
motor: The modest Tool Environment

Henrik Bohnenkamp1, Holger Hermanns2,
and Joost-Pieter Katoen1,3

1 Software Modeling and Verfication Group, Informatik 2
RWTH Aachen University, 52056 Aachen, Germany

2 Department of Computer Science
Saarland University, D-66123 Saarbrücken, Germany

3 Formal Methods and Tools Group, Department of Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. The modest Tool Environment (motor) is a tool to fa-
cilitate the transformation, analysis and validation of modest models.
modest is a modelling language to describe stochastic real-time sys-
tems. motor implements the formal semantics of modest and is de-
signed to transform and abstract modest specifications such that anal-
ysis can be carried out by third-party tools. For the time being, a frag-
ment of modest can be model-checked using Cadp. The main analytical
workhorse behind motor is discrete-event simulation, which is provided
by the Möbius performance evaluation environment. We are experiment-
ing with prototypical connections to the real-time model checker Up-

paal.

1 The modest Approach

The Modeling and Description Language for Stochastic and Timed Systems
(modest) [2] is a specification formalism for describing stochastic real-time sys-
tems. The language is rooted in classical process algebra, i.e. the specification of
models is compositional. Basic activities are expressed with atomic actions, more
complex behaviour with constructs for sequential composition, nondetermin-
istic choice, parallel composition with CSP-style synchronisation, looping and
exception handling. A special construct exists to describe probabilistic choice.
Clocks, variables and random variables are used to describe stochastic real-time
aspects. All constructs and language concepts have a pleasant syntax, inspired
by Promela, LOTOS, FSP, and Java. The screen shot in Fig. 2 gives an impres-
sion of the language syntax. modest is equipped with a structural operational
semantics mapping on so-called stochastic timed automata (STA). The modest

semantics is described in full detail in [2]. modest allows one to describe a very
large spectrum of models, including: ordinary labelled transition systems, timed
automata, probabilistic automata, stochastic automata [8], Markov decision pro-
cesses, and various combinations thereof (cf. [2]). Remarkably, the language is
designed in a way that all these models correspond to syntactic subsets of the
language, and can thus be identified while parsing a modest specification.

With modest, we take a single-formalism, multi-solution approach, similar
to [1]. Our view is to have a single specification that addresses various aspects

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 500–504, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



motor: The modest Tool Environment 501

of the system under consideration. This is contrary to the more common ap-
proach to construct different models to describe different aspects of a system
and then analyse these models. Generally, no guarantee of consistency between
these models can be given, be it for lack of a rigorous semantics or because
a proper relation between the different model classes is not known. Thus, the
validity of results w.r.t. the original system under study is often questionable.

Instead, with modest we advocate an approach to describe a system with
one model and analyse it by extracting simpler models that are tailored to the
specific properties of interest. For instance, for checking reachability properties,
a possible strategy is to distill an automaton from the modest specification and
feed it, e.g., into an existing model checker. For carrying out an evaluation of the
stochastic process underlying a modest specification, a discrete-event simulator
can be used. This approach has the advantage that the modelling itself takes less
time, since only one model has to be specified. Moreover, if the abstractions used
to derive sub-models are sound, the multi-solution approach can ensure validity
of the respective analysis results and thus significance for the modelled system.

2 motor

Satellite Modules

Satellite Modules

modest core module

External tools

External tools

modest spec
(ASCII file)

AST API

FSNS

API

Fig. 1. The motor architecture [4]

In order to facilitate the analysis of
the different models, tool support is
essential. The modest Tool Envi-
ronment (motor) is a software tool
that implements the modest se-
mantics and is the central vehicle in
the multi-solution analysis of mod-

est models. The fundamental idea
behind motor is to simplify speci-
fying modest models (e.g. by pro-
viding a macro-preprocessor), and
to translate or adapt the models in
a way such that the actual analy-
sis work can be carried out by third-
party state-of-the-art tools, such as Prism [12], Uppaal [13], or Cadp [10].

motor is designed to facilitate easy access to all language features of mod-

est, and thus to allow easy extraction of all imaginable model classes from a
specification. The design allows straightforward extensibility of the tool. To re-
alise this, motor provides two programming interfaces, see Fig. 1: the AST API,
which gives the programmer access to the abstract syntactic representation of
the modest specification, and the FSNS API, which allows a programmer ac-
cess to a first-state/next-state interface, and which allows convenient state-space
exploration of the modest-specification. It provides the access to the STA de-
fined by the modest semantics. The kernel of the tool is thus quite small: it
comprises a parser and the implementation of the functionality behind the two
interfaces. These two APIs enable modular design and extendability of motor,



502 H. Bohnenkamp, H. Hermanns, and J.-P. Katoen

the former for translation-oriented transformations, the latter for state-oriented
approaches. This particular tool architecture is described in [4], and has since
been actively developed. A prototype connection to the Cadp tool box exists,
which allows model-checking of untimed, non-probabilistic modest models. We
are currently experimenting with another prototypical connection targeting at
the Uppaal model-checker for timed automata. The most interesting tool we
connected motor to is the Möbius performance evaluation environment [7].

3 motor and Möbius

The by now most mature connection of motor is the link with the Möbius per-
formability evaluation environment. Möbius has been developed independently
from modest and motor at the University of Illinois at Urbana-Champaign [7].
Möbius is designed as an integrated tool environment for the analysis of per-
formability and dependability models. It allows specification of models in differ-
ent formalisms, based on, for instance, Petri net-like formalisms or Markovian
process algebra. The tool provides efficient discrete-event simulation capabilities
and numerical solvers, such as Markov chain solvers.

The integration of motor into the Möbius framework is established by a di-
rect mapping from modest-constructs onto the programming interface available
for Möbius, closely following the STA semantics as implemented in the FSNS
API [4]. More concretely, a modest specification is interpreted as a so-called
atomic model, the most basic model within Möbius, which is made up of state
variables that hold information about the state of a model and actions that are
used for changing model state.

From a user perspective, the motor/Möbius tandem enables one to perform
simulation of modest models, and to gather performability results. A complete
simulation model in Möbius consists, in addition to the atomic model, of two
more sub-models. The reward model defines which performance measures (such
as means, variances, distributions etc.) are to be estimated with the simulation.
These rewards are based on the global variables of the atomic modest model.
The study model defines intervals or sets of values as parameters for which the
modest model is to be simulated. Experiment parameters are declared inside
modest as special external constants. For each set of parameters an experiment,
i.e. simulation process is started (in parallel or sequentially, depending on the
configuration and number of available processors), where the external constants
of the modest model are preset with the respective values defined in the study
model.

Atomic modest models are entered in a dedicated Möbius text-editor. mo-

tor is called from Möbius to translate the model into a C++ program, which
is then compiled and linked together with an implementation of the modest

semantics and the simulator libraries of Möbius. Fig. 2 shows a screen shot of
the different Möbius editors, the modest editor in the center.

The reason to choose simulation as the prime analysis method of modest

models to integrate into motor is that simulation covers the largest language



motor: The modest Tool Environment 503

Fig. 2. Möbius with modest editor

fragment of modest: the only concept that can not be supported by simula-
tion is nondeterminism, in particular of delay durations and non-deterministic
choice between actions. We exclude the former by assuming maximal-progress
with respect to delays. We do not restrict action nondeterminism, since it is a
convenient modelling instrument. However, no mechanisms, like a well-specified-
check [9], is implemented yet to ensure validity of the simulation statistics when
action nondeterminism is present.

Given that discrete-event simulation (DES) is supported by many tools, one
may question what the benefits are of using modest. The main difference with
existing simulation notations is that modest has a formal semantics. Conse-
quently, the underlying stochastic model for simulation is well-defined and ob-
tained simulation results—given that DES is a well-understood technique—is
trustworthy. In commercially available simulation tools it is often unclear how
simulation models are obtained from the modelling language. This is recently
witnessed in e.g.,. [6] by obtaining significant different results from models that
were fed into different simulators.

4 Status and Availability

motor and its connection to Möbius is mature and has been tested in a number
of non-trivial case studies. In [11], it has been used for reliability analysis of the



504 H. Bohnenkamp, H. Hermanns, and J.-P. Katoen

upcoming European Train Control System standard. In [3], it has been applied
to the analysis of an innovative plug-and-play communication protocol, which
has led to a patent application of our industrial partner. In [5], motor has been
used for the optimisation of production schedules, in combination with timed
automata-based schedule synthesis with Uppaal.

motor is available as source code from http://www.purl.org/net/motor
under the GPL license. Möbius is freely available for educational and research
purposes from http://www.mobius.uiuc.edu/. motor can be installed as an
add-on package into the Möbius installation directory.

References

1. M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart. TwoTowers: A tool
integrating functional and performance analysis of concurrent systems. In Proc.
FORTE/PSTV 1998, pages 457–467. Kluwer, 1998.

2. H. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. Modest: A
compositional modeling formalism for real-time and stochastic systems. IEEE
Trans. Soft. Eng., 32(10):812–830, 2006.

3. H. Bohnenkamp, J. Gorter, J. Guidi, and J.-P. Katoen. Are you still there? —
A lightweight algorithm to monitor node presence in self-configuring networks. In
Proc. DSN 2005, pages 704–709. IEEE CS Press, June 2005.

4. H. Bohnenkamp, H. Hermanns, J.-P. Katoen, and J. Klaren. The MoDeST mod-
eling tool and its implementation. In Proc. TOOLS 2003, LNCS 2794. Springer,
2003.

5. H. Bohnenkamp, H. Hermanns, J. Klaren, A. Mader, and Y. Usenko. Synthesis
and stochastic assessment of schedules for lacquer production. In Proc. QEST ’04.
IEEE CS Press, 2004.

6. D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of MANET simulators. In
ACM Workshop On Principles Of Mobile Computing, pages 38–43, 2002.

7. D. Daly, D. D. Deavours, J. M. Doyle, P. G. Webster, and W. H. Sanders. Möbius:
An extensible tool for performance and dependability modeling. In Proc. TOOLS
2000, LNCS 1786. Springer, 2000.

8. P. R. D’Argenio and J.-P. Katoen. A theory of stochastic systems. Part I. Stochastic
automata. Inf. & Comp., 203:1–38, 2005.

9. D. D. Deavours and W. H. Sanders. An efficient well-specified check. In Proceedings
PNPM ’99, pages 124–133. IEEE Computer Society, 1999.

10. H. Garavel. Open/Cæsar: An open software architecture for verification, simula-
tion, and testing. In Proc. TACAS ’98, volume 1384 of LNCS, 1998.

11. H. Hermanns, D. N. Jansen, and Y. S. Usenko. From StoCharts to MoDeST: a
comparative reliability analysis of train radio communications. In Proc. WOSP ’05.
ACM Press, 2005.

12. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM. In Proc. TACAS ’02, LNCS 2280. Springer, 2002.

13. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

http://www.purl.org/net/motor
http://www.mobius.uiuc.edu/

	The modest Approach
	motor
	motor and Möbius
	Status and Availability

