framework of projects dealing with model-driven engineering and
gathering numerous partners, from both industry and academics. Therefore, Fiacre is designed
both as the target language of model transformation engines from various models such as Sdl

or Uml, and as the source language of compilers into the targeted verification toolboxes, namely
Cadp [8] and Tina [3] in the first step. In this document, we propose a textual syntax for Fiacre,
the definition of a metamodel being a different task, out of the scope of this deliverable.

Fiacre was primarily inspired from two works, namely V-Cotre [4] and Ntif [7], as well
as decades of research on concurrency theory and real-time systems theory. Its design started
after a study of existing models for the representation of concurrent asynchronous (possibly timed)
processes [5]. Its timing primitives are borrowed from Time Petri nets [11, 2]. The integration of
time constraints and priorities into the language was in part inspired by the BIP framework [1].
Concerning compositions, Fiacre incorporates a parallel composition operator [9] and a notion of
gate typing [6] which were previously adopted in E-Lotos [10] and Lotos-NT [12, 13].

This document is organized as follows: Section 2 presents the concrete syntax of Fiacre pro-
cesses, components, and programs. Section 3 presents the static semantics of Fiacre, namely
the well-formedness and well-typing constraints. Finally, Section 4 presents the formal dynamic
semantics of a Fiacre program, in terms of a timed state/transition graph.

2 Syntax

2.1 Notations

We describe the grammar of the Fiacre language using a variant of EBNF (Extended Bachus Naur
Form). The EBNF describes a set of production rules of the form “symb ::= expr”, meaning that
the nonterminal symbol symb represents anything that can be generated by the EBNF expression
expr. An expression expr may be one of the following:
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• a keyword, written in bold font (e.g., type, record, etc.)

• a terminal symbol, written between simple quotes (e.g., ’:’, ’(’, etc.)

• a nonterminal symbol, written in teletype font (e.g., type, type decl, etc.)

• an optional expression, written “[ expr0 ]”

• a choice between two expressions, written “expr1 | expr2”

• the concatenation of two expressions, written “expr1 expr2”

• the iterative concatenation of zero (resp. one) or more expressions, written “expr∗” (resp.
“expr+”)

• the iterative concatenation of zero (resp. one) or more expressions, each two successive
occurrences being separated by a given symbol s, written “expr∗s” (resp. “expr+

s”)

The star and plus symbols have precedence over concatenation. Parentheses may be used to
group a sequence of expressions when iterative concatenation concerns the whole sequence.

2.2 Lexical elements

IDENT ::= any sequence of letters, digits, or ’_’, beginning by a letter

NATURAL ::= any nonempty sequence of digits

INTEGER ::= [ ’+’ | ’-’ ] NATURAL

DECIMAL ::= NATURAL [ ’.’ [ NATURAL ] ] | ’.’ NATURAL

No upper bound is specified for the length of identifiers or numeric constants. The code
generation pass will check that numeric constants can indeed be interpreted.

Comments:

Any sequence of characters between the symbol ’/*’ and the first following occurrence of the
symbol ’*/’ is considered a comment.

Reserved words and characters:

Keywords may not be used as identifiers, these are:

and any array bool channel component dequeue do else elsif empty end
enqueue enum false first from full if in inf init int interval is nat new
none not null of or out par port priority process queue read record select
shuffle states sync then to true type var where while write

The following characters and symbolic words are reserved:

[ ] ( ) { } : .. . = <> < > <= >=

+ - * / % $ | := ; ? ! -> /* */
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2.3 Types and type declarations

type id ::= IDENT

enum ::= IDENT

field ::= IDENT

size ::= NATURAL

type ::= bool | nat | int
| interval INTEGER ’..’ INTEGER

| enum enum+
, end

| record (field+
, ’:’ type)+

, end
| array of size type

| queue of size type

| type id

type decl ::= type type id is type

2.4 Values and expressions

var ::= IDENT

literal ::= NATURAL | true | false | enum | new NATURAL type

initializer ::= literal

| (’+’ | ’-’) NATURAL

| ’[’ initializer+
, ’]’

| ’{’ (field ’=’ initializer)+
, ’}’

access ::= var

| access ’[’ exp ’]’

| access ’.’ field

unop ::= ’-’ | ’$’ | not | full | empty | dequeue | first

infixop ::= or
| and
| ’=’ | ’<>’ |

| ’<’ | ’>’ | ’<=’ | ’>=’

| ’+’ | ’-’

| ’*’ | ’/’ | ’%’

Infix operators are listed in order of increasing precedence, those in same line have same
precedence. All are left associative.
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binop ::= enqueue

exp ::= literal

| access

| unop exp

| exp infixop exp

| binop ’(’ exp ’,’ exp ’)’

| ’(’ exp ’)’

2.5 Ports, channels and channel declarations

port := IDENT

channel_id ::= IDENT

profile ::= none | type+
*

channel ::= channel_id | profile | channel ’|’ channel

channel_decl ::= channel channel_id is channel

A port is a process communication point. Ports can be used to exchange data. A port
type determines the type of data that can be exchanged on the port. Channels stand for
port types. They have the structure of sets of profiles. Profiles specified by a series of
types separated by ’*’ are associated with ports transfering several values simultaneously.
Ports may have several profiles assigned, using channel operator ’|’. A port having profile
none may be used as a synchronization port (without any value transfered).

2.6 Processes

state ::= IDENT

tag ::= IDENT

name ::= IDENT

left ::= ’[’ DECIMAL

| ’]’ DECIMAL

right ::= DECIMAL ’]’

| DECIMAL ’[’

| inf ’[’

time_interval ::= left ’,’ right

port dec ::= ([in] [out] port)+
, ’:’ channel
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Ports may have the optional in and/or out attributes, specifying that values may only
be received and/or sent through that port. By default, ports have both the in and out
attributes. The attributes apply only to the following port. When several ports are
specified, all share the same channel but their attributes remain private.

arg dec ::= ([read] [write] var)+
, ’:’ type

Formal parameters have no attributes. Shared variables may have the read and/or
the write attribute, specifying the operations that can be done on the variable. The
attributes apply only to the following variable. When several variables are specified, all
share the same type but their attributes remain private.

var dec ::= var+
, ’:’ type [’:=’ initializer]

All variables in the list share the same type and (optional) initial value.

process decl ::=

process name

[ ’[’ port_dec+
, ’]’ ]

[ ’(’ arg_dec+
, ’)’ ]

is states state+
, init state

[ var var_dec+
, ]

transition+

Name of the process, port parameters, functional parameters or references, states and
initial state, local variables, followed by a series of transitions.

transition ::= from state statement

statement ::=

null
| access+

, ’:=’ exp+
,

| access+
, ’:=’ any [where exp]

| communication

| while exp do statement end
| if exp then statement (elsif exp then statement)* [else statement] end
| select statement+

[]
end

| to state

| statement ’;’ statement

Additional well-formedness constraints are given in Section 3.

communication ::=

port [ ’:’ profile ]

| port [ ’:’ profile ] ’?’ var+
, [where exp]

| port [ ’:’ profile ] ’!’ exp+
,

Synchronization over a port, or reception (?) or emission (!) of one or several values
over a port. The optional profile constraint helps specifying the port referred to when it
is overloaded.
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2.7 Components

instance ::= name [ ’[’ port+
, ’]’ ] [ ’(’ exp+

, ’)’ ]

Instance of a process or component. Functional parameters are passed by value or by
reference, according to the attributes of the corresponding formal parameters of the called
component or process.

composition ::=

shuffle composition+ end
| sync composition+ end
| par (port∗, ’->’ composition)+ end
| instance

More composition operators to be provided.

component decl ::=

component name

[ ’[’ port_dec+
, ’]’ ]

[ ’(’ arg_dec+
, ’)’ ]

is [ var var_dec+
, ]

[ port (port_dec [ in time_interval ])+
, ]

[ priority (port+

|
> port+

|
)+
, ]

composition

Name of the component, port parameters, functional parameters or references, local
variables or references, local ports with delay constraints, priority constraints, followed
by a composition.

2.8 Programs

declaration ::=

type decl

| channel decl

| process decl

| component decl

program ::=

declaration+

name

The body of a program is specified as the name of a process or component. If that process
or component admits parameters, then these parameters are parameters of the program.
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3 Static semantics

3.1 Well-formed programs

3.1.1 Constraints

A program is well-formed if its constituents obey the following static semantic constraints.

1. Process and component identifiers should all be distinct;

2. Type and channel identifiers should all be distinct;

3. In any enum (resp. record) type, all values (resp. field labels) declared must be distinct;

4. In declarations of ports, formal parameters, or local variables, the identifiers declared must
be distinct;

5. In a state declaration, all states must be distinct, and the initial state must be included;

6. There is a single syntactical class for shared variables, formal parameters of processes or
components, local variables, and enum type components. As a consequence, the sets of
global variable identifiers, formal parameter identifiers, local variable identifiers and enum
component identifiers (declared globally or in the header of some process or component)
should be pairwise disjoint;

7. No keyword (e.g. if , from, etc) may be used as the name of a component, process, variable,
type, channel or port;

8. All variables, ports, states, referred to in a process or component must have been declared;

9. All enum components (resp. record labels) referred to in a process or component must appear
in some enum (resp. record) type assigned to some declared variable or port of the process,
or in the body of some type abbreviation;

10. In any interval type interval x..y, one must have x ≤ y;

11. In a process, there may be at most one transition declared from each state declared after the
state declaration;

12. In a delay declaration in a component, time intervals may not be empty (e.g. intervals like
[7, 3[ or ]1, 1] are rejected);

13. In a priority declaration, the priority relation defined must induce a strict partial order;

14. In a deterministic assignment statement, the left hand side must have exactly the same
number of components as the right hand side;

15. In an assignment statement, the access expressions in the left-hand side must be pairwise
independent; that constraint is explained in Section 3.1.2;
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16. In any transition, at most one communication statement may be found along any execution
path and, along any path including a communication statement, no shared variable may
be read or written. This constraint, referred to as the single-communication constraint is
integrated with the well-typing condition for statements, see Section 3.2.5;

17. In any process, local variables or their constituents should be initialized before their first use,
a sufficient static condition ensuring that property is discussed in Section 3.1.3;

18. In any component, all variables locally declared in the component must be statically initial-
ized;

3.1.2 Well-formedness of assignment statements:

Left hand sides of assignment statements have the shape of series of access expressions. Each access
expression is a sequence a0 a1 . . . an where a0 is some variable and each ai (i > 0) is either a field
access (shape .f) or an array component access (shape [exp]).

Two access expressions a0 a1 ... an and b0 b1 ... bm are independent if:

• either a0 6= b0

• or for some i such that 0 ≤ i ≤ min(n,m):

– either ai and bi have shapes [x] and [y], respectively, where x and y are different integer
constants;

– or ai and bi have shapes .f and .g, respectively, where f and g are different record labels.

3.1.3 Initialization of variables:

A static condition ensures that the variables locally declared in processes, or any of their con-
stituents, are initialized before any use. The condition is similar to that used for the same purpose
in the Ntif intermediate form, the reader is referred to [7] for details.

3.2 Well-typed programs

3.2.1 Type declarations, type expressions, types

Let us first distinguish type expressions from types: type expressions may contain user-defined type
identifiers, while types may not. Type declarations introduce abbreviations (identifiers) for types
or type expressions. With each type expression t, one can clearly associate the type τ obtained
from it by recursively replacing type identifiers in t by the type expressions they abbreviate.

Similarly, we will make the same distinction between channel expressions (possibly containing
channel identifiers) and channels. With each channel expression p, one can associate the channel
π obtained from it by replacing channel identifiers by the channels they abbreviate. Channels can
be represented by sets of profiles.

All formal parameters of a process (ports or variables), and local variables, have statically
assigned type or channel expressions, in the headers of the process, from which one can compute
types or channels as above. By typing context, we mean in the sequel a map that associates:
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• with each port, a set made of its attributes (a non empty subset of {in,out}) and profiles.
Unless some attribute is made explicit in its declaration, a port has both in and out attributes;

• with each global variable, a set made of its attributes (a nonempty subset of {read,write})
and type. There are no default attributes for variables;

• with each formal parameter, its type;

• with each local variable, its type.

Typing contexts are written A in the sequel, or Ab when referring to the context of some
particular process b. A(x) denotes the information (attributes and type(s)) assigned to variable (or
port) x in A.

3.2.2 Subtyping

Types (not type expressions) are partially ordered by a relation called subtyping, written ≤ and
defined by the following rules:

τ ∈ {bool,nat, int}

τ ≤ τ
(SU1)

nat ≤ int
(SU2)

x ≥ 0

interval x..y ≤ nat
(SU3)

interval x..y ≤ int
(SU4)

x1 ≥ x2 y1 ≤ y2

interval x1..y1 ≤ interval x2..y2
(SU5)

{c1
1, . . . , c

1
n} ⊆ {c2

1, . . . , c
2
m}

enum c1
1, . . . , c

1
n end ≤ enum c2

1, . . . , c
2
m end

(SU6)

τ ≤ τ ′

array of k τ ≤ array of k τ ′
(SU7)

τ ≤ τ ′

queue of k τ ≤ queue of k τ ′
(SU8)

{f1, . . . , fn} = {g1, . . . , gn} (∀i, j)(fi = gj ⇒ τi ≤ τ ′
j)

record f1 : τ1, . . . , fn : τn end ≤ record g1 : τ ′
1, . . . , gn : τ ′

n end
(SU9)

Note that bool and nat are not related by subtyping, nor are records with different sets
of fields, or arrays or queues of different sizes.

Communication ports profiles are tuples of types. The subtyping relation is extended to profiles
by:

none ≤ none
(SU10)

τ1 ≤ τ ′
1 . . . τn ≤ τ ′

n

τ1 ∗ · · · ∗ τn ≤ τ ′
1 ∗ · · · ∗ τ ′

n

(SU11)

3.2.3 Typing expressions

A is some typing context, the following rules define the typing relation (:) for expressions.
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Subsumption

A ⊢ E : τ τ ≤ τ ′

A ⊢ E : τ ′
(ET1)

Literals, initializers

K ∈ INTEGER V al(K) = k

A ⊢ K : interval k..k
(ET2)

k ∈ {true, false}

A ⊢ k : bool
(ET3)

c ∈ Enums

A ⊢ c : enum c end
(ET4)

A ⊢ k1 : τ . . . A ⊢ kn : τ

A ⊢ [k1, . . . , kn] : array of n τ
(ET5)

V al(N) = n

A ⊢ new N τ : queue of n τ
(ET6)

{f1, . . . , fn} ⊆ Fields A ⊢ l1 : τ1 . . . A ⊢ ln : τn

A ⊢ {f1 : l1, . . . , fn : ln} : record f1 : τ1, . . . , fn : τn end
(ET7)

Enums is the set of all constants declared in enum types, Fields is the set of record
field identifiers declared in record types, By abuse of notation, we write K ∈ INTEGER

to mean that K belongs to the INTEGER lexical class. Function V al associates with a
token in the INTEGER or NATURAL class the integer it denotes.

Primitives

A ⊢ x : bool

A ⊢ not x : bool
(ET8)

A ⊢ x : bool A ⊢ y : bool (@ ∈ {and,or})

A ⊢ x@y : bool
(ET9)

A ⊢ x : τ τ ≤ int

A ⊢ −x : τ
(ET10)

A ⊢ x : τ τ ′ ≤ τ ≤ int

A ⊢ $ x : τ ′
(ET11)

$ is a coercion operator for numeric values. It converts a numeric value of some type
τ ≤ int into a value of some sybtype τ ′ of τ . Conversion fails if the target value is out
of range.

A ⊢ x : τ A ⊢ y : τ τ ≤ int (@ ∈ {+,−, ∗, /,%})

A ⊢ x@y : τ
(ET12)

A ⊢ x : τ A ⊢ y : τ τ ≤ int (@ ∈ {<,<=, >,>=})

A ⊢ x@y : bool
(ET13)

A ⊢ x : τ A ⊢ y : τ (@ ∈ {=, <>})

A ⊢ x@y : bool
(ET14)

A ⊢ q : queue of k τ

A ⊢ empty q : bool
(ET15)

A ⊢ q : queue of k τ

A ⊢ full q : bool
(ET16)

A ⊢ q : queue of k τ

A ⊢ first q : τ
(ET17)

A ⊢ q : queue of k τ

A ⊢ dequeue q : queue of k τ
(ET18)

A ⊢ q : queue of k τ A ⊢ E : τ

A ⊢ enqueue (q,E) : queue of k τ
(ET19)
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Access

A(X) = {τ}

A ⊢ X : τ
(ET20)

{read, τ} ⊆ A(X)

A ⊢ X : τ
(ET21)

A ⊢ P : array of k τ A ⊢ E : interval 0..k−1

A ⊢ P [E] : τ
(ET22)

A ⊢ P : record . . . , f : τ, . . . end

A ⊢ P.f : τ
(ET23)

Global variables in write-only mode may not be read.

3.2.4 Typing patterns

By “pattern”, we mean the left hand sides of assignment statements, or the tuples of variables
following “?” in input communication statements.

When used as arguments of some primitive, types of values can be promoted to any of their
supertypes (by the use of the subsumption rule), but we want variables of all kinds to only store
values of their declared type, and not of larger types. For this reason, patterns cannot be typed
like expression.

As an illustrative example, assume variable X was declared with type nat, and array A with
type array of 16 int. If lhs of assignments were given types by ⊢, then the statement X := A[2]
would be well typed, storing an integer where a natural is expected, since the rhs has type int, and
the lhs has type nat, and nat is a subtype of int.

Patterns are given types instead by specific relation (:p), defined by the following five rules.
These rules are similar to those for (:) for variable and access expressions except that subsumption
is restricted:

A(X) = {τ}

A ⊢ X :p τ
(LT1)

{write, τ} ⊆ A(X)

A ⊢ X :p τ
(LT2)

A ⊢ P :p array of k τ A ⊢ E : interval 0..k−1

A ⊢ P [E] :p τ
(LT3)

A ⊢ P :p record . . . , f : τ, . . . end

A ⊢ P.f :p τ
(LT4)

Global variables in read-only mode cannot be assigned.

3.2.5 Typing statements, well typed processes

Well-typing of the statement captured in a transition ensures two properties:

(a) That variables and expressions occurring in the transitions are well-typed and used consis-
tently;
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(b) That at most one communication occurs along any possible end-to-end control path in the
statement;

(c) That no shared variable is read of written along any end-to-end control path holding a com-
munication;

As for expressions, some information is infered for statements, assuming a typing context; the
“typing” relation for statements is written (:s); the “types” derived are subsets α of {Shm,Com}.
Presence of Shm means that shared storage is manipulated along some control path not performing
any communication, presence of Com means that some control path performs a (single) commu-
nication but does not read nor writes shared variables. Note that a statement type may hold both
Shm and Com.

A process is well-typed if all of its transitions are well-typed in the typing context obtained from
its port declarations, formal parameter declarations and local variable declarations. A transition is
well typed if the statement it is defined from is well-typed. A statement S is well typed if one can
infer S :s α, for some α ⊆ {Shm,Com}, according to the following rules.

The rules make use of an auxiliary predicate Q
A
(E), holding iff some shared variable occurs in

expression E in context A, and of a “conditional” notation b → α | β, standing for α when b holds,
or for β otherwise.

Jump, null

A ⊢ to s :s ∅
(ST1)

A ⊢ null :s ∅
(ST2)

Sequential composition

A ⊢ S1 :s ∅ A ⊢ S2 :s α

A ⊢ (S1;S2) :s α
(ST3)

A ⊢ S1 :s α A ⊢ S2 :s ∅

A ⊢ (S1;S2) :s α
(ST4)

A ⊢ S1 :s {Shm} A ⊢ S2 :s {Shm}

A ⊢ (S1;S2) :s {Shm}
(ST5)

Assignments

A ⊢ P1 :p τ1 . . . A ⊢ Pn :p τn A ⊢ E1 : τ1 . . . A ⊢ En : τn

A ⊢ P1, . . . , Pn := E1, . . . , En :s ∨i∈1..n(Q
A
(Pi) ∨Q

A
(Ei)) → {Shm} | ∅

(ST6)

A ⊢ P1 :p τ1 . . . A ⊢ Pn :p τn A ⊢ E : bool

A ⊢ P1, . . . , Pn := any where E :s ∨i∈1..nQA
(Pi) ∨Q

A
(E) → {Shm} | ∅

(ST7)

Choices and while loop

A ⊢ E : bool A ⊢ S1 :s α A ⊢ S2 :s β Q
A
(E) ⇒ α ∪ β ⊆ {Shm}

A ⊢ if E then S1 else S2 end :s α ∪ β
(ST8)

A ⊢ E : bool A ⊢ S :s α Com 6∈ α

A ⊢ while E do S end :s QA
(E) → {Shm} | α

(ST9)
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A ⊢ S1 :s α1 . . . A ⊢ Sn :s αn

A ⊢ select S1 [ ] ... [ ] Sn end :s α1 ∪ · · · ∪ αn

(ST10)

if e then s end is handled like if e then s else null end. elsif is handled like else if .

Communications

π and π′ are profiles (profile none or products τ1 ∗ · · · ∗ τn of types). Relation ≤ is extended to
profiles as explained in Section 3.2.2.

none ∈ A(p) [ none ≤ π ]

A ⊢ p [ ’:’ π ] :s {Com}
(ST11)

A ⊢ E1 : τ1 . . . A ⊢ En : τn ¬(∨i∈1..n(Q
A
(Ei)))

{out, τ1 ∗ · · · ∗ τn} ⊆ A(p) [ τ1 ∗ · · · ∗ τn ≤ π ]

A ⊢ p [ ’:’ π ] ! E1, . . . , En :s {Com}
(ST12)

A ⊢ X1 :p τ1 . . . A ⊢ Xn :p τn A ⊢ E : bool ¬(∨i∈1..n(Q
A
(Xi)) ∨ Q

A
(E))

{in, π′} ⊆ A(p) π′ ≤ τ1 ∗ · · · ∗ τn [ π′ ≤ π ]

A ⊢ p [ ’:’ π ] ? X1, . . . ,Xn where E :s {Com}
(ST13)

- In an output communication, the profile of the values sent must be a subtype of some
profile assigned to the port.
- In an input communication, some profile assigned to the port must be a subtype of the
types of the variables assigned.
- When several profiles are assigned to a port in the port declarations of a process, it
must be ensured that each occurrence of that port in the body of the process may be
nonambiguously assigned one of these profiles. It is the user’s responsability to solve
ambiguities, by ascribing profile constraint(s) to some port occurrences. The profile
constraint at some occurrence of a port restricts the profiles of that occurrence of the
port to those which are subtypes of the constraint.

3.2.6 Well typed components

Components are checked in a context made of:

• A typing context A, defined as for processes except that locally declared variables all have
attributes read and write;

• An interface context I, that associates with all previously declared processes and components
an interface of shape ((. . . , µi, . . . ), (. . . , ηj , . . . )), in which µi is the set of attributes and
profiles of the ith port declared for the process or component, and ηj is the set of attributes
and type of the jth formal parameter of the component.
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The expressions occurring in components are given types and attributes by relation :x, defined
by:

A(X) = η

A, I ⊢ X :x η
(CT1)

A ⊢ E : τ (E not a variable)

A, I ⊢ E :x {τ}
(CT2)

A component is well-typed if ok can be inferred for it by relation :c, defined as follows:

A, I ⊢ c1 :c ok . . . A, I ⊢ cn :c ok

A, I ⊢ shuffle c1, . . . , cn end :c ok
(CT3)

A, I ⊢ c1 :c ok . . . A, I ⊢ cn :c ok

A, I ⊢ sync c1, . . . , cn end :c ok
(CT4)

A, I ⊢ c1 :c ok . . . A, I ⊢ cn :c ok (∀i)(Qi ⊆ Σ(ci))

A, I ⊢ par Q1 → c1, . . . , Qn → cn end :c ok
(CT5)

For any component c, Σ(c) is its sort. Intuitively, the sort of a component is the set of
ports it may use, component sorts will be formally defined in Section 4.3.1.

A ⊢ e1 :x η1 . . . A ⊢ en :x ηn ((A(p1), . . . , A(pn)), (η1, . . . , ηm)) ≺ I(C)

A, I ⊢ C [p1, . . . , pn] (e1, . . . , em) :c ok
(CT6)

Where ((µ1
1, . . . , µ

1
n1

), (η1
1 , . . . , η1

m1
)) ≺ ((µ2

1, . . . , µ
2
n2

), (η2
1 , . . . , η2

m2
)) holds iff:

• n1 = n2 and for each i:
µ2

i ⊆ µ1
i ∧ µ1

i − µ2
i ⊆ {in,out}

• m1 = m2 and for each j:
if {read,write}∩η2

j 6= ∅ then η2
j ⊆ η1

j else τ1
j ≤ τ2

j where η1
j = {τ1

j } and η2
j = {τ2

j }

3.2.7 Well typed programs

A program is well typed if the declarations and component instance it contains are well typed.
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4 Timed operational semantics

All programs in this section are assumed well-formed and well-typed.

4.1 Semantics of expressions

4.1.1 Semantic domains

The semantics of expressions is given in denotational style, it associates with every well-typed
expression a value in some mathematical domain D built as follows.

Let ZZ and IN be the set of integers and non-negative integers, respectively, equipped with their
usual arithmetic and comparison functions;

B = {true, false} be a domain of truth values, equipped with functions not, and and or;

S be the set of strings containing letters, digits, and symbol ’ ’;

Arrays(E) be the set of mappings from finite subsets of IN to E;

Records(E) be set of mappings from finite subsets of S to E;

Then D = Dω, where:

D0 = ZZ ∪ B ∪ S

Dn+1 = Dn ∪ Arrays(Dn) ∪ Records(Dn)

Fiacre arithmetic expressions are given meanings in set ZZ, boolean expressions in set B, enum
expressions in S, arrays in some set Arrays(Dn), and records in some set Records(Dn), for some
finite n. Queues denote some elements of Arrays(Dn). The following mappings are defined for
queue denotations (D(m) is the domain of mapping m):

• empty q is equal to true if D(q) = ∅, or false otherwise;

• full k q (n ∈ IN) is equal to true if k − 1 ∈ D(q), or false otherwise;

• first q = q(0), assuming 0 ∈ D(q);

• dequeue q, assuming 0 ∈ D(q), is the mapping q′ such that q′(x − 1) = q(x) for all x ∈ D(q);

• enqueue q e is the mapping q′ such that q′(x) = q(x) for x ∈ D(q), and q′(a) = e, where a is
the smallest non negative integer not in D(q).

4.1.2 Stores

Expression are given meanings relative to a store. The store associates values in D with (some)
variables. Stores are written e, e′, etc, e(x) is the value associated with variable x in store e, D(e)
is the domain of e. Entries are dynamically added to the store when non-initialized variables, or
some of their components, are first assigned. The static condition in Section 3.1.3 ensures that
variables or variable components are initialized before their first access.
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4.1.3 Semantic rules for expressions

Evaluation rules all have the following shape. The rule means that, under conditions P1 to Pn,
the semantics of expression E with store e is v. The store e may be omitted if the result does not
depend on its contents.

P1 . . . Pn

e ⊢ E  v

Literals, initializers

• Numeric constants denote integers in ZZ. Implementations may choose to reject literals that
are not machine representable;

• Enum values denote strings in S;

• The booleans true and false denote values true and false in B, respectively;

• new n τ (any empty queue) denotes ∅;

• Representing mappings by their graphs, constant records and arrays are given meanings by:

⊢ l1  v1 . . . ⊢ ln  vn

⊢ [l1, . . . , ln] {(0, v1), . . . , (n − 1, vn)}
(ES1)

⊢ l1  v1 . . . ⊢ ln  vn

⊢ {f1 : l1, . . . , fn : ln} {(f1, v1), . . . , (fn, vn)}
(ES2)

Access expressions

X ∈ D(e)

e ⊢ X  e(X)
(ES3)

e ⊢ P  a e ⊢ E  i i ∈ D(a)

e ⊢ P [E] a(i)
(ES4)

e ⊢ P  r f ∈ D(r)

e ⊢ P.f  r(f)
(ES5)

Well-typing ensures that array indices cannot be out of range, nor fields undefined in the
records they are sought for. Non initialized or partially initialized variables are not in the
stores, hence the condition on domains. Satisfaction of these conditions is guaranteed
by the static semantic constraints explained in Section 3.1.3.

Primitives

Well-typing implies that all primitives in an expression can be assigned at least one type. When
several types can be assigned to some primitive, the typechecker is assumed to have computed a
suitable one for it, typically the type that puts the weakest constraints on the arguments of the
primitive.

The primitives whose semantics is type-dependent appear in the semantic rules with some
annotations added (by the typechecker): arithmetic primitives are annotated with the type of their
arguments, and some operators for queues are annotated with the length of the queue they are
applied to.
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Some primitives are partially defined (e.g. arithmetic functions over intervals, or taking an
element from a queue). This appears in the rules by some extra hypothesis (side-conditions). The
rules do not make precise any exception handling mechanism, it is assumed that implementations
are able to detect when a rule is not applicable and take an adequate decision in that case.

• Arithmetic primitives at type τ (τ is some subtype of int):

e ⊢ x a In(−a, τ)

e ⊢ −τ x −a
(ES6)

e ⊢ x a e ⊢ y  b In(a @ b, τ) @ ∈ {+,−, ∗}

e ⊢ x @τ y  a @ b
(ES7)

e ⊢ x a In(a, τ)

e ⊢ $τ x a
(ES8)

e ⊢ x a e ⊢ y  b b 6= 0 In(a @ b, τ) @ ∈ {/,%}

e ⊢ x @τ y  a @ b
(ES9)

Operations over nat or interval types behave like those over int type except that they
are undefined if the result is not in the expected set. Predicate In is defined as follows:
In(v, int) always holds, In(v,nat) holds if v ≥ 0, and In(v, interval a..b) if a ≤ v ≤ b.
Implementations may strengthen predicate In by conditions asserting that the results
are machine representable.

• Boolean primitives:

e ⊢ x a

e ⊢ not x not a
(ES10)

e ⊢ x a e ⊢ y  b

e ⊢ x and y  a and b
(ES11)

e ⊢ x a e ⊢ y  b

e ⊢ x or y  a or b
(ES12)

• Comparison and equality (@ ∈ {<,>,<=, >=,=, <>}):

e ⊢ x a e ⊢ x b a @ b

e ⊢ x @ y  true
(ES13)

e ⊢ x a e ⊢ x b ¬(a @ b)

e ⊢ x @ y  false
(ES14)

• Primitives for queues:

e ⊢ q  Q

e ⊢ empty q  empty Q
(ES15)

e ⊢ q  Q

e ⊢ fullN q  full N Q
(ES16)

e ⊢ q  Q D(Q) 6= ∅

e ⊢ first q  first Q
(ES17)

e ⊢ q  Q D(Q) 6= ∅

e ⊢ dequeue q  dequeue Q
(ES18)

e ⊢ q  Q e ⊢ x v N − 1 6∈ D(Q)

e ⊢ enqueueN (q, x) enqueue Q v
(ES19)

Note that first and dequeue are undefined on empty queues and that enqueueN is
undefined on queues already holding N elements.
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4.1.4 Accesses in left-hand sides of assignments (L-values)

Left-hand sides of assignments evaluate to pairs z, g, in which z is a value and g maps values to
stores. Intuitively, g(v), where v is the value put into the location referred to by the lhs, is the
updated store; z at some level is a partial value used to compute function g at the level above.

The evaluation relation for lhs of assignments is denoted  l and defined by the following rules,
in which:

• (λv. f(v)) is the mapping that, applied to value v, returns the value mapped by f to v;

• extend f x = f x if x ∈ D(f), or ∅ otherwise;

• [x1 7→ v1, . . . , xn 7→ vn] ⊕ e is the function f such that f(xi) = vi for any i ∈ 1..n, and
f(z) = e(z) for any z ∈ D(e) − {x1, . . . , xn}.

e ⊢ X  l (extend e X), (λv. [X 7→ v] ⊕ e)
(LS1)

e ⊢ P  l e′, a e ⊢ E  i

e ⊢ P [E] l (extend e′ i), (λv. a([i 7→ v] ⊕ e′))
(LS2)

e ⊢ P  l e′, r

e ⊢ P.f  l (extend e′ f), (λv. r([f 7→ v] ⊕ e′))
(LS3)

4.2 Semantics of Processes

4.2.1 Notations

The semantics of transitions is expressed by a labelled relation, called the micro-step relation.

Micro steps have shape (S, e)
l

=⇒ (S′, e′) in which S, S′ are statements and e, e′ are stores. Action
l is either a communication action or the silent action ǫ. Communication actions are sequences
pτ v1 . . . vn, in which pτ is a port, identified by a label and a profile, and the vi are values.

4.2.2 Rules, micro-steps

The micro-step relation is defined inductively from the structure of statements by a set of inference

rules. Each micro-step rule (S, e)
l

=⇒ (S′, e′) obeys the invariant S′ ∈ {done} ∪ {target s|s ∈ Λ},
where Λ is the declared set of states of the process.

From, to, null

(S, e)
l

=⇒ (S′, e′)

(from s S, e)
l

=⇒ (S′, e′)
(SS1)

(null, e)
ǫ

=⇒ (done, e)
(SS2)

(to s, e)
ǫ

=⇒ (target s, e)
(SS3)

20



Deterministic assignment

e ⊢ E1  v1

e ⊢ P1  
l e1, a1

e ⊢ E2  v2

a1(v1) ⊢ P2  
l e2, a2

. . .

. . .
e ⊢ En  vn

an−1(vn−1) ⊢ Pn  
l en, an

e′ = an(vn)

(P1, P2, . . . , Pn := E1, E2, . . . , En, e)
ǫ

=⇒ (done, e′)
(SS4)

The independence property for accesses in multiple assignments, enforced by the static
semantic constraint in Section 3.1.2, ensures that the resulting store is invariant by any
permutation of accesses P1, . . . , Pn and the corresponding expressions E1, . . . , En.

Nondeterministic assignment

e ⊢ P1  
l e1, a1

e′ ⊢ E  true
a1(v1) ⊢ P2  

l e2, a2

e′ = an(vn)
. . . an−1(vn−1) ⊢ Pn  

l en, an

(P1, P2, . . . , Pn := any where E, e)
ǫ

=⇒ (done, e′)
(SS5)

vi ranges over all values of the type of Pi.

While loops

e ⊢ E  true (S;while E do S end, e)
l

=⇒ (S′, e′)

(while E do S end, e)
l

=⇒ (S′, e′)
(SS6)

e ⊢ E  false

(while E do S end, e)
ǫ

=⇒ (done, e)
(SS7)

It is assumed that condition E eventually evaluates to false.

Deterministic choice

e ⊢ E  true (S1, e)
l

=⇒ (S, e′)

(if E then S1 else S2 end, e)
l

=⇒ (S, e′)
(SS8)

e,E  false (S2, e)
l

=⇒ (S, e′)

(if E then S1 else S2 end, e)
l

=⇒ (S, e′)
(SS9)

if e then s end is handled like if e then s else null end. elsif is handled like else if .

Nondeterministic choice

(∃i ∈ 1..n)((Si, e)
l

=⇒ (S′
i, e

′))

(select S1 [ ] ... [ ] Sn end, e)
l

=⇒ (S′
i, e

′)
(SS10)

Sequential composition

(S1, e)
l

=⇒ (target s, e′)

(S1;S2, e)
l

=⇒ (target s, e′)
(SS11)

(S1, e)
l1=⇒ (done, e′) (S2, e

′)
l2=⇒ (S′, e′′)

(S1;S2, e)
l1.l2==⇒ (S′, e′′)

(SS12)

with “.” such that ǫ.ǫ = ǫ and ǫ.l = l.ǫ = l, for any l.
The well-formedness condition implies l1 = ǫ ∨ l2 = ǫ.
Note that the statements following a to statement are dead code.
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Communication

(pτ , e)
pτ

=⇒ (done, e)
(SS13)

e ⊢ E1  v1 . . . e ⊢ En  vn

(pτ !E1, . . . , En, e)
pτ v1,...,vn
======⇒ (done, e)

(SS14)

e′ = e[X1 7→ v1, . . . ,Xn 7→ vn] [e′ ⊢ E  true]

(pτ?X1, ..,Xn [where E], e)
pτ v1,...,vn

======⇒ (done, e′)
(SS15)

Types decorate ports to distinguish the different variants of overloaded ports.
vi ranges over all values of the type of Xi.

4.2.3 Macro-steps

By the previous rules, Fiacre transitions expand into series of micro-steps originating at the
process state specified by the from statement, and ending at some target process state specified in
a to statement. Each of these sequences identifies a possible discrete macro-step, or process action,
as follows. The semantics of a process is the union of the action relations of all its transitions.

(from s S, e)
l

=⇒ (target s′, e′)

(s, e)
l
−→ (s′, e′)

A process configuration is a pair constituted of a process state and a store capturing the values
of its initialized local variables. Note that shared variables are not considered part of process
configurations, intuitively, configurations characterize the local state information for the process.

The initial configuration of a process is the pair (s0, e0) in which s0 is the declared initial state
of the process and store e0 captures the values of the formal parameters of the process and those
of its statically initialized local variables.

4.3 Semantics of programs and components

A program is a series of declarations followed by component identifier or a closed component
instance. The semantics of a program is the semantics of that component or component instance.

4.3.1 Component states, terminology

Labels, ports: Let us recall a communication action is either the silent action ǫ or a sequence
pπ v1 . . . vn, in which pτ is a port with label p and profile π, and the vi are values. If l 6= ǫ, then
L(l) denotes the port used in action l.

Component states: Component states are abstract terms built from the following grammar:
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c ::= c1 | c2 product
| hide H I c hiding, H is a set of ports and I maps them to time intervals
| relab R c relabelling, R is a surjective mapping over ports
| prio Π I c priority assignement, Π is a priority relation between ports
| proc P (s, e) process call, P is a process identifier, (s, e) a process configuration
| comp C c component call, C is a component identifier, c a component state

For simplifying the semantics rules, all composition operators will be expressed in terms of
relabelling and a binary product written “|”. “|” denotes the usual product for timed transition
systems. Equivalence of compositions will be briefly addressed in Section 4.4.

Process and component sorts: The sort of a named process P or named component C, written
Σ(P ) or Σ(C), is the set of visible ports declared for that process or component. If some port p has
several profiles π1, . . . , πn declared, then the overloaded port appears in the sort as several ports
pπ1

, . . . , pπn
with the same label but different profiles. The notion of sort is extended to component

states as follows:

Σ(c1 | c2) = Σ(c1) ∪ Σ(c2)
Σ(hide H I c) = Σ(c) − H
Σ(relab R c) = {R(pτ ) | pτ ∈ Σ(c) ∩ D(R)} ∪ (Σ(c) −D(R))
Σ(prio Π c) = Σ(c)
Σ(proc P (s0, e0)) = Σ(P )
Σ(comp C c)) = Σ(C)

Note that the sort of a named component C, defined from its declared list of ports, may differ
from the sort one could compute from its body (for instance because some port declared in the
component parameters does not occur in its body nor in that of all components invoked from it).
Similarly, process headers may introduce ports never used in the process body.

Initial state of a component: The initial state of a component is the result of its rewriting by
relation 0, defined in the sequel. Intuitively,  0 “inlines” component definitions, keeping track of
component boundaries for preserving the sorts of subcomponents, and replaces process definitions
by their initial configurations. Relation  0 is defined by the following rules;

(shuffle c1 . . . cn end) is handled like (par → c1 . . . → cn end)

e ⊢ c1  0 c′1 . . . e ⊢ cn  0 c′n
e ⊢ sync c1 . . . cn end 0 c′1 | . . . | c′n

(CE1)

e ⊢ c1  0 c′1 . . . e ⊢ cn  0 c′n
par s1 → c1 . . . sn → cn end 0 relab R (relab R1 c′1 | . . . | relab Rn c′n)

(CE2)

where A =
⋃

i∈{1,...,n} Σ(ci)

B is some set of ports disjoint from A

Ψ is some bijection from A to B

Ri is Ψ restricted to the domain Σ(ci) − si
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R = Ψ−1

(∀i ∈ F )(e ⊢ ei  vi) e ⊕ {xi 7→ vi | i ∈ F} ⊕ a ⊢ c 0 c′

e ⊢ C [qi]i∈E (ei)i∈F  0 hide H I (prio Π (relab {pi 7→ qi | i ∈ E} (comp C c′)))
(CE3)

C is the name of a component expecting as parameters ports pi and variables xi, and of
body c. Store a captures the variables locally declared and statically initialized in C, H
is the set of ports locally declared in C, I maps time intervals to them (default [0,∞[).
Without loss of generality, it is assumed that the non-shared xi and the variables locally
declared in C have different names than those of all variables in store e, and that the
names of the shared xi match the names of the variables in e they are bound to. Π is the
priority relation defined in C, that is the transitive closure of the port pairs occurring in
the priority declarations, if any; (pτ , qτ ′) ∈ Π means that communication actions over
port pτ have higher priority than those over port qτ ′.

(∀i ∈ F )(e ⊢ ei  vi)

e ⊢ P [qi]i∈E (ei)i∈F  0 relab {pi 7→ qi | i ∈ E} (proc P (s0, {xi 7→ vi | i ∈ F p} ⊕ a))
(CE4)

P is the name of a process expecting as parameters ports pi and variables xi, with initial
state s0. F p is the subset of F corresponding to the parameters passed to P “by value”
(excluding the shared variable parameters); store a captures the variables locally declared
and statically initialized in P . (s0, e0), where e0 = {xi 7→ vi | i ∈ F p} ⊕ a is the initial
configuration of the process. As for component instances, it is assumed without loss of
generality that the non-shared xi and the variables locally declared in P have different
names than those of the variables in e, and that the names of the shared xi match the
names of the variables in e they are bound to.

4.3.2 Component interactions

Interactions are triples (c, e, i) in which c is a component state, e is a store, and i an interaction
label. Intuitively, the set of communication actions of a component is partitionned into interactions;
two communication actions “matching” the same interaction will share their timing information.

Interaction labels are abstract terms built from the following grammar:

k ::= • the silent interaction
| pτ port interactions
| inl(k) | inr(k) injection interactions
| (k1, k2) product interactions

The interaction label 〈l〉 associated with a process action l is defined by: 〈ǫ〉 = •, 〈pτ v‘ . . . vn〉 =
pτ . Computation of component interaction labels will be explained with the semantic rules.

L(c, k) is the communication label of the actions of component c matching interaction label k,
if any. If no action matching k is visible, then L(c, k) = ∅. L(c, k) is computed as follows:
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L(c, •) = ∅
L(c1 | c2, inl(k)) = L(c1, k)
L(c1 | c2, inr(k)) = L(c2, k)
L(c1 | c2, (k1, k2)) = L(c1, k1)
L(hide H I c, k) = if L(c, k) ∈ E then ∅ else L(c, k)
L(relab R c, k) = if L(c, k) ∈ D(R) then R(L(c, k)) else L(c, k)
L(prio Π c, k) = L(c, k)
L(comp C c, k)) = L(c, k)
L(proc P (s0, e0), k) = k

4.3.3 Component configurations

Component configurations are triples (c, e, φ) in which c is a component state, as defined in Section
4.3.1, e is a store, and φ is an interval function.

Function φ maps the enabled interactions at the source configuration to the time intervals
in which actions “matching” those interactions may occur. Since the source state and store are
implicit, φ simply maps interaction labels to time intervals; the set of interactions enabled at some
configuration (c, e, φ) is the set of triples {(c, e, i) | i ∈ D(φ)}.

The initial configuration of a component is the initial component state c0 resulting from its
evaluation by  0, associated with the store constituted of all variables locally declared in the
component and all component instances invoked in it (all variables declared are assumed to have
have different names, according to our convention Section 4.3.1), and the initial interval function
φ0.

φ0 maps time intervals to the labels of the interactions corresponding to the actions enabled at
the initial configuration of the component. It is defined as the result of applying function Φ defined
below to the initial component state and initial store. Function Φ is defined as follows:

Φ(proc P (s0, e0), e) = {(〈l〉, [0,∞[) | (∃s, e′)((s0, e ⊕ e0)
l
−→ (s, e′))}

Φ(c1 | c2, e) = Φ(c1, e) | Φ(c2, e)
Φ(hide H I c, e) = {(k, r) ∈ φ | L(c, k) 6∈ H} ∪ {(k, I(L(c, k)) ∈ φ | L(c, k) ∈ H}

where φ = Φ(c, e)
Φ(relab R c, e) = Φ(c, e)
Φ(prio Π c, e) = Φ(c, e)
Φ(comp C c, e) = Φ(c, e)

where

φ1|φ2 = {(inl(k), r) | (k, r) ∈ φ1 ∧ L(c1, k) ∈ Σ(c1) − Σ(c2)}
∪ {(inr(k), r) | (k, r) ∈ φ2 ∧ L(c2, k) ∈ Σ(c2) − Σ(c1)}
∪ {((k1, k2), r) | (k1, r) ∈ φ1 ∧ (k2, r) ∈ φ2∧

L(c1, k1) = L(c2, k2) ∧ L(c1, k1) ∈ Σ(c1) ∩ Σ(c2)}

4.3.4 Semantic rules for components

The semantics of a component is a Timed Transition System. These are Labelled Transition Systems
extended with state properties and time-elapsing transitions. The labelled semantics relation,
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linking component configurations, has two sorts of transitions: discrete (communication actions)
and continuous (real delays).

For making easier the definition of the transition relation, discrete transitions will be concretely
labelled both with a communication action (above the arrow) and the corresponding interaction
label (below the arrow), as shown in the sequel. Note that, in this formula, we always have l = ǫ
and L(c, k) = •, or otherwise L(l) = L(c, k).

(c, e, φ)
l
−→
k

(c′, e′, φ′)

Continuous transitions

(∀k)(φ(k) 6= ⊥ ⇒ θ ≤ ↑φ(k))

(c, e, φ)
θ
−→ (c, e, φ −

.
θ)

(PS1)

Time may elapse as long as no time-constrained interaction passes its deadline.
For any interval r, ↑ r is its right endpoint, or ∞ if r is not right-bounded.
For any k: (φ −

.
θ)(k) = {x − θ | (x − θ) ≥ 0 ∧ x ∈ φ(k)}

Product

(c1, e, φ1)
l
−→
k

(c′1, e
′, φ′

1) l = ǫ ∨ L(l) 6∈ Σ(c2)

(c1|c2, e, φ1|φ2)
l

−−−→
inl(k)

(c′1|c2, e′, φ′
1|φ2)

(PS2)

(c2, e, φ2)
l
−→
k

(c′2, e
′, φ′

2) l = ǫ ∨ L(l) 6∈ Σ(c1)

(c1|c2, e, φ1|φ2)
l

−−−−→
inr(k)

(c1|c′2, e
′, φ1|φ′

2)
(PS3)

(c1, e, φ1)
l

−→
k1

(c′1, e, φ
′
1) (c2, e, φ2)

l
−→
k2

(c′2, e, φ
′
2) l 6= ǫ

(c1|c2, e, φ1|φ2)
l

−−−−→
(k1,k2)

(c′1|c
′
2, e, φ

′
1|φ

′
2)

(PS4)

Hiding

(c, e, φ ⊖ H)
l
−→
k

(c′, e′, φ′) l = ǫ ∨ L(l) 6∈ H

(hide H I c, e, φ)
l
−→
k

(hide H I c′, e′, φ′ \I φ)
(PS5)

(c, e, φ ⊖ H)
pτ v1 ... vn

−−−−−−−→
k

(c′, e′, φ′) pτ ∈ H 0 ∈ φ(k)

(hide H I c, e, φ)
ǫ
−→
k

(hide H I c′, e′, φ′ \I φ)
(PS6)

Discrete transition through hidden ports must be possible without additional delay. φ⊖H
relaxes the intervals of the actions labelled in H, φ′ \I φ restores them for persistent
actions, and initializes them for newly-enabled actions:
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(φ ⊖ H) = {(k, r) ∈ φ | L(c, k) 6∈ H} ∪ {(k, [0,∞[) | k ∈ D(φ) ∧ L(c, k) ∈ H}
(φ′ \I φ) = {(k, r) ∈ φ | k ∈ D(φ′)} ∪ {(k, I(L(c, k)) ∈ φ′ | k ∈ D(φ′) −D(φ)}

Relabelling

(c, e, φ)
l
−→
k

(c′, e′, φ′) l = ǫ ∨ L(l) 6∈ D(R)

(relab R c, e, φ)
l
−→
k

(relab R c′, e′, φ)
(PS7)

(c, e, φ)
pτ v1 ... vn

−−−−−−−→
k

(c′, e′, φ′) pτ ∈ D(R)

(relab R c, e, φ)
(R(pτ )) v1 ... vn

−−−−−−−−−−→
k

(relab R c′, e′, φ′)
(PS8)

Priorities

(c, e, φ)
l
−→
k

(c′, e′, φ′) l = ǫ ∨ (∀l′, k′, b)((c, e, φ)
l′
−→
k′

b ∧ l′ 6= ǫ ⇒ (L(l′),L(l)) 6∈ Π)

(prio Π c, e, φ)
l
−→
k

(prio Π c′, e′, φ′)
(PS9)

Priorities forbid a communication action to occur when some other communication
labelled with a port with higher priority is possible. Remember that silent actions are
never involved in priorities.

Component actions

(c, e, φ)
l
−→
k

(c′, e′, φ′)

(comp C c, e, φ)
l
−→
k

(comp C c′, e′, φ′)
(PS10)

Process actions

(s, e ⊕ a)
l
−→ (s′, e′ ⊕ a′) φ′ = {(〈l′〉, [0,∞[) | (∃s′, e′)((s, e ⊕ a)

l′
−→ (s′, e′))}

(proc P (s, a), e, φ)
l

−→
〈l〉

(proc P (s′, a′), e′, φ′)
(PS11)

〈l〉 (see Section 4.3.2) is the process interaction associated with action l. Function
φ′ associates interval [0,∞[ to all interactions associated with the actions enabled at
process configuration (s, e ⊕ a). The transition above the line is a process macro-step,
the transition below is a component step. From the variable naming hypotheses for
component and process instances, (see Section 4.3.1), the store of a process instance
can always be seen as partitionned into local variables with “new” names, and shared
variables named as in the store e of the component.
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4.4 Composition identities

Several composition operators have been provided to accomodate various specification styles, and
more might be introduced in the future. For the purpose of formalizing their semantics, all these
operators have been expressed in Section 4.3 in terms of rebalelling and product |, the usual syn-
chronous product for timed transition systems. For specification purposes, composition operators
enjoy some useful relationships, in particular:

shuffle c1 . . . cn end = par → c1 . . . → cn end
sync c1 . . . cn end = par Σ(c1) → c1 . . . Σ(cn) → cn end
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