Introduction to the | SO Specification Language LOTOS

Tommaso Bolognesi
CNUCE-C.N.R.
Via S. Maria 36 - 56100 Pisa, Italy
earn: bolog @ icnucevm

Ed Brinksma
University of Twente
P.O.Box 217 - 9700 AE Enschede, The Netherlands
uucp: mevax!utinullinfed
earn: hiddink @ hentht5

Abstract

LOTOS is a specification language that has been specifically developed for the formal descrip
the OSI (Open systems Interconnection) architecture, although it is applicable to distrik
concurrent systems in general. In LOTOS a system is seen as a set of processes which inte
exchange data with each other and with their environment. LOTOS is expected to become
international standard by 1988.

Keywords Concurrent Languages, Forniaéscription Techniques, Open Systems
Interconnection, Protocol Specification, Specification Languages,

0. Introduction

LOTOS (Language of Temporal Ordering Specification) is one of the two Formal Descri
Techniques [26, 27] developed within ISO (International Standards Organization) for the fi
specification of open distributed systems, and in particular for those related to the Open S
Interconnection (OSI) computer network architecture [24, 39]. It was developed by FDT e>
from ISO/TC97/SC21/WGL1 ad hoc group on FDT/Subgroup C during the years 1981-86. The
idea that LOTOS developed from was that systems can be specified by defining the temporal 1
among the interactions that constitute the externally observable behaviour of a system. Con
what the name seems to suggest, this description technique is not related to temporal logic
based on process algebraic methods. Such methods were first introduced by Milner's work ¢
[33], soon to be followed by many closely related theories that are often collectively referred
process algebra.g. [2, 5, 22, 32, 35]. More specifically, the component of LOTOS that deals
the description of process behaviours and interactions has borrowed many ideas from [22, 33].

LOTOS also includes a second component, which deals with the description of data structur
value expressions. This part of LOTOS is based on the formal theory of abstract data types,
particular the approach of equational specification of data types, with an initial algebra sem
(see, e.g. [16]). Most concepts in this component were inspired by the abstract data type tec
ACT-ONE [16], although there are a number of differences.

LOTOS is an FDT generally applicable to distributed, concurrent, information processing sys
However, it has been developed particularly for OSI. The main objectives for such a technique
it should allow the production of OSI standards specifications that are:

* unambiguousprecise completeandimplementation independenlescriptions of the
standards;

* readable reference documenits OSI users, implementers and conformance testers;

+ aformally well-definedbasis for the verification and validation of the standards, and for
conformance testing of their implementations;

It is clear that these objectives are particularly important of a distributed, standard architecture
as OSI. Machines must communicate and cooperate with each other, and informal, amb
specifications of the related software could easily lead to incompatible implementat
Furthermore, the possibility to carry out rigorous analysis of a protocol at the design level, tha
an early stage of the development cycle, is crucial to avoid the proliferation of errors i
expectedly large number of its implementations.

The consideration of the requirements above has led to a number of design criteria for the la
itself. The general criteria that have determined the present definition of LOTOS are:

» Expressive poweran FDT should be capable of expressing the wide range of properties
are relevant for the description of OSI services, protocols and interfaces.

* Formal definition: syntax and semantics of an FDT should have a complete and fo
definition. In particular, the formal model on which the semantics of the language is t
must support the development of an analytical theory for verification, validation
conformance testing.

» Abstraction:the language constructs should represent the relevant architectural concef
sufficiently high level of abstraction, where implementation oriented details are
expressed. This avoids the specification of undesirable constraints on implementer
favours of a precise representation of the requirements.

» Structure:an FDT should offer means for structuring a specification in a meaningful
intuitively pleasing way. Good structuring implies readability, ease of maintenance, anc
simplify the analysis. If desirable, structure may also be used to reflect the logical or
physical organization of an implementation.

LOTOS is expected to become I1SO international standard by 1988.

The layout of the paper is as follows. Section 1 is meant to introduce informally the basic elem:
the underlying model of LOTOS, namely processes, their interactions and their composition, ir
to provide an intuitive support for their formal treatment in the rest of the papasic LOTOSs
introduced in Section 2. This is the subset of LOTOS where processes interact with each o
pure synchronizations, without exchanging values. In basic LOTOS we can apprecial
expressiveness of all the LOTOS process constructors (operators) without being distrac
interprocess value communication. Section 3 deals with equivalences, which are importe
comparing specifications, and for giving a complete, formal semantics to the language.
communication is not necessary to treat equivalences, and for this reason we introduce the
after Section 2 on basic LOTOS. The reader only interested in the "surface" of the languac
safely skip this section.

The way data values are defined and expressed is the subject of Section 4 on data types. In ¢
value expressions are integrated into the language: processes may exchange these value
parametrized by them, and we hgud LOTOS. A small but complete LOTOS specification i
provided in Section 6, as an example of the so called "constraint-oriented” specification
Section 7 contains some concluding remarks and a number of pointers to the literature on L
applications and tools. Already some tutorials on LOTOS have been published (e.g. [7]).

however still refer to previous versions of the language and/or are less complete in their preser

1. Processes

In LOTOS a distributed, concurrent system is seen@®@ess possibly consisting of several sub

processes. A sub-process is a process in itself, so that in general a LOTOS specification des
system via ahierarchy of process definitionsA processis an entity able to perforimternal,
unobservable actionsnd to interact with other processes, which fornemgronment Complex
interactions between processes are built up out of elementary units of synchronization which
eventsor (atomic) interactionsor simplyactions

Events imply process synchronization, because the processes that interact in an event (they
two or more) participate in its execution at the same moment in time. Such synchronization
involve the exchange of data. Eventsat@micin the sense that they occur instantaneously, with
consuming time. An event is thought of as occurring at an interaction pog#tepand in the case
of synchronization without data exchange, the event name and the gate name coincide.

The environment of a process P, in a system S, is formed by the set of processes of S with \
interacts, plus an unspecified, possibly hun@rserverprocess, which is assumed to be alwa
ready to observe anything observable the system may do. And, to be consistent with the
observation is nothing but interaction. Hence, when we say that propesfAns an observable
action we refer to thenteractionbetween P and, at least, the observer. (Note that although we
the wordsaction andinteraction as synonyms, we may prefer one or the other depending or
context: we talk about thaction performed byone process and thenteractioninvolving n
processes. The reason for blurring this distinction is simplyntpabcesses together can be seen
oneprocess.)

The most abstract representation of process P, able to interact with its environment via gates
throughg, is the black-box in Figure 1.1.

b — f

a - - g

Figure 1.1 - Process P with gatethroughg, as a black box

The process definitiorof P will then specify its behaviour, by defining the sequences of observ
actions that may occur (be observed) at the seven gates of the process. We will soon repres
behaviour as &ree of actions.

Black boxes are the traditional intuitive representation for processes. Vending machines a
used, sometimes, to give a more concrete model of processes and interactions [22]. As
variant of the black box concept we introduce here a music instrument, to bepcatiegianolg
where interaction with the environment is achieved via a keyboard. Speaking about these (
turns out to be essentially the same thing as speaking about LOTOS processes.

The proto-pianola fills a gap between the piano and the pianola. A piano is a completely p
instrument, since it plays only when its keys are pressed; conversely, a pianola is active, in

includes a predefined score (on punched paper rolls) and is able of automatically performing
proto-pianola is active and passive at the same time: it needs external interaction at the keybc
playing, and yet it possesses an internal score, and is able, from time to time, to perform autor
choices. Figure 1.2a represents a 7-key proto-pianola. We can immediately think of itas a L
process, called, say, PP1, and write:

PP1[a, b, c, d, e, f, g]

to indicate that the 7 keys are the gdatesugh which the process interacts with its environment.
this case the environment, or the observer, is a player. The LOTOS view that processes
engage in more than one interaction at a time is reflected by the assumption of monophony
musical instrument: it cannot produce more than one sound at a time.

The pressing of a key is an interaction between the proto-pianola, which is ready to have tr
pressed, and the performer/observer, who is ready to press the key. Both parties participat
experience that event, and in fact the "genuine” LOTOS point of view insists on this symr
without distinguishing betweeactive andpassiveroles. Observable actions (thus interactions) ¢
simply identified by the gate where they occur (later they will be given more structure, to allow
communication between processes). We will sometimes express the fact that a process is reac
interaction at gata by saying that ibffersobservable actioato its environment.

A (one-finger) performer sitting at the keyboard of PP1 would not always succeed in pres:
chosen key, since some keys sometimes are locked, and the success in pressing a key deper
tune played up to that point. The behaviour of the instrument (or, equivalently, its nondeterm
score) is depicted as a tree in Figure 1.2b. In this specific case the one-finger performer will t
to play a four note scale, but his only freedom is exercised in the choice of the initial key, whic
bea, d org. The other four keys are initially blocked. After the choice of g, the performer will

succeed only in completing his scale, moving, respectively, upwards or downwards. If the
choice had been for the central kiyboth directions would have had a chance to be successi
executed, but this choice is not up to the performer. An i-labelled arc in the tree indicates an ir
unobservable action autonomously performed by the machine, which the performer cannot c
nor hear; the pair of i-labelled branches indicates that the choice of which key becomes unk
afterd is pressed is made by the machine.

N
ERRASHHEN
Y b i,
o [l
[Y
RS
il
| o
PRI
(a) (b)
a g
PP2 1 € €
(c) (d) (e)

Figure 1.2 - Processes as proto-pianolas

The reason for the little holes observed in the front of the proto-pianola keys is revealed by
1.1d, where two pianolas, PP1 and PP2, are coupled front to front. Their keyboards appear a:
images. Metal bars have been inserted into the holes to couple some of the keys. Again a perfi
supposed to play the trial and error game on the resulting "keyboard". His success in pres:
independent (uncoupled) key of pianola PP1 (PP2) depends only on the "score" of PP1 (PP2),
a double-key (a pair of coupled keys) to be unlodieth scores must agree, at that point, on tl
executability of that note. This is exactly the idea of parallel composition of processes in LC
The appropriate behaviour expression would be:

PP1[a, b, c, d, e, f, g]
|[a, d,]|

PP2[a, b, c, d, e, f, g]

where ‘|[a, d, g]|'is a parallel composition operator: the two processes are coupled vie
synchronization gates, d and g, thus they may (in fact, must) synchronize only at these gates
pair of coupled proto-pianolas is essentially a new instrument, and its behaviour is
representable by a tree. Suppose that the behaviour of PP2 be the one in Figure 1.1c. T
behaviour of the new, double instrument, with the indicated key couplings, would be as in F
1.1e: only two three-note tone rows are allowed, starting from either extreme of the keyboard.

Observing and composing LOTOS processes is basically like playing and coupling proto-pia
However, since LOTOS has been mainly designed for specifying communication protoco
computer networks, it also includes features which the inventors of the proto-pianola fail
anticipate. One of thesehgling. This feature is better introduced by going back to the non-musi
more abstract world of black-boxes, where a process is represented as in Figure 1.1.

Consider Figure 1.3. The intended interpretation of the depicted system is as follows. Proces:
is defined by composing in parallel two instances of process Max2. Each one of the comj
processes may interact with ds/n environment, which consists of the other instance of M@
the outer environment, via three gates; but the only synchronization gate between the two proc
mid. Notice that this gate is included in the outer box which represents process Max3. Since w
that this box is really black, the gate is not visible from the outer environment: it has been h
The two process instances are thus allowed to independently interact with the environment at ¢
exceptmid. At this gate they are required to synchronize with each other, without the environ
observing (taking part to) these interactions: due to the hiding, thes®actionshave become
internal actionsof the system.

in2 in3

inl e out

Max2 Max?2

Max3

Figure 1.3 - Spatial representation of process Max3
The informal description above is made formal below.

process Max3 [inl, in2, in3, out]=
hide midin
(Max2[in1, in2, mid]
| [mid] |
Max2[mid, in3, out]

)

where ...
endproc (* Max3 *)

The fact that he system may interact with its environment via actions (atigdtes®, in3, out, is
explicitly indicated in the first line of the specification. Since gateé is hidden, by théide
operator, it does not appear in that list.

The partial specification above is completed in the next section.

2.BasicLOTOS

Basic LOTOS is a simplified version of the language employiriignite alphabet of observable
actions. This is so because observable actions in basic LOTOS are identified only by the nami
gate where they are offered, and LOTOS processes can only have a finite number of gates.
examples of observable actions that we have already met in the previous section are:

g
in2
out

The structure of actions will be enrichedfui LOTOS by allowing the association of data values
gate names, and thus the expression of a possibly infinite alphabet of observable actions.

Basic LOTOS only describes process synchronization, while full LOTOS also describes interp
value communication. In spite of this remarkable difference, we will initially concentrate on |
LOTOS for three reasons. First, within this proper subset of the language we can appreci
expressiveness of all the LOTOS process constructors (operators) without being distrac
interprocess communication; second, for basic LOTOS we can give an elegant and, most impc
formal presentation of the semantics, without boring the reader with cumbersome notation;
behavioural equivalences are more conveniently introduced at this level. Full LOTOS wi
introduced only in Section 5.

2.1. Processdefinitions and behaviour expressions

The typical structure of a basic LOT@®&cess definitioms given in Figure 2.1, which completes th
definition of process Max3 started in Section 1. As a convention we will use italics for synt
categories, that is, nonterminal symbols (dghaviour expressignand boldface for reservec
LOTOS keywords (e.gor ocess).

<process instantiation>

‘rocess s process Max3[inl,in2,in3, out] :=
definition>

. hide mid in N
<behaviour _]
csression (Max2[in1, in2, mid] |[mid]l (Max2[rmid, in3, out]))

where

‘process process Max2[a,b,c] :=
definition>

{ a, b, ¢, stop

NLL
<behaviour /L< b; a; ¢; stop)i
expression>

endproc \ \
endproc \\
N g

<behaviour expression?>'s

Figure 2.1 - Definition of process Max3

An essential component of a process definition ibetsaviour expressionA behaviour expression
is built by applying an operator (e.g., '[|') to other behaviour expressiortseehdviour expression
may also includénstantiationsof other processes (e.g. Max2), whose definitions are provided ir
wher e clause following the expression. Givieahaviour expressioB, we will allow calling B also
"a process”, for convenience, even when no process name is explicitly associated with the be
expressed by B.

The complete list of basic-LOTO&haviour expressions given in Table 2.1 below, which include:
all basic-LOTOS operators. Symbols 'B', 'B1', 'B2' in the table stand forb@ngviour expression
Any behaviour expressiomust match one of the formats listed in column SYNTAX. We have ta
the metalinguistic liberty of representing some lists with dots. By inspecting Table 2.1 we
observe that basic LOTOS includesllary operators (e.g. inactionyinary operators (e.g. action
prefix) andbinary operators (e.g. parallel composition), that is, operators applicable to, respect
none, one and twibehaviour expressions

Table 2.1 - Syntax dfehaviour expressions1 basic LOTOS

NAME SYNTAX
inaction stop
action prefix

- unobservable (internal) i;B

- observable 0; B

choice

parallel composition
- general case

- pure interleaving

- full synchronization
hiding

process instantiation

successful termination
sequential composition (enabling)
disabling

B1[] B2

B11[91, --- . Gl B2
B1]|| B2
B1| B2
hidegy, ..., hin B

P91, - sl

exit
B1>>B2
B1[>B2

Operator precedences are as follows:
action prefix > choice > parallel composition > disabling > enabling > hiding
This means that, for example, expression
hideaina;P[]Q>R|S[>T
is equivalent to expression

hide ain (((&; P) 1 Q) >> ((R || S) [> T)).

2.2. A basic process, two basic operators

Inaction stop

The completely inactive process is representeddyy. It cannot offer anything to the environmen
nor it can perform internal actions, and it is as basic in LOTOS as number zero in arithmetic.
thatstop can be interpreted as the behaviour expression obtained by applyimgll&rg operator
stop to zero arguments.

Action prefix: i;B
g B

This is a unary, prefix operator which produces a belaviour expressioout of an existing one, by
prefixing the latter with an action (gate name) followed by a semicolumn. Examples of action
behaviour expressions, taken from process Max3 (Figure 2.1) are:

c; stop

b; c;stop
a; b; c;stop

Choice: B1[] B2

If B1 and B2 are twdehaviour expressiortten B1[] B2 denotes a process that behaves either |
B1 or like B2. The choice offered is resolved in the interaction of the process with its environ
If (another process in) the environment offers an initial observable action of B1, then B1 m
selected, and if the environment offers an initial observable action of B2, then B2 may be selec
an action is offered from the environment that is initial to both B1 and B2, then the outcome
determined. An example of a choloehaviour expressigmgain taken from Max3, is

a; b; c;stop [] b; a; c;stop
On the basis of the three constructs above, the behaviour of process Max2[a, b, c] defined in
2.1 is now clear. As we did for proto-pianolas, we can immediately build the tree of ac

associated with this expression. However, it is now time to describe the constructatiooftrees
in a more precise, formal way, which could be systematically applied toedraviour expression

2.3 Operational semantics: growing trees from expressions

Theoperational semanticg38] of LOTOS provides a means to systematically derive the actions

a processhehaviour expressigmmay perform from the structure of the expression itself. Mc
precisely, given an expression B, what we derivdadrelled transitionsthat is triples of type:

B—x-B'

where x is an action and B' is anothehaviour expressiorB may perform action x and transforn
into B'. In defining the semantics we will let:

G denote the set afser-definablegates;

g, H--0h range over G;

i denote the unobservable action;

Act denote the set G {i} of user definablections;
M range over Act.

Furthermore, we will need to handle a special action (gaie)which isnot user-definable, and
whose occurrence indicates theccessful terminatioof a process and tlenablingof a subsequent
process. We will thus let:

0 be the successful termination action

Gt be the set Gl {d} of observable actions
gt range over &

Act* be the set Acfl {&} of actions

ut range over Act.

If BEis the set otbehaviour expressionshen we may say, more formally, that #tse@omsand
inference rulesof the operational semantics allow the definition of lHi®elled transition relation

‘="', which is a subset 8FEx Act XBE (‘X" is the cartesian product of sets). By applying axioms ¢
rules to a given expression we build ttnansition tree also calledsynchronization tree.(An

introduction to these topics, and to the way axioms and inference rules are used, can be foun
interested reader also in [33], which gives the operational semantics of CCS.) In a transitic
nodes are labelled Hyehaviour expressior(she starting expression being the label of the root), ¢
arcs are labelled by actions. Aation treeis a transition tree where node labels have been delete

Despite the tutorial nature of this paper, we found appropriate to present the semantics in a
way, because, in this case, the formalism directly and naturally reflects our intuitive understanc
the meaning of expressions; and the little cost of explaining how to read axioms and inference
more than compensated by the advantages in terms of clarity and conciseness. In fact, s|
beginning of the ISO/FDT activities, the definition ofcamal semantics has been considered a:
major requirement in defining Formal Description Techniques.

Semantics of inaction, action prefix and choice

No axiom or inference rule is associated viaéhaviour expressiosiop, and it is thus impossible to
derive any transition from it. Hence we understaimgh as a predefined LOTOS process which

unable to perform any action or to interact with any other process.

The semantics of the action prefighaviour expressiois captured by a single axiom:

where B is anypehaviour expressioandp is either the unobservable actipnr some observable
actiong. This axiom states the true fact, subject to no condition, that preceBsi$ capable of

performing actioru and transform into process B. Notice that weus@&d notu*. This is because
the user of the language is not allowed to express the successful terminationdadirently, but
only indirectly, by the 'exit' construct (to be discussed later).

B1[] B2 is a choicdehaviour expressiowhich behaves either like B1 or like B2. Its behaviour
captured by the two inference rules:

Bl -ut- Bl implies B1[] B2-p* - BI'
B2 —ut- B2 implies B1[] B2-u*- B2

These rules are used to derive the actions of B1 [] B2 from those of B1 or B2. More precise
action capability (set of possible actions) of a choice expression is the union of the action cape
of its components; however, once an action is chosen from one component, the other cormr
disappears from the resulting expression.

If we apply the axiom for action prefix, for example, to expression 'a; §;o0p; we obtain the
transition:
a; b;c;stop —a-» b;c;stop

We may now use this result in applying the inference rule for choice:

a; b;c;stop —a-» b;c;stop
implies
a; b;c;stop [] b; a;c;stop —a— b; c;stop

We have thus derived a transition for a choice expression, based on the operational semantic
language. By exhaustively applying the axiom and the rules in all possible ways, the reade
easily find the seven-node tree associated to the choice expression above.

As a final example of inaction, action prefix and choice we give the basic LOTOS description «
process illustrated in Figure 2.2. This process describes the externally observable behaviour c

duplex channel between two points, which can be used only once for each direction. The des:
is abstract, in the sense that it only accounts for the ordering of inputs and outputs, and not
data actually transmitted.

in-a _| | % | | out-a
%

out-h ™

Figure 2.2 - A simple, full-duplex buffer

process duplex-buffer [in-a, in-b, out-a, out-b¥
in-a; (in-b; (out-a;out-b;stop
[] out-b; out-a;stop)
[] out-a; in-b; out-bstop)
[in-b; (in-a; (out-a;out-bstop
[] out-b; out-a;stop)
[] out-b; in-a; out-astop)
endproc

As it appears from the example above, describing a behaviour using only inaction, action pref
choice forces the specifier to explicitly describe all different orderings in which independent as
may take place. This is of course a rather clumsy solution, and we will show below how p:
composition solves this problem in a more concise and structured way.

2.4 Parallelism

General case: B1|[g1, -, Onll B2

Let S = [q, ...,] be a set of user-defined gates, caldgdchronization gatesGiven a parallel

behaviour expressiorB1 |S] B2', the transitions it can perform depend on the transition capabil
of B1 and B2, and on S, as expressed by the following inference rules:

Bl-u-Bl'andp S implies B1|S|B2 -u - B1|S|B2

B2-u-B2'andp S implies B1|S|B2 -u- B1SB2'

B1-g*t-B1' and B2-g* - B2'
and ¢ 0S0O {3} implies B1|S|B2- g* - B1|9B2'

The rules essentially say that a parallel composition expression is able to perform any actis
either component expression is ready to perform at a gate not in S (excluding successful terrr
'd'), or any action that both components are ready to perform at a gate in S, odatQate implies

that when process B1 is ready to execute some action at one of the synchronization gates, it i
in the absence of alternative actions, to wait until its "partner” process B2 offers the same actio

As an example, consider the paraliehaviour expression
'‘Max2[in1, in2, mid] |[mid]|] Max2[mid, in3, out]'

used to define the behaviour of process Max3 in Figure 2.1. The action trees associated with
instances of process Max2 are given in Figure 2.3. They are easily obtained by first buildii
transition tree of process Max2, also defined in Figure 2.1, and then by properly replaaing is

labels with the actual gate names used in the two process instantiations (we are giving an ir
preview of the semantics girocess instantiation By repeatedly applying the inference rules fi
parallel composition, the reader may check that the action tree for the parallel expression abo
depicted in Figure 2.4.

in1/.\in2 in3/.\mid

in2 int mid Nin3
m m
® ¢ o "o

Figure 2.3 - Two action trees

mid

in3

out

® ¢ o o ¢ o o o

Figure 2.4 - A parallel composition of the two action trees of Figure 2.3

Notice that actiommid is not hidden, as it was in the definition of process Max3. Thus, it is avail
for further synchronizations with the environment, exactly as is the case for anfipm?, in3 and

out This feature ofmulti-processor multi-waysynchronizationis important for both technical anc
methodological reasons. The technical reasons have to do with specific applications. In
applications the structure of interprocess communication is reflected best by specifying a mul
synchronization between processes. This is the case with, for example, message broadcasting

The methodological reasons for introducing multi-way synchronization are related to the fac
where many processes synchronize on a single action, each of these processes may add cc
with respect to the occurrence of that action. In other words, complex temporal ordering rel
among actions may be decomposed astimpunction of several simpler constraints, each of whic
may be captured by a simple process definition. The complex constraint is then expressed
parallel composition of all these simpler processes. This method is referrecbtostraint-oriented
specification We illustrate this with a small example.

Consider (again !) thieehaviour expressiodefining process Max2[a, b, c]:
a; b; c;stop [] b; a; ¢;stop

This process offers actions a and b, in either order, followed by action c. We may equivalent
that the only temporal constraints involved are

"a precedes c"and "b precedes c",

where the 'c' in the two constraints has to be regarded as a unique action. The conjunction
two constraints is precisely expressed by the parallel composition operator as follows:

a; c;stop [[c]| b; cstop

In fact, the action trees for the two expressions above turn out to be identical.

This approach of 'logical modularity' allows for an incremental combination of constraints. A fu
constraint such as "x precedes c" can be added later, with no need to affect the expression buil

(a; c;stop |[c]| b; cstop) |[c]| x; cstop
There exist two special cases of the parallel operator, for which convenient shorthands are ¢

They are calleghure interleavingandfull synchronization

Pure interleaving B1l]|| B2

When the set of synchronization gates, S, is empty, the parallel opésats Wwritten |||'. By
inspecting the inference rules for parallel composition, it is clear that in this case the third ru
never be applied, except in the case of successful termination.

The two rules left account for the actions performed by the two component processes indepe
of each other. Given expression|[&2, if both B1 and B2 are ready for some action (say actions
and b2 respectively), then both action orderings (b1 before b2, b2 before b1l) are possible. Not
b1l and b2 may even be the same. SincgiE2Ltransforms, after an action, into an expression s
involving the [||' operator, we conclude that this case of parallel composition expresses nothir
any interleaving of the actions of B1 with the actions of B2.

We have now a means for expressing the simple-duplex-buffer specified at the end of Secti
As suggested by Figure 2.2, such a process is best represented by a parallel compositior
independenprocesses (buffers). A more concise and better structured specification is:

process duplex-buffer [in-a, in-b, out-a, out-b}
simplex-buffer [in-a, out-a]
[|| simplex-buffer [in-b, out-b]

where
process simplex-buffer [in, out}=
in; out; stop
endproc
endproc

Full synchronization Bl B2

When the set of synchronization gates, S, is the setaB ajates , then the parallel operat8f is
written]|'. Only the third inference rule for the parallel operator is applicable, and the two comj
processes are forced to proceed in complete synchrony.

A typical example of use of this parallel operator is when the capabilities of a process are dete
by two or more of its subprocesses.

process produce [a, b, ¢, dE
item-available [a, b, c, d]
|| item-acceptable [a, b, c, d]

where
process item-available [a, b, c, dE
a; (b;item-available [a, b, c, d]
[] c; item-available [a, b, c, d]
)

endproc

process item-acceptable [a, b, ¢, i}
a; (b; item-acceptable [a, b, c, d]
[] d; item-acceptable [a, b, c, d]
)
endproc
endproc

In this simple example we can check that 'produce[a, b, c, d]' may only perform the seque
actions 'a, b, a, b, ...".

2.5 Hiding

Hiding allows one to transform some observable actions of a process into unobservable ones.
action are thus made unavailable for synchronization with other processes. The inference
the hiding operator are:

B-pt-B

and pt 0{g1, ... , ¢} imply hidegd, ...,grinB —-ut- B’

B-g-B'

and gU{g91, ..., ¢} imply hidegl, ...,gnnB -i» B'

Any action occurring at a gate in the sehaidengates is transformed into an i-action (second rul
Any other action, including 'i" and successful termination, is unaffected by the operator (first
We may say that hiding introduces unobservable actions in a specification implicitly, while by &

prefix they can be introduced explicitly.
As an example, consider the hidinghaviour expression
hide midin Max2[inl, in2, mid] |[mid]| Max2[mid, in3, out]

used to define the behaviour of process Max3 in Figure 2.1. The hiding operator maki
synchronization between the two Max2 processes invisible, and excludes interference fron
environment. We do this since we know that no other process will be added later to impose
temporal constraints to the occurrence of rilid action, which is to be considered as a "privat
interaction between the two instances of Max2.

The action tree for the expression above is directly obtained from the tree of expression ‘Ma;
in2, mid] |[mid]] Max2[mid, in3, out]', given in Figure 2.4, by replacingrthé labels withi labels.
We will use this tree later (it can be found in Figure 3.5b).

2.6 Processinstantiation and recursion Plgl, ...,gn]

A process instantiatiotP[gl, ...,gn]' is formed by@rocess identifielP' with an associated list

[91, ..., th] of actual gates Such a process instantiation occurs inlt@leaviour expressiodefining
some other process, or process P itself. The instantiation of a LOTOS process resemt
invocation of a procedure in a programming language such as Pascal. Of cquseeas
instantiationrefers to gprocess definitiorwhich must exist somewhere in the specification, a
whose behaviour is defined in terms of a lis§ [g'., gp] of formal gates. Example: in Figure 2.1,
'‘Max2[mid, in3, out]' is a process instantiation, where '[mid, in3, out]' is a list of actual gates,
'[a, b, c]' is the matching list of formal gates.

Although the interpretation qfrocess instantiationis simple, in order to formally define how forma
gates are replaced by actual gates we need to introduce an auxiliary operatometzikdting,
which is only used for talkingabout LOTOS, and not for specifying processies LOTOS.
Relabelling is a unary, postfix operator, which consists of a list of gate-pgigs|[g.., ¢/d'nl, and
is interpreted as gate renaming: gajdogtomes gateg = 1, ..., n. Itis required that g.. ¢, be all
different. Formally:

B-g'- B',
¢®=[91/9'1, ---» H9'nl, and g/gll @ implies Bo-g-B'o

B-pt- B'and pt 0{g'1, --.» 9n} implies Bo—ut-B'@

Notice that internal action and successful termination are not affected by relabelling. It follows
these rules that the action trees of B ang Bre the same, except for the renaming of gates wr
affects some of the arc labels.

The rules foprocess instantiatioare:

where [91/9'1, ..., }/9'nl is the relabelling operator. The behaviour of instantiatiom ;P[@]' is
thus defined as the behaviour of the body & the associategrocess definitionwith the
appropriate gate relabelling.

Recursion

Recursion is achieved, in LOTOS, Ilpyocess instantiationand is used to express infinite
behaviours, namely those which involve action sequences of infinite length. Let us say that "¢
P invokes process Q" if either an instantiation of Q, or the instantiation of another proces
invokes Q, occurs in the behaviour expression defining P. We say that processtssreif it
invokes itself. As a simple example of recursion (ar@tess instantiationwe refine the definition
of the simplex-buffer given at the end of Section 2.4, by making it reusable:

process reusable-simplex-buffer [in, outy
in; out; reusable-simplex-buffer [in, out]
endproc

An infinite sequencen; out; in; out; ... of actions is now possible. Incidentally, an identic
behaviour is obtained by the following definition:

process same-simplex-buffer [in, out] :=
in; same-simplex-buffer [out, in]
endproc

where every new process instantiation inverts the order of gates.
2.7 Successful termination and sequential composition

So far two ways to express sequentiality in specifications are available. We can do it direc
prefixing anactionto aprocess or indirectly, by composing in parallelo processes such a way
that the last action of the first process synchronize with the first action of the second one. It
desirable to have direct way to express sequential composition of processes too, that is, to h

separate operator for it. This may help in reflecting more clearly the structure of a system ir
structure of its specification.

The idea behind the sequential composition operator is that the second process is enabled on
when the first one terminates successfully.

Successful termination exit

Exit is a process (a nullary operatorbahaviour expressignwhose purpose is solely that o
performing the successful termination act@rafter which it transforms into the dead procesp.
Its associated axiom is:

Action o plays an key role in the sequential composition of processes, as shown below. It car
used directly in a specification, but only via @xét construct. Thus any gate accidentally nadned
a specification is regarded as a "normal" gate, with no termination significance.

Seqguential compaosition B1>>B2

The informal interpretation of this construct is that if B1 terminates successfully, and not becau:
premature deadlock, then the execution of B2 is enabled.

Bl - B1' implies B1>>B2 —j - B1>>B2

B1-06-Bl' implies B1>>B2 -i-B2

The first rule accounts for the behaviour of B1 before its successful termination. The secor
shows that it is actiod, offered by B1, which enables B2, and that this passing of control is se¢
an internal action. Sequential composition and hiding are the only operators which introc
unobservable actions implicitly in a specification.

It is important to realize that the successful termination of the parallel composition of two proc
is possible if and when both components are ready to successfully terminate, as expresse«
inference rules for the parallel operator. As a negative example consider this expression:

(a; b;exit ||| a; cstop) >> second-process]...]
The expression is equivalent to ' (a;dajt ||| a; c;stop)’, sincestop cannot contribute to the

successful termination of the parallel subexpression, and no enabling of the second-proces
place.

The enabling operator is conveniently used in conjunction with process instantiation, so that st
of a system can be first defined as separate processes and then instantiated in the desired ¢
An example is given below.

process Sender [ConReq, ConCnf, DatReq, DisReq] :=
Connection-Phase [ConReq, ConCnf]
>> Data-Phase [DatReq, DisReq]
where
process Connection-Phase [ConReq, ConCHx]
ConReq; ConCnf; exit
endproc
process Data-Phase [DatReq, DisReq] :=
(DatReq; Data-Phase [DatReq, DisReq]
[] DisReq; stop
)
endproc
endproc

2.8 Disabling Bl [> B2

In almost any OSI connection oriented protocol or service it is the case that the 'normal’ cot
action can be disrupted at any point in time by events signalling disconnection or abortiol
connection. This has led to the definition in LOTOS of an 'application generated' operator, n
thedisablingoperator. Process B1 may be disabled by process B2 according to the following rt

Bl - B1' implies B1[>B2-p— B1[>B2
B1-5 - B1' implies B1[>B2-5 - BI'
B2 -ut-B2 implies B1[>B2-ut-B2

Process B1 may (third rule) or may not (first and second rules) be interrupted by the first act
process B2. In the first case control is irreversibly transferred from the interrupted B1 t
interrupting B2. In the second case the interruptable B1 performs an action: if this action is
successful termination (first rule), B2 survives. If the action is a successful termination (seconc
B2 disappears: the process which B2 was expected to interrupt has terminated, and the d
process itself is disabled.

As an example, let us first define the two processes:

process Activity [a, b, c] :=
a; b; c; Activity [a, b, c]
endproc

process Disrupt [discon reason]=

discon; reason; stop
endproc

Then the expression:

Activity [a, b, c] [> Disrupt [discon, reason]

is equivalent with:

(discon; reasorstop
[a; (discon;reasorstop
[b; (discon;reasorstop
[c; (Activity [a, b,]
[> Disrupt [discon, reason]

))))

With disabling, we have completed our presentation of the basic-LOTOS operators.

2.9 Nondeter minism and inter nal actions

Before giving a final example of a specification in basic LOTOS, we briefly discuss
nondetermism can be expressed in it. A simple example of nondeterminism is represented
following expression:

a; b;stop [] a; c;stop

where the result of observirais not determined. The unobservable action is also a sourc
nondeterminism, as shown by the expression

i; b; stop [] i; c; stop

(proto-pianola PP1 in Figures 1.2 (a) and (b) provides a similar example). In fact, from the pc
view of an observer who is interested in observing adi(r c), the two expressions above offer th
same uncertainty: in both cases the observation may succeed or fail (but in the first case a prel
and always successful observationaofs also needed). We discuss now, with an example,

special case of nondeterminism where the alternative is between an observable and an unob
action.

We want to model a vending machine (although very little remains to be written about these d
after the publication of [22]). After acceptingain, it will offer somecandy The user can obtain
the latter by pulling a drawer.

process Vending_machine [coin, candyl, candy.2]
coin;
(candyl; Vending_machine [coin, candyl, candy?2]
[] candy2; Vending_machine [coin, candyl, candy?2]
)

endproc

Now suppose the system also contains a little devil that can try at any time to pull a drawer (
the user) and consume the candy.

process Devil [candy] :=
candy; Devil [candy]
endproc

The total system, as observed by the client, is defined by

process System [coin, candyd
hide candy'in
Vending_machine [coin, candy, candy']
|[candy]|
Devil [candy']
endproc

By applying the axiom and inference rules introduced so far we could start the construction
action tree for this System. We would then soon realize that the behaviour of the system is «
well described by this expression:

coin; (candy; System [coin, candy]
[] i; System [coin, candy]

)

The first alternative in the choice subexpression represents the "normal” behaviour expected
client. The second alternative is the Devil's one, whemdels the hidden interaction between tt
Devil and the machine on acti@andy: Although this interaction is invisible, we cannot drop
from our expression without affecting the behaviour of the system. If we write:

coin; (candy; System [coin, candy]
[] System [coin, cady]
)

we are describing a system where the client can choose between getting his candy and insertir
coin. In the original description, on the contrary, the occurrencesafot at the client's discretion; it
may simply happen, unnoticeable, and the client is confronted afterwards with only one pc
course of action, viz. System.

The case of "asymmetric" nondeterminism with a choice between an observable and an unobs
action as was just discussed, is often found in an OSI context. Typically we have:

normal-course-of-action
[] i; disconnect indication; ...

where a process may be forced to accept a disconnect indication although, in principle,
alternatives exist.

2.10 An examplein basicLOTOS

In all OSI protocol specifications one can identify parts that are responsible for the managen
the connections in the underlying service, i.e. the setting up, using and disconnection of the
communication channels that exist between the service users. Here we present a small and si
portion of the manager of a Transport service, which would typically be a part of a Session pr«
We do not discuss the Transport service here; the uninitiated reader is referred to [44] fol
information.

process Handler[ConReq,Conind,ConRes,ConCnf,DatReq,DatInd,DisReq, DisInd]

>>

>>
where

Connection-phase[ConReq,Conind,ConRes,ConCnf,DisReq, DisIind]
(Data-phase[DatReq,DatInd]
[> Termination-phase[DisReq, Disind]

)
Handler[ConReq,Conind,ConRes,ConCnf,DatReq,DatInd,DisReq, DisiInd]

process Connection-phase[CRq,CI,CR,CC,DR,DI] :=
(i; Calling[CRq,CI,CR,CC,DR,DI]
[] Called[CRq,CI,CR,CC,DR,DI]
)

where

process Calling[CRq,CI,CR,CC,DR,DI]=

CRq; (CC; exit
[] DI; Connection-phase[CR(,CI,CR,CC,DR,DI]
)
endproc

process Called[CR(q,CI,CR,CC,DR,DI] :=

Cl; (i; CR;exit
[] i; DR; Connection-phase[CRq,CI,CR,CC,DR,DI]
)
endproc

endproc (* Connection-phase *)

process Data-phase[DtR,Dtl] :=
i; DtR; Data-phase[DtR,Dtl]
[| Ditl; Data-phase[DtR,Dtl]
endproc

process Termination-phase[DR,DI] :=
i; DR; exit
[DI, exit
endproc

endproc (* Handler *)

3. Behavioural equivalences

One can describe systems at various levels of abstraction; for example it is possible to descri
they are structured internally in terms of predefined subcomponents, or how they behave fr(
point of view of a user or of an external observer. In moving within this range of descriptive lev
is common to distinguish between:

specificationswhich are rather high level descriptions of the desired behaviour of the
system, e.g. as seen by the user (extensional description);

implementationswhich are more detailed descriptions of how the system works ormhafw
it is constructed starting from simpler components (intensional description).

LOTOS is a specification language which allows the specification of systems at different desc
levels. In LOTOS the words 'specification' and 'implementation’ have a relative meaning, r
absolute one. Given two (syntactically homogeneous) LOTOS specifications S1 and S2, we v
that S2 is ammplementatiorof thespecification S1 when, informally, S2 gives a more structure
and detailed description of the system specified in&fucturein a LOTOS specification is anothe
concept which cannot be given an absolute measure. We might say that a specification i
structured by a "generous” use of the parallel, the enable, and, perhaps, the disable operator:
process definitions. For example, process 'duplex-buffer' in Section 2.4 shows more structure
version in Section 2.3.

The relationships between different LOTOS descriptions of a given system and, in parti
between specifications and implementations, can be studied by using a notion of equive
proposed in [37] and used for a CCS-like calculus in [34]. This equivalence, kn@mbsasational
equivalenceis based on the idea that the behaviour of a system is determined by the way it in
with external observers. Theories of equivalences turn out to be very useful. In fact, they allc
not only to prove that an implementation is correct with respect to a given specification but &
replace complex subsystems with simpler, equivalent ones, within a large system, thus simg
the analysis of the latter.

A typical example of two different descriptive levels found in the OSI architecture is provided b
concepts oprotocol andservice[24, 39] Thespecificationof the N-service igmplementedy the
composition of the N-protocol entities with the (N-1)-service, and it seems natural to require th
two descriptions be equivalent. Unfortunately the complexity of OSI services and protocols is
that a proof of equivalence will certainly require the assistance of automated tools; and when -
language is used (this is of course the case for applications to OSI) the development of verit
algorithms is a challenging task in itself. We are not concerned about analytical tools here. F
illustrative purposes it will be enough to give an example of a specification/implementation pe
which the equivalence proof can be carried out by hand. But before doing this, we want to str
importance of equivalences from a slightly different perspective, namely for having a satisfe
definition of the formal semantics of the language. This will also give us the opportunity to shi
discussion of equivalences into the domain of trees, with the obvious pictorial advantages.

What is themeaningof the LOTOS expression below ?
a; (b;stop [] i; c; stop) [] a; c¢;stop

We might apply the operational semantics of Section 2 for deriving the action tree of Figure
from the expression, and then be tempted to say that the tree is the semantics of the expressio

a) b) <) d)
Figure 3.1 - Comparing action trees

Since we regard the tree as a description of a behaviour in terms of observable actions, we
consider the colour of the tree arcs and nodes as immaterial. Similarly, we would not object
choice of a different ordering for the outgoing arcs of a node. For instance, we could accept t
in Figure 3.1(b) as well. On the other hand, expression &o; [] a; (b;stop [] i; c; stop)' also
admits tree (a), or tree (b), as an action tree, and we may conclude that the two expressions
also be considered as equivalent. Rather than viewing the semantics of an expression as a
will talk then about equivalence classes of trees and, consequently, of expressions. Once ¢
notion of equivalence between trees is chosen, we will say that two expressions are equiva
that they have the same meaning) if their trees are in the same equivalence class. Thus the me
an expression can be identified with its equivalence class. We concentrate now on trees.

We have easily accepted the equivalence between trees (a) and (b) in Figure 3.1. Follow
discussion on nondeterminism and internal actions in Section 2.9, we would not put tree (c), wt
i action has been dropped, in the same class as (a) and (b). Consider now trees (a) and (d)
represent the same observable behaviour ? In order to give a convincing answer we need :
definition of observational equivalence

The idea of observational equivalence is that two systems are considered as equivalent when
cannot tell them apart Bxternalobservations. As external observers we do not directly see tree
and (d) as in Figure 3.1, but we may only experiment with the keys of the two proto-piano
Figure 3.2, which incorporate these two trees as their hidden scores. As discussed in Se:
observations consist in simply pressing keys, one at a time, and noticing whether they are
blocked. Our experiments are formalized by dhservable sequencelation '] '. We refer to the
notational conventions fixed in Section 2.3. However we may now imagine that B, Bj dadde

simply tree nodes, or states, rather than behaviour expressions (recall that behaviour express
node labels in derivation trees). An element ofdbservable sequencelation is a triple (B, s, B'),
where s is a string of observable actions, and is writtes(B B'. The purpose of this relation is tc
abstract from the invisible actions that are on the path between two tree nodes.

Figure 3.2 - Are these two proto-pianolas observationally equivalent ?

Definition 3.1
i) Let s denote a stringtq u* 2... u*p, of actions. We define relatiors— as the obvious extensiol
of the transition relation (tree arcs) to action sequences:

B-s- B'if and only if there exist{B O< i< n, such that B=g- p* 1 - B1..Bn.1—- Ut h— B=B'. In
particular, for n = 0 we have& - B for any B, whereis the empty string.

i) Let s denote now a string"g g*2... g", of observableactions, and letki denote a sequence of |
(k=0) i-actions. Then we have &[0 B’ whenever there exists a sequenk® ¢i*; iK1 g*o... gt
ikN) of actions such that:

B- (KO g*q ikl gt,... gt ikMm B,
This implies that B=€0 B’ whenever B iK_ B', and that B=¢0 B for any B. e

Examples: given a tree patipyBi — B1—a- Bo- - B3—b- By, we may write:

Bpo—iaib-Bg
Bpo=abd By
B1=all By
Bo=¢l B1
Bo =elJ Bp.

Based on the observable sequence relation, we define a nobmmaiflation

Definition 3.2
A relation between tree nodes iskasimulationif for any pair (B, Bp) in U and for any string s
of observable actions:

I. whenever B =s] B'1 then, for some B: Bo =sl1 B'> and Bjl B'o

ii. whenever B =sJ B's then, for some B: Bq=s0 B'1{ and Bj[B's. .

The idea of bisimulation is that two bisimilar nodes must be able to "simulate" each other, in te
observable sequences, and then reach still bisimilar nodes. Finally:

Definition 3.3
Two tree nodes fand By areobservationally equivalentwritten By = Bp, if there exists a

bisimulationd} which contains the pair (Bp).

When we talk about the observational equivalence of two trees we refer, of course, to the equi
of their roots. For proving the observational equivalence of trees (a) and (d) in Figure 3.1, w
then provide a bisimulation between their nodes, which include also the pair of roots. The
may check that the relation defined by the dashed lines in Figure 3.3 is in fact a bisimulation: al
of nodes connected by a dashed line satisfies conditions (i) and (ii) in Definition 3.2.

Figure 3.3 - A bisimulation

Hence the two trees are observationally equivalent, and we can write:

a; (b;stop [1§; c; stop) [] &; ¢;stop = a; (b;stop [] i; c; stop)

Now that we have switched from trees back to expressions, we may try to solve our equiv
problems directly, by algebraic manipulations of the given expressions. In particular we might
to substitute some subexpression F of a given expression E with an expression F' equivale
without affecting the overall behaviour, that is, without leaving the equivalence class
Unfortunately, observational equivalence is not a substitutive relation. We need to cons

different relation, calledbservational congruencevritten '=C',

We will not formally defineobservational congruendeere (see [33]). It will only suffice to say tha

it is defined in terms of observational equivalence, it is stronger than it (that#€ BA implies B1
= B2), it is substitutive, and it satisfies a number of useful laws [21]. Trservational congruence
laws are given in Figure 3.4, in tree form. Recall that, by our convenfidndenotes any action.

< N N . . + i ™
put i B = ut B BB = i;B pH(BLCI[Ip*HC = phiB([lL C)

4

Figure 3.4 - Three observational congruence laws

Notice that the third law matches trees (a) and (d) of Figure 3.1, thus providing another proof ¢
observational equivalence. We will now use the first two laws to provide the proof of observa
equivalence between two systems. Consider the following basic LOTOS processes:

Process Max3-Spec [inl, in2, in3, out¥
inl; (in2,in3, outstop

[] In3,in2, outstop)

(inl1,in3, outstop

[] in3,inl, outstop)

(inl1,in2, outstop

[] in2,inl, outstop)

endproc

Process Max3 [inl, in2, in3, out]=

hidemidin

(Max2[in1, in2, mid] |[mid]| Max2[mid, in3, out])
where
process Max2 [a, b, c}=
a; b; c;stop
I
b; a; c;stop
endproc
endproc

Process Max3 (which was already introduced in Section 2.1, Figure 2.1) can be seen
implementation of process Max3_Spec, in terms of process Max2. The latter describes a bla
which outputs a signal only after receiving two input signals, in any order. Max3_Spec, ins
describes a black-box which outputs a signal only after receiving three input signals, in any
Our claim is that Max3_Spec and Max3 are observationally equivalent. Consider the two actio
of the processes, shown in Figure 3.5.

a) Action tree for Max3-spec

ini

b) Action tree for Max3
Figure 3.5 - Two observationally equivalent action trees

The proof can be easily conducted by simple graphical manipulalibadirst congruence law is
applied to collapse six 'i' actions of the tree of Max3. Then two subtrees of the resulting tr
reduced according to the second law, and eventually the first law can be applied twice again
us a tree identical to the one of Max3-spec. The substitution of subtrees is allowed because v
with a congruence relation. In doing this we obtain a slightly stronger result: the two trees a
only observationally equivalent, but also congruent.

A survey on observational equivalence verification algorithms can be found in [4] (see also [30]

Apart from observational equivalence, there exist a number of other ways to compare L(
processes. When specifying complicated behaviours it is a generally adopted strategy to spe¢
the behaviour that would be acceptable in implementations of the specification. This usually le
a specification that includes a number of options of behaviour, all of which need not necessa
part of any single implementation. In this case, one may want to establish that the behaviou
implementation is an acceptaledluctionof the behaviour of the specification, rather than verifyil
their equivalence.

To deal with this question, a number of asymmetric relations between behaviours have
suggested, which all are based on the same main idea. For CSP this 'implementation relati
introduced in [11], and for CCS in [15], which was generalized to the context of labelled tran
systems in [14]. The elaboration of such a relation for LOTOS can be found in [10].

The main idea is that 'Bd S' (behaviour B reduces specification S, where B and S are processe

i) B can only execute actions that S can execute; and
i) B can only refuse actions that can be refused by S.

We still consider action as invisible, and when we say "B can execute action X" we mean that
observable, and that B=X B', for some process B'. The key to the understanding of this relatic
that a specification S may be nondeterministic: after having interacted in a sequence of evel
may both offer and refuse a particular set A of actions. Two instances of this relation are:

a) Bredi;B[]i;C
b) Bred i;B[]C

To fix ideas, let us consider case (b). Itis clear that B can only perform actions that are also in
i; B[] C, so that condition (i) is fulfilled. Also, every non-initial state of B has an equivalent stat
i; B[] C, so that condition (ii) needs only verification for the initial state of B. It follows easily frc
(i; B[] C)=¢0 B that all actions that can be refused by B after a sequence of invisible action
also be refused by i; B [] C after a sequence of invisible actions.

Note that Gredi; B [] C does not hold: C may refuse initial actions of B that cannot be refused b

i;B[]C.

The implementation relations also induce equivalences between behaviours: B equivalented ifi
C and Cred B. This equivalence is referred tofadure equivalencen [11], andtesting equivalence
[15, 14, 10]. An advantage of these equivalences is that they do not distinguish between prt
that cannot be distinguished by experiments, while this may happen with observational equivi
As an example, consider the following processes:

B1= a;(a; astop [] a; stop)
Bo= a; a astop [] a; a;stop

Both of them will certainly support the observation of action sequencasdaa, and may or may
not support the observation @ha any other observation will not be supported. In spite of this, t
would be distinguished by observational equivalence, since:

B1 —a- (a; a;stop [] a; stop) = B3 and
By —a- a; a;stop =B4 and Bp-a- a;stop =Bs.

Clearly Bgis not equivalent to Bbecause B may refuse to accept the action sequence 'aa’ while
will certainly accept it; and 8is not equivalent t5 because Bmay accept ‘aa’ while Bwill
certainly refuse it.

The nameesting equivalenceas chosen because in some sense this relation identifies exactly
processes that cannot be distinguished by testing. In [9] and [8] it is indicated how this relatio
be further modified to support the practical testing of processes for conformance to
specification.

One of the advantages of LOTOS is that, on the basis of its operational semantics, different re
between specifications can be defined, which suit different needs.

4. Datatypes

The representations of values, value expressions and data structures in LOTOS are derived 1
specification language for abstract data types (ADT) ACT ONE [16]. The chorlestriactdata
types for LOTOS, as opposeddoncretedata types, is consistent with the requirement of abstrac
from implementation details which has been a guiding principle also in the design of the
component of the language (process definitionsoAcretedata type implies a description lobw
data values are represented in memory,leowdl some associated procedures operate on them.
other words the data type is defined by explicitly giving its implementation. For example a F
gueue can be defined as a list of records and a pair of procedures which manipulate it to rea
'‘Add' and 'Remove' operations. Abstractdata type can be seen as tbenal specification of a
class of concrete data types. It does not indibatww data values are actually represented a
manipulated in memory, but only defines the essential properties of data and operations tt

correct implementation (concrete data type) is required to satisfy. Ultimately, an ADT defir
identifies a mathematical object, namely agebrg formed by sets of data values, caltbata
carriers, and a set of associategderations The reader interested in the specification of ADT's
general may refer to [19] and [20].

ACT ONE is an algebraic specification method to write unparametrized as well as parametrize«
specifications. ACT ONE, and thus LOTOS, includes the following features for the productit
structured specifications:

1. use of a library of predefined data types;

2. extensions and combinations of already existing specifications;

3. parametrization of specifications, and actualization of parametrized specifications;
4. renaming of specifications.

The most basic form of data type specification in LOTOS consistsighatureand, possibly, a list
of equations

4.1 Signature

The first step in specifying a data type consists of defining names of data carriers and opet
The names of the data carriers are referred teoals The declaration of every operation wil
include itsdomain, which consists of a list of zero or more sorts, eartje, which consists of
exactly one sort. The sorts and operations of a data type are referred teigsatueeof that data

type.

Below we list a type definition of the natural numbers, which only consists of a signature.
definition is named 'Nat_numbers’, so that it may be referred to by other definitions, and con
with them. The signature of Nat_numbers consists of the single sort 'nat’, and the operations
'succ’. Operation 'succ' can be applied to a single element of sort 'nat’, and yields also an ele
'nat' as a result, as indicated by the notation ‘naat'. Operation '0' is an operation that has
arguments, yet it yields an element of 'nat’, as indicated by the notatinat'

type Nat_numberss
sorts nat
opns O : - nat

succ: nat- nat

endtype

We express the fact that an operation thasguments by saying that it is arary operation. Thus
'succ' is a unary operation, while '0' is a nullary operation. Nullary operations areoabémhts

An additional example of a complete data type definition that consists only of a signature
definition of a set of characters{a.., &}, where each character is defined as a constant:

type Characters

sorts char
opns ai, ..., &, € - char

endtype

Note that there is a special symbol 'e' which is used in the next chapter to represent an error t|
sort ‘char'.

The signature of a type gives all the information required to build syntactically cdemastorvalue
expressions which represent data values of (some sort of) that typerndis the result of applying
an n-ary operation to n terms. In particular, a constant is clearly a term. More precisel
signature contains the constant declaration:

C.->S

where s is some sort, then we say that c is a constant (or aofesarj s. Similarly, if an operation
is declared as:

op:9, .- —S
then op(i, ..., f) is a ternof sort s or ans-term for short, where; s an gterm, fori=1, ..., n.

For example, given the signature of type Nat_numbers above, we may construct the following
all of sort nat:

0, succ(0), succ(succ(0)), ...

which are meant to denote, respectively, the elements 0, 1, 2 ... of the algebra of natural numl

4.2 Equations

Suppose now that we want to define a 'plus' operation, which combines two nat-terms into a ne
term:
+:nat, nats nat.

The two underscore symbols '_' mark the position of the operands with respect of the operator
is thus defined as an infix operator. We have now the possibility to write new nat-terms, such ¢
succ(0)'. To interpret these new nat-terms correctly, we need a new construct to express prop
operations. This construct is tleguation The purpose of an equation is to state that t
syntactically different terms denote the same value. For instance, we want to express the fi
terms 'succ(0)' and 'succ(0) + 0' denote the same value, or, more generalby, dangtnat-termx,
terms 'x' and 'x + 0' denote the same value. A correct definition of the properties of the '+' of
is:

eqns
forall x,y:nat:
ofsort nat

x+0 =X
X + succ(y) = succ(x + y);

where the equations identify nat-ternoésprt nat), and are valid whenever variables x and vy ¢
replaced by any pair of nat-ternisr@ll x, y : nat). The first equation expresses the behaviour of
plus operator when it is combined with the constant '0'. The addition with a non-zero num
covered by the second equation (note that term 'succ(x)" always denotes a non-zero numbi
induction on the structure of terms, and by using these equations, it can be easily proved that a
containing one or more plus operations is equal to a term containing only '0' and 'succ'. This
that by introducing the plus operator we have not introduced terms that denote 'new' values
could not be expressed before. In this case, we say that the equations ofompletew.r.t. the
definition of 'Nat_numbers'.

The specification of the natural numbers extended with the plus operation is:

type Extended_nat_numbeis

sorts nat
opns O : - nat
succ: nat- nat
+: nat, nat- nat.
eqns
forall x,y:nat:
ofsort nat
XxX+0 =x;

X + succ(y) = succ(x + y);

endtype

4.3 Extensions and combinations of type specifications

To specify data types with a large number of operations we need language constructs to ¢
already existing specifications, and/or to extend them by adding further sorts, operation
equations. This way bulky specification can be given in a stepwise fashion, and a same, simy
type can be used as a basis for several, more complex definitions.

As an example of enrichment of a type, we re-define the type Extended_nat_numbers on the |
type NaturalNumbers (both definitions are given in the previous section):

type Extended_nat_numbeisNat_numbersvith
opns _+_: nat, nat- nat.
eqns
forall x,y:nat:
ofsort nat
Xx+0 =X;
X + succ(y) = succ(x +Y);

endtype

In 'Extended_nat_numbers' we have imported the whole definition 'Nat_numbers' by referencir
the heading of the former, and we have enriched it with one operation and two equations, give
thewith keyword. In general we may combine several type definitions, and then add specific
elements:

type TisTq, ..., Ty with
sorts...
opns...

eqgns ...
endtype

4.4 Parameterized types

Parameterized data type specifications can be considered as partial specifications where on
general features of the type are described, and 'holes' are left to be filled later with further dei
gueue for instance, can be described as a parametrized type, which can later be actualized to
aqueue of integersr aqueue of characters

In the absence of the parameterization feature, we could define the queue of natural numbers
gueue of characters as respective enrichments of the types Nat_numbers and Characters:

type Nat_number_queus Nat_numbersvith
sorts queue
opns create: - queue
add: nat, queue. queue
first: queue- nat
eqns forall x, y: nat, z: queue
ofsort nat
first(create) = O;
first(add(x, create)) = x;
first(add(x, add(y, z))) = first(add(y, z));
endtype

type Character_queus Charactersvith
sorts queue
opns create: - queue
add: char, queue. queue
first: queue- char
eqns forall x, y: char, z: queue
ofsort char
first(create) = e;
first(add(x, create)) = x;
first(add(x, add(y, z))) = first(add(y, z));
endtype

In these new types the enrichment consists of a new sort 'queue’ and of two new operations 'f
‘add’. 'First' produces the first element at one end of the queue, and 'add' appends an eleme
other end of it. The constants '0' and 'e' were already introduced respectively in the type defi
'‘Nat_numbers' and 'Characters'. They are used to indicate an error when the 'first' operation is
to an empty queue. It is clear that the two definitions above are almost the same. To avoi
duplication, we can make the sub-type of the queue that is varifdnmal partof a parametrized
type specification. Thus we specify a queue of a generic element, and the type of this eler
madeformal:

type Queuds

formalsorts element

formalopns e0: - element

sorts queue

opns create: - queue
add: element, queue queue
first: queue- element

eqns forall x, y: element, z: queue
ofsort element

first(create) = eO0;

first(add(x, create)) = x;
first(add(x, add(y, z)))= first(add(y, z));
endtype

The queue is now equipped with formal components 'element’ (a sort) and 'e0’ (a constant), wr
be actualized by the 'NaturalNumbers' or 'Characters' as follows:

type Nat_number_queus
gueueactualizedby Nat_numbersising
sortnames natfor element
opnames O for e0
endtype

type Character_queus
gueueactualizedby Charactersising
sortnames charfor element
opnames efor e0
endtype

The formal part of a type definition can even contain formal equations, which are interpret
requirements that must be fulfilled by an actual type that is substituted for it. For example we
have defined:

type Extra_queues
formalsorts element
formalopns e0 : - element
_* :element. element
formalegns forall x, y: element
ofsort element
X*y=y*x
sorts queue
opns create: - queue

endtype

This time we could actualize 'Extra_queue' with 'Enriched_nat', using the '+' operator for *', b
with Characters.

4.5 Typerenaming

Renaming of data type specifications is useful during the development of a specification in th
where an already defined data type is needed in a specific environment, but without any cha
the intended semantics. Therefore, renaming may be done explicitly by rewriting the dat:
definition with new sorts and operations. Changes in the signature imply changes in the decl
of variables and in equations. Expecially for long definitions this can be a cumbersome task.

The renaming operation avoids this drawback. Let us assume that the data type definition 'Qt
the previous section is to be used in the OSI transport service environment, which deal
channelsandobjectsto be transferred. Then the definition 'Queue’ can be conveniently renam
follows:

type Connections
Queuerenamedby
sortnames channel for queue
object for element
opnames send for add
receive for first
endtype

5 Full LOTOS

In Section 2 we have presented the main features of LOTOS by illustrating a subset of the la
based on a finite alphabet of events. Here we increase the expressive power of basic LO
giving a finer structure to observable actions, thus to process interactions, using the facilities
description of data structures and values presented in Section 4. As a major advantage,
LOTOS we will be able to enrich synchronizations with value passing, thus providing interprt
communication.

While in basic LOTOS an observable action coincides with a gate name, in full LOTOS (or, sil
LOTOS) it is formed by a gate name followed by a list of zero or more values offered at that gat
g <Vv] ... \p>. For example:

g <TRUE, "tree", 3>

is the observable action offering the boolean value TRUE, character string "tree", and natural r
3 at gateg. Since the offered values may range over infinite sets (e.g. the natural number
infinite number of observable actions is expressible in full LOTOS.

We have given the operational semantics of basic LOTOS in Section 2 with the purpose to fo
define the transition relation.". The axioms and inference rules for full LOTOS are meant
achieve the same goal, except that a transition may now have the form:

that is, it may involve structured, observable actions. Here we will not insist in using a formal
of presentation however, in order to avoid the introduction of further notational complexity
complete set of axioms and inference rules for LOTOS is found in [27]).

The integration ofype definitionsand process definitions a full LOTOS specification is illustrated
in Figure 5.1, which shows the syntax of a typaécificationand a typicaprocess definition

specification:

specification typical_speg gate list] (parameter lis) : functionality
type definitions
behaviour
behaviour expression
where
type definitions
process definitions
endspec

process definition:

process typical_prod gate list] (parameter lisj : functionality:=
behaviour expression

where
type definitions
process definitions

endspec

Figure 5.1 - Typical structures specificationandprocess definition

Processandtype definitiongnay appear in therher e clause of apecificationor process definition
in either order or even interleaved. It clearly appears tispieaificationand aprocess definition
have a similar structure. A minor difference is thatlibbaviour expressiois preceded by the
keywordbehaviour in the first case, and by the definition symbel in the second case. A mort
significative difference is that sontgpe definitionsnay appear before theehaviour expressioof a
specification whereas this is not allowed irpaocess definition Suchtype definitionsare meant to
be global definitions, which can be referenced in tbarameter listof the specificationand,
potentially, by the environment where tgecificationis set to operate.

The inclusion ottype definitionsn specifications, and thus the possibility to express data values
used to enrich the language in five different aspects. Values can be:

1) offered at gates, and exchanged among processes (enrichmeraaiidherefixoperator);

2) used to express conditions to be satisfied for a given behaviour to take place (introduc
the new construct gjuarding, and enrichment aiction prefixwith selection predicatgs

3) used to generalize tloloiceoperator.

4) used to instantiate parametric presedefinitions or actualize parametric behavio
expressions (parametric process definition and instantidedrconstruct);

5) passed by a successfully terminating process to a subsequent, enabled process (enrict
successful terminatioandenablingoperators);

For everyone of the five features above we have indicated the corresponding constructs
language which are affected, or newly introduced. We will address them one-by-one in the sec

5.1 Value offersand inter process communication

In formally describing formal languages it is very important to clearly distinguish betweer
linguistic and the meta-linguistic levels. Going back to basic LOTOS for a moment, conside
following transition of an action prefix expression:

a,Bla- B

It is clear that the first occurrence af is an actual syntactic element of the language, while
second one pertains to the meta-linguistic level used to formally describe the semantics of L
expressions. Similarly, the notation 'g<v. gy>" used for structured actions has only meta-linguis
value, and does not belong to the actual LOTOS syntax. We show now how the syntax
(observablepction prefixoperator is enriched in order to express such structured, observable ac
Since the structure of observahbldion prefix expressioris:

action denotation behaviour expression

(where the semicolon is a terminal symbol), we will concentrate on (obseraabt®) denotation
The general structure for this construct is:

g a102.. Op
whereg is a gate name and theés represent a finite list @ttributes Two types of attribute are
possible: avalue declaratiorand avariable declaration

Value declarations

A value declarationhas the form 'lE', where E isvalue expressigni.e. a LOTOS expression
describing a data value. Examplewvalue declarationsre:

1(3+5), I(x+1), 'TRUE, "'example'!not(x), 'min(x,y).

If we combine avalue declaratiorattribute with a gate nangg and itsvalue expressiodescribes the
value v, then thaction denotationdescribes action g<v>. For exampbap !(3+5) describes action
tsap<8>. If the value expression contains variables, then for each set of actual values fo
variables an action is described. For example, if x=3 and y=5,gHerin(x,y) describes event
g<3>. The binding of variables to values is determined by the context, as explained belo
conclusion, if E is avalue expressignand B is abehaviour expressiqgrthen theaction prefix
expression'g !E; B' may offer the value of E at ggtand transform into B:

g!'E; B U g<value(E)>- B
Example

c !largest(0, 3)stop [c<3>- stop

Variable declarations

A variable declaration has the form '"?x:t', wheie a name of aariable andt is its sort identifier.
As was explained in Section 4, thert identifierindicates the domain of values over whictanges.
Examples oVvariable declarationsre

? x:integer, ?text:string,?x:nat, ?active:boolean.

If a gate name is attributed withvariable declaration?x:t', then action denotation 'g ?x:t' describ
a set of actions, viz. the set of all actions g<v> for all values v in the value domain of sortt. Thi
example, '&@x:nat’ describes the set of actions {a<n>] N} . Everyone of these actions is the lab:
of a possible transition of the transition tree. The effect of a transition in this case is slightly
complicated than for the casewailue declarationConsider thaction prefix behaviour expressidm
?x:t; B(x)', where B(x) denoteslkaehaviour expressioparameterized by some variable x occurring
somevalue expressianThen the associated transitions are:

g ?x:t; B(x)J g<v> - B(v)

where 'V' is any value in the domain of sort t, and B(v) indicates that after the transition has oct
the value 'v' has been substituted for 'x' in B(x). B(x) representsctiygewhere the binding
associated with thealue declaration"?x:t' applies. Let us clarify these concepts with an examy
Consider thection prefix expressioin Figure 5.2:

a?xmat, b?wvnat, c llargest(x, ¥); stop

LA J
L /I\ |
binding binding scope of scope of
occuience occurrence "?x nat’ "7y mnat’
of x of ¥

Figure 5.2 - Binding occurrences of variables and associated scopes

The whole expression does not incldoee variables, since the occurrences of 'x' and 'y" irvéthee
expressionlargest(x,y)' ardoound that is, they fall within thescopesassociated to thelinding
occurrencesin the twovariable declarations However, if we consider expression 'b ?y:nat;
llargest(x,y);stop' in isolation, then the occurrence of X' in 'largest(x,y)ré®, as no binding
occurrence of 'X' is there any more to bind a value to it. A possible sequence of two transitions
whole expression is:

a?:nat; b?y:nat; cllargest(x,y);stop —a<0>.
b ?y:nat; cllargest(0,y)stop —b<3>.,
c !largest(0,3)stop

Note how variables are replaced by values, in two steps. Because of the binding of values O ¢
variables x and y, which allows the new process to refer to these values, we could say that, ratl
offeringvalues, the processfers to acceptalues, and think of th&'symbol as indicatingiput In
contrast, the values offered via a value declaration in an action prefix expressenggmay be
thought of a®utputs

The usual rules for nested scopes apply. For instance, consider expresadn b'&x:t; ¢ !(x+1);
stop' : the value output at gatewill depend on the value input at gétenot gatea.

The combination ofalue declarationsndvariable declarationsn the samection denotation
'gaq 02 ... o has the obvious interpretation. For example:

gl !sapl ?x:cep-sort I'test’; B(xX) — gl<sapl, cep-3, 'test> B(cep-3)
if cep-3is a value of sortep-sort

Interprocess communication

Interprocess communication may occur when two processes composed in parallel are offer
same structured action (same gate, same values), and the gate is one of the interaction gates
by the parallel operator itself. The semantics of parallel composition is unchanged with resy
basic LOTOS, but now, in light of the discussed input (resp. output) interpretatranaisle (resp.
valug declaration value passing is achieved.

Consider this example:

gl!sapl “?x:cep-sort !'test’; g2!x; stop
|| gll!sapl !cep-3 ?y:string; g3ly; stop

The two composed expressions (processes) may synchronize, since they are both able to of
action gl<sapl, cep-3, test’>. Once the interaction has taken place, the obtained expression

g2!cep-3; stop
|| g3!'test’; stop

where the proper substitutions have been carried out.
Notice thatvalue declarationg'output’) orvariable declarationg'input’) can match with othemalue
declarations or variable declarationswithout constraints, except for the existence of a comrn

value offer. On this basis we can define three types of interaction between two processes, as
table 5.1, which is self-explanatory.

Table 5.1 - Types of interaction

Process A Process B synchron. type of effect
condition interaction

g'Eq g'Ep value(f) value matching synchronization
= value(B)

g'E g ?x:t value(E) value passing after
is of sort t synchronization

x = value(E)
g ?x:it g?yu t=u value generation after

synchronization
X=y=v,wherevis
some value of sort t

As an application of the constructs for value offers and interprocess communication we refin
LOTOS process Max3 (Figure 2.1), by adding to it the capability of manipulating data values, f
giving a justification for the names chosen for these processes.

Specification Max3 [in1, in2, in3, outhoexit

(* Defines a 4-gate process that accepts three natural numbers at three input gates, il
temporal order, and then offers the largest of them at an output)gate

type naturalis
sorts nat
opns zero: - nat
succ: nat - nat
largest: nat, nat- nat
eqns ofsort nat
forall x:nat
largest(zero, x) = x
largest(x, y) = largest(y, X)
largest(succ(x), succ(y)) = succ(largest(x, y))
endtype (* natural*)

behaviour

hide midin
(Max2[in1, in2, mid] |[mid]] Max2[mid, in3, out])

where

process Max2[a, b, c] noexit :=
a?x:nat; b?y:nat; cl!largest(x,y);stop
[
b ?y:nat; a?x:nat; cllargest(x,y);stop
endproc (*Max2*)

endspec (*Max3*)

Notice that we have now givenspecification not aprocess definition However, it is perfectly
acceptable, and convenient, to keep talking alppatessMax3 as the one defined by suc
specification. As far as pure synchronization is concerned, this process has exactly the
behaviour as its basic LOTOS version. However, subprocess Max2 is now able to accept any
natural numbers at (formal) gatesandb , and offer the largest between them at gate
Consequently, process Max3 will accept three natural numbers atrjate®, in3 in any order, and
offer the largest of them at gabeit. The keywordnoexit has to do with successful terminatior
which is discussed in Section 5.5.

5.2 Conditional constructs

Having added the facilities for defining and describing values in LOTOS we may now ex|
behaviours that depend on conditions on values. Such conditions are expresgedtiasisthat
relate twovalue expressionshe condition is met if the two expressions evaluate to the same valt
the data type environment of that condition. Alstue expressionsf sortBool of the standard data
type Booleanare allowed as conditions: an expresdioof sortBool is used as a shorthand for th
equationkE = true. Below we will refer to the conditions of both kindpeedicates By convention,
predicatesappear enclosed in square brackets.

Selection predicates

An additional feature adiction denotationss that of theselection predicatesAn action denotation
may now terminate with a predicate, containing some of the variables that occurviaritiee
declarationsof theaction denotation Such predicate is meant to impose restrictions on the va
that may be bound to these variables in synchronization events. We illustrate this by two exam

The only possible transitions of expression ®apat [x<3]; sap2x; stop' are:

sap?x:nat [x<3]; sap2x; stop —sapl<0>, sap2!0; stop
sap?x:nat [x<3]; sap2x; stop —sapl<l>, sap2!1; stop
sap?x:nat [x<3]; sap2x; stop —sapl<2>, sap2!2; stop

In OSI applications there exist examples where two processes negotiate the value of a parame
interaction, each one imposing its own condition. For example, two Transport entities may ne:
the 'quality of service' of the underlying Network service [25]. A simplified example of negotiatic
given below.

hide sapin
sap?x:nat[x<max]; B1(x)
|[sap]|
sap?y:nat[y>min]; B2(y)
This process can make internal transitions to any of the processes

hide sapin
B1(n)|[sap]| B2(n)

with 'n" in the open interval (min, max).

Guarded expressions

Any behaviour expressiomay be preceded bypaedicateand an arrow (that is, by a 'guard’). Tr
interpretation is that if thpredicateholds, then the behaviour described bylkbkaviour expression
is possible, otherwise the whole expression is equivalentstagh A typical scenario is one of a

choice between several guarded expressions.
Examples:

[x>0] - sapX; P[...](x, ...)
[[x=0]-sap!-x; P[...](x, ...)

If x = 1 the above process is equivalent with ' <€g@P[...](1, ...)". If x = -3, it is equivalent with 'saj
13; P[...](-3, ...)". Case analysis can be specified easily, viz.

[condy] - process
] [condp] - process

] [cond,] - procesg

The conditions in the guards need not be exclusive, e.g.

[x>0] - proces$
[0 [x=5] - process
] [x<9] - procesg

5.3 Generalized choice

Using the choice-operator '[]' we can only express a finite number of alternatives. In general, w

want to do more. Let B(x) belmehaviour expressiothat may depend on a variable x, say, of st

'nat’. We can now specify the choice among the processes B(v) for all nat-values v by writing:
choice x:nat[] B(x)

Notice that the generalized choice construct allows an alternative representatiorafdiotmgrefix
construct, when this includesrariable declaration

a?xt; B(x) is equivalent to choice x:t[] alx; B(x)
There are more useful applications, however:
choice x:t[] i; B(x)

offers a nondeterministic choice between the different instances of B(x), and so does:

choice x:t[] a; B(x)

wherea may be anyction denotation More than one variable may be used as an index, so tha
may write:

choice x1:t1, ..., Xy'tn [] B(X1, ---» X))
Also, sets ofjate identifieramay be used for indexing, e.g.:

choicegin [ay, ..., &] [] Process-X[g](...)

In this case a choice is expressed amoigstances of Process-X: for each one of them formal g
g is actualized with a different element of tyeelist [aq, ..., &].

5.4 Parametric processes

Full LOTOS offers the possibility to parameterecess definitionsot only in terms oformal
gates(as is the case with basic LOTOS) but also in terms mdrameter list which is a list of
variable declarationsx1:t1, ..., Xo:tn. The syntax fomprocess definitionin full LOTOS (as

anticipated in Figure 5.1) is thus:
process typical_proc gate lisi (x1:t1, ..., Xy:tp) : functionality := ...endproc

Also specificationscan be parametric, and the syntax is extended analogously. Typically
variables ¥, ..., X, occur as free variables in thehaviour expressiowhich defines the behaviour of

the process or specification. In instantiations, these variables are replagatldexpressions
(which may include variables): an instantiation of the typical_proc above has the form:

typical_proc actual gate ligt(Eq, ..., By)

Of course it is required that expressions E, B, match, one-by-one, the sorts of the variablgs >
..., Xn - This is similar to passing parameters to procedures or functions in traditional progran
languages.

Example:
process compare[in, out] (min, max: int)noexit :=

in ?x:int;
(' [min < x <max]- out'x; compare [in, out] (min, max)

[[x £min] - out'min; compare [in, out] (x, max)
[] [x = max] - out'max; compare [in, out] (min, X)

)

endproc

The meaning of the instantiation of a process iskikaviour expressiothat is obtained by
substituting the actual parameters for the formal ones, avoiding naming clashes by suitable re
of binding and bound identifiers, e.g.

compare[one, two](X, 2*x)
is equivalent with

one?y:int;
([x<y<2*X] - twoly; compare [one, two] (X, 2*X)
[] [y £x] - two x; compare [one, two] (y, 2*x)
[[y =22**] - two 2*x; compare [one, two] (X,)

)

A more direct way to associat@lue expressionskEy, ..., By to the free variablesix..., ¥y of a
behaviour expressior&(x1, ..., Xy) is offered by the 'let' construct:

let X1:t1=E1, ... 3:thn =En in B(X1, ..., %)

5.5 Sequential composition with value passing

Having the possibility to express values it is useful and, sometimes, highly desirable to be ¢
pass information from the first process in a sequential composition to the second process.
previously used example:

Connection-Phase[...] >> Data-Phase]...]

we would like to express that the behaviour of the Data-Phase depends on parameters -
established in the Connection-Phase. The Data-Phase is defined as a parametric process, W
parameters as trexpedited-data-optiothat indicates whether expedited data can be transmitte
not, and thejuality-of-servicethat determines the quality of the connection during the Data-Ph
Therefore, we need a mechanism for passing these parameters from the Connection-Phas
Data-Phase, at the moment when the former enables the latter. To be able to do such things
generalize the notion of successful termination, and with that extend the language feature
respect to sequential and parallel composition, and add some static constraints to the languag

5.5.1 Successful termination with value offers

In basic LOTOS thexit process is used to specify theccessful terminatioof a process. We allow
now theexit process to have a finite list of value expressions added to it. The values express
those that are passed on to the subsequent process. Examples:

a?x:nat; b?y:nat; exit(largest(x, y))

tsap !cei ?quality-of-service : quality-parameter-sd?expedited-data-option : bool;
exit(quality-of-service, expedited-data-optjon

The list of the sorts of the values offered at successful termination is callkoh¢tienality of that
termination. The examples above have respective functionatiias and< quality-parameter-
sort, bool>

In a sequential composition the number and sorts of the values that are passed at the su
termination of the first process must be known. This implies that all the (alternative) succ:
terminations of the first process must have the same functionality; this functionality is defthed
functionality of the first process. Some rules are needed for determining the functionali
behaviour expressiondogether with some constraints on the ways expressions with diffe
functionalities can be combined. They are listed below. (We write 'func(B)' to denote
functionality of expression B.)

stop

The functionality of processes that do not terminate successfully at al§idiikeis indicated with
noexit.

exit

Simple successful termination without value passing has a functionality that is indicated by the
name: funogxit) = exit.

Action prefix

The functionality of an expression is clearly unaffected by the prefixing @icaan denotation
func(action denotationB) = func(B).

Choice

If B1 and B are processes that both can terminate successfully, then the functionality of the «
expression ' B[] Bo' can only be defined if the restriction is imposed thagBd By have the same

functionality, in which case this is the functionality of the expression. On the other har
func(Bq)=noexit, or func(By)=noexit, then func(g [] B») is defined, respectively, as fune{Band

func(By).

For generalized choice the rule is simple: feho{ce ... [| B') = func(B').

Disabling

This case is analogous to that of (binary) choice:

func(Bq) = func(Bp) = func(By[>B>) =, or
func(Bq) = noexit, and func(B[>B>2) = func(Bp), or
func(By) = noexit, and func(B[>B) = func(By).

Parallel composition

In the case of parallel composition, the functionality restrictions/definitions are:

func(Bq) = func(Bp) = func(Bjop By), or
func(Bq) = noexit, and func(Bop Bp) = noexit, or
func(Bo) = noexit, and func(Bop Bp) = noexit.

where 'op' is any parallel operator. Again, if Bnd By are processes that terminate successful

then we can compose them in parallel only if they have the same functionality, in which cas
becomes the functionality of the parallel expression. In fact, the parallel composition o
processes only terminates successfully if both terminate with the same list of values, in whic
the composition terminates also with that list. In this respect, it may be convenient to arse th
construct, as a parameter of gt process. It has the formanhy sort-identifiet, and can match any
value of sorsort-identifief. For instanceexit(any nat) is a process that can terminate successft
with the offer of any nat-value at the special gatdt is clear that 'B op Bp' cannot terminate

successfully whenever one of the component processes cannot do so.

Examples:

a?x:int; exit ||| b''anystring';exit has functionalityexit.

a?x:int; exit ||| b!"anystring';stop has functionalitynoexit.

exit(3) |||exit(5) has functionality 'nat’, but does not terminate successfu

exit(3, any bool) |||exit(any nat, trué has functionality 'nat, bool', and terminates successft
by offering value pair (3, true).

exit(3) ||| (a'3; exit [] a ?x:nat; exit(x)) is not a well-formed LOTOS expression.

The reason why there may exist a process B that cannot terminate successfully, while fun
different fromnoexit, is that functionality and actual termination are two different things.
former is a sort of static typing mechanism, which is only meant to guarantee the predictability
list of sorts offered at successful terminatiam,case that such terminatiooccur. The actual
occurrence of a successful termination, in general, cannot be decided statically, nor dynan
since this problem is equivalent to the well-known 'Halting Problem' for Turing machines [23].
functionality typing scheme helps in avoiding constructions however, of which the absen
successful terminations can be decided statically.

Process definitions and instantiations

Both aspecificationand aprocess definitionnclude in their headers a parameter indicating t
functionality of thatspecificationor process definition(see Figure 5.1), which is defined as tt
functionality of thebehaviour expressionof that specificationor process definition In this

functionality parameter a functionality {,t..., {;' is combined with the keyworekit, so that the

three possible formats of this parameter are:

noexit
exit
exit(ty, ..., f)

where {, ..., { is a list of sorts. On the other handpnocess instantiationthe functionality is not
given explicitly; it is defined however, as that of the associatedess definition.

Examples:

process P[a]: exit(nat, bool).=
a?x:nat?y:nat;
(i; exit(x, true) [] i; exit(y, false))
endproc

process Q[a, b]:exit :=
a?x:nat;
(b!x; exit [] i; Q[a, b))
endproc

process R[a, b]:noexit :=
a?x:nat?y:nat;
(b!x; stop [] bly; stop)
endproc

5.5.2 Accepting values from the enabling process

Once a processBwith the desired functionality, sait(ty,...,{y), has been defined, its sequenti:
composition with another process Bas the following form:

B1 >>accept X111, ..., Xqith in B2

Here ¥, ..., Xy are the variables used ipBor then values passed at the successful termination
B1. The obvious requirement is that the functionality gb& matched by the list of sortg.t.,i

after theaccept keyword. It is also clear that the functionality of the whole construct is defined a:
functionality of Bp.

The example quoted at the beginning of this section can now be correctly specified as follows:

Connecbn-Phasel...](...)
>> accept quality-of-service : quality-parameter-sort
expedited-data-option : bool
in
Data-Phase]...](quality-of-service, expedited-data-option)

As a concluding remark we would like to observe that the value passsagjurentialcomposition
can be considered as a special case of the value pasfiagaitel composition. We may indeec
imagine that the enabling process synchronizes its last action (successful termination) w
"accepting” action implicitly prefixed to the enabled process, and that data is passed b
interaction. We should also regard this communication as private to the enabling and the €
processes, that is, hidden to other processes. In fact, the operational semantics of the ¢
operator in full LOTOS [27] exactly reflects this point of view.

6. Anexample of constraint-oriented specification

Structured programming, in the context of traditional programming languages, allows
programmer to take a "divide-and-conquer" approach and partition his/her task into smaller sul

to be handled separately. Similarly, the constraint-oriented specification style is a "divide
conquer" approach by which the LOTOS user conceives his/her specification as a collect
clearly separated, small pieces (processes), each one expressing few constraints on the i
ordering of the system events. All these pieces are then composed via the parallel operatc
synchronization), which acts as a logical conjunction (AND) of all the constraints. /
consequence, any action occurring at some synchronization gate is simultaneously subject tc
constraints expressed by the processes sharing that gate. We gave a trivial example of a conr
of constraints in Section 2.4, in discussing the general parallel operator. We provide here
complex example of the constraint-oriented specification style, written by Chan and Turner [13]

In the 'Daemon Game' a player may start a new game, probe the system for randomly increme
decrementing his score, ask for the score, and quit the game. The system may support an u
number of players, and every player is required to specify his own 'id" every time he/she int
with the system. In the specification all users interact with the system via a unique gate (us
they are distinguished by their respective id's. All the observable actions have the unique form

usr <id, sig>

where id, of id_sort, is the identifier of some player and sig, of sig_sort, is a signal in th
{newgame, endgame, probe, win, lose, resultscores (a set isomorphic to the set of integers). -
specification has been conceived as the composition of two main concerns, embodied by pri
Login_Check and Sessions. The first process does not impose any temporal constraint on
and is only sensitive to the actions where the signal is either 'newgame’ or 'endgame’, since
concern is to properly maintain the set of user id's (Used_ld_Set). Any other action is s
absorbed. The second process (Sessions) is the interleaved composition of an infinite nur
sessions, where an individual session is described blyeth@viour expressioat the left of the ‘|||
operator. A session is opened and closed when a player gives, respectively, the 'newgame’
‘endgame’ signals; the actual game is described by process ‘Game’. Any individual inste
process Game is only concerned with actions characterized by a fixed value of parameter 'id', i
to properly maintain and display the score of a specific player. Processes Sessions and G
impose some temporal constraints to the actions: for instance, winning or losing must alw:
preceded by probing.

(*

This is a slightly modified version of
the Daemon Game specification by W. F. Chan and K. J. Turner [13]

gpecification Daemon_Game [usr]roexit

library

Boolean, Set, NaturalNumber
endlib

behaviour
Login_Check [usr] (empty) (* no users initially *)

Sessions [ustr]

where

type Integeris
sorts int

opns O - int
inc, dec: int - int

eqns forall n:int
ofsort int
inc(dec(n)) = n;
dec(inc(n)) = n
endtype

type Signalis

sorts sig_sort

opns newgame, endgame, probe, win, lose, result : - sig_sort
score > int - sig_sort

endtype

type Identifieris NaturalNumber
renamedby
sortnames id-sortfor nat
endtype

type Identifier_seis Set
actualizedby Identifierusing

sorthames

id_sort for elem
id_set_sort for set
endtype
(*
The following process ensures that users are given different identifiers on logging in. A set
identifiers in use is maintained
process Login_Check [usr] (used_id_set : id_set_sornidexit :=
usr?id : id_sort'lnewgame [id Notin used_id_set];
Login_Check [usr] (insert (id, used_id_set))
[usr?id :id_sortlendgame [id IsIn used_id_set];
Login_Check [usr] (remove (id, used_id_set))
[] usr?id :id_sort'probe [id Isin used_id_set];
Login_Check [usr] (used_id_set)
[usr?id :id_sort'win [id IsIn used_id_set];
Login_Check [usr] (used_id_set)
[] usr?id:id_sort!lose [id Isin used_id_set];
Login_Check [usr] (used_id_set)
[] usr?id :id_sort'result [id IsIin used_id_set];
Login_Check [usr] (used_id_set)
[] choicex:int [] usr?id : id_sort?score(x) [id IsIn used_id_set];
Login_Check [usr] (used_id_set)
endproc
(*

The following process specifies the permitted sequences of interactions between the users
game as an infinite set of processes in parallel, onddandependent behaviour of each user
session

process Sessions [usr]noexit :=

(usr?id : id_sort'newgame;

(Game [usr] (id, 0) (* score initially zero *)
[> usrlid !lendgame;exit
)

)
Il

Sessions [usr]

where

(*

The following process specifies the behaviour of a logged-in user.

(*

process Game [usr] (id : id_sort, total : inthoexit :=

usr!id !'probe;

(5
usr'id 'win;
_Game [usr] (id, inc(total))

0 i
usr!id 'lose;
Game [usr] (id, dec(total))

)

usr!id result;

usr!id !'score (total);

Game [usr] (id, total)
endproc

endproc (* Sessions *)

endspec

7. Conclusions

We have presented the specification language LOTOS. The language has a strong algebrai
and the first impact with the apparently complex symbology of specifications may be discour:
However, we hope we have proved, with the examples given, that once the user has achieve
familiarity with the operators of the language, he/she can specify systems in a natural way
reflects quite directly the way the system's structure and behaviour are conceived at the ir
level. The specifier, in general, does not feel forced to express unnecessary details with res
his/herabstractview of the processes being specified.

LOTOS has the merit (and takes the risks) of being based on relatively new and powerful th
which so far have mainly been confined to academic environments. The wide exposure tt
language is currently undergoing by its application to the specification of OSI protocols and se
[42] is a valuable test for the practical applicability of those theories. The first results
encouraging: the LOTOS specifications that have been produced so far (e.g. [1, 3, 12, 17, 40,
44, 45, 47] and many others), indicate that such quite complex systems can be specified \
intuitively appealing structure, and be relatively concise (when compared with other fc
description techniques). The conciseness and readability could be increased even further
notational facilities are developed for the specification of data types, which now in many case:
substantial part of a specification. Work in this direction is under development [29].

An important problem to be addressed in producing a realistically complex specification relates
tradeoff between process and type definitions. It is a fact that many elements of a system
specified both as processes and as data types. On one hand we may rule out this problem a
matter of taste and style. On the other hand the interplay between processes and types has ¢
also on the analysis of specifications. It is felt that a deeper understanding of the relation betw
two components could be beneficial, and that some harmonization between them could be att
(in the sense, for instance, of devising a common semantical model). This is an area where int
developments are possible.

An important element in the eventual success of LOTOS will be the adequate training of thos
are to apply it in practice [28]. The current trend of the growing importance of formal metho
computer science and telecommunications is not yet reflected in the education of many
practitioners. This requires a coordinated effort in the development of courses and teaching r
to which this tutorial is a contribution. However, as time passes this problem will disappear.
longer run the prospects for techniques like LOTOS are bright. Its link to a sound formal theor
the ongoing efforts to build tools for its application to the design, analysis and testing of
distributed systems [6, 18, 31, 46] offer hopes of a future in which such systems can be dev
faster and with more reliability than today.

Acknowledgements

The authors gratefully acknowledge the direct and indirect contributions to this tutorial from
fellow LOTOS-eaters, with whom they have worked together during several years developir
language, applying it, and building tools for it. This work has taken place in several environme
which the most important are COST11 bis/TOS, ISO/TC97/SC21/WG1/FDT Subgroup C
ESPRIT/SEDOS Project, and the IPS Group at the University of Twente (The Netherlands)
would like to mention specifically Luigi Logrippo, Jan de Meer, Elie Najm, Giuseppe Scc
Alastair Tocher and Chris Vissers. We would like to thank Ken Turner and W. F. Chan for
example of the Daemon Game in LOTOS, which we have included in the paper. The first auth
wishes to thank Rocco De Nicola for useful discussions during the writing of parts of this paper
work was partially supported by the CEC as part of the ESPRIT/SEDOS project.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Refer ences

l. Ajubi, "Draft Formal Spedication of the OSI Connection-Oriented Session Protocol
LOTOS", ISO/TC 97/SC 21 N. 1486, February 1986.

J. Bergstra, J. W. Klop, "Process Algebra for Synchronous Communication”, Informatiot
Control 60, pp. 109-137, 1984.

F. Biemans, P. Blonk, "On the Formal Specification and Verification of CIM Architectt
Using LOTOS", Computers in Industry 7, pp. 491-504, 1986.

T. Bolognesi, S. A. Smolka, "Fundamental Results for the Verification of Observati
Equivalence: a Survey", proceedings of the IFIP Seventh International Symposium on Pr
Specification, Testing, and Verification, H. Rudin and C. West (eds.), North-Holland, 1987

G. Boudol, "Notes on algebraic calculi of processes, Rapport de Recherche No. 395, I
Sophia Antipolis, April 1985.

J. P. Briand, M. C. Fehri, L. Logrippo, A. Obaid, "Executing LOTOS Specifications", in:
Sarikaya, G. V. Bochmann (eds.), Proceedings of IFIP Workshop 'Protocol Specifice
Testing, and Verification VI', pp. 73-84, North-Holland, Amsterdam, 1987.

E. Brinksma, "A Tutorial on LOTOS", in: M. Diaz (ed.), Proceedings of IFIP Workst
'Protocol Specification, Testing, and Verification V', pp. 171-194, North-Holland, Amsterc
1986.

E. Brinksma, "On the Existence of Cangali Testers"”, Memorandum INF-87-5, University ¢
Twente, January 1987.

E. Brinksma, G. Scollo, "Formal Notions of Implementation and Conformance in LOT(
Memorandum INF-87-13, University of Twente, November 1986.

E. Brinksma, G. Scollo, C. Steenbergen, "LOTOS specifications, their implementations
their tests”, in: B. Sarikaya, G. V. Bochmann (eds.), Proceedings of IFIP Workshop 'Prc
Specification, Testing, and Verification VI', pp. 349-360, North-Holland, Amsterdam, 1987

S. D. Brookes, C. A. R. Hoare, A. D. Roscoe, "A Theory of Communicating Seque!
Processes"”, Journal of ACM, Vol. 31, No. 3, pp. 560-599 , 1984.

V. Carchiolo, A. Faro, O. Mirabella, G. Pappalardo, G. Scollo, "A LOTOS Specification ol
PROWAY Highway Service", IEEE Trans. on Computers, Vol. C-35, No. 11, pp. 949,
November 1986.

W. F. Chan, K. Turner, "The Daemon Game in LOTOS", in: ESTELLE, LOTOS, SDL D
Examples, Joint Meeting ISO/CCITT (ISO/TC97/SC21/WG1/FDT - CCITT X/3), Tur

[14]

[15]

[16]

December 15-19, 1986.

R. De Nicola, "Extensional Equivalences for Transition Systems", Acta Informatica, Vol
pp. 211-237, 1987.

R. De Nicola, M. Hennessy, "Testing Equivalences for Processes"”, Theoret. Comput
Vol. 34, pp. 83-133, North Holland, Amsterdam, 1984.

H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification - 1, Springer-Verlag, Be
1985.

[17] ESPRIT/PANGLOSS, Parallel Architectures Networking Gateways Linking OSI Syste

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

ESPRIT Project 890.

ESPRITSEDOS, Software Environment for the Design of Open Distributed Systems. ES
Project ST410.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, "An Initial Algebra Approach to
Specification, Correctness and Implementation of Abstract Data Types", IBM Research F
RC 6487, 1976. Also: Current Trends in Programming Methodology IV: Data Structu
R.Yeh (Ed), Prentice Hall, 1978.

J. Guttag, "Abstract Data Types and the Development of Data Structures”, Communicati
the ACM, Vol.20, N.6, June 1977.

M. Hennessy, R. Milner, "Algebraic Laws for Nondeterminism and Concurrency”, Journ
ACM, Vol.32, No. 1, pp. 137-161, 1985.

C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall Intl., 1985.

J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Compute
Addison-Wesley 1979.

ISO - Information Processing Systems - "Basic Reference Model for Open Sys
Interconnection”, 1S 7498, 1983.

ISO - Information Processing Systems - Open@&ystinterconnection - "Connection Oriente
Transport Protocol Specification”, IS 8073, 1986.

ISO - Information Processing Systems - Open Systems Interconnection - "ESTELLE
Formal Description Technique Based on an Extended State Transition Model", DIS !
1987.

ISO - Information Processing Systems - Open Systems Interconnection - "LOTOS - A F
Description Technique Based on the Temporal Ordering of Observational Behaviour"

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

8807, 1987.

ISO/TC 97/SC 21 N. 1534, "Guidelinesr fthe Application of FDT to OSI Protocols ant
Services", 1986.

ISO/TC 97/SC 21 N. 1540, "Potential Enhancements to LOTOS", 1986.

K. G. Larsen, "Context Dependent Bisimulations Between Processes”, Ph.D. Thesis, Uni\
of Edinburgh, Dept. of Computer Science, May 1986.

A. Marshall, "LOTOS Tools Development’, C3 Progress Repo
ESPRIT/SEDOS/C3/WP/20/IK, STC Tech. Ltd., Newcastle-under-Lyme, England, Jar
1987.

G. Milne, "CIRCAL and the Representation of Communication, Concwramnd Time",
ACM Toplas Vol. 7, No. 2, pp. 270-298, 1985.

R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Scie
Vol.92, Springer-Verlag, 1980.

R. Milner, "A Complete Inference System for a Class of Regular Behaviours", Journ
Computers and Systems Sciences, Vol. 28, No. 3, pp.439-466, 1984.

R. Milner, "Calculi for Synchrony and Asynchrony, Theor. Comp. Science 25, pp.267-
1983.

E. Najm, "A verification oriented specification in Lotos of tAeansport Protocol”,
proceedings of the IFIP Seventh International Symposium on Protocol Specification, Te
and Verification, H. Rudin and C. West (eds.), North-Holland, 1987.

D. Park, "Concurrency and Automata on Infinite Sequences”, Proc. 5th Gl Conference,
104, pp. 167-183, 1981.

G. Plotkin, "A Structural Approach to Operational Semantics”, Lecture Notes, Aa
University, 1981.

Proceedings of the IEEE - Special issue on OSI, Vol.71. No.12, Dec. 1983
J. Quemada, Datank Service LOTOS Specification, SEDOS/C1/6&7/M, December 1986.

G. Scollo, "Formal Description in LOTOS of the OSI Transport Protocol (Version
ESPRIT/SEDOS/C1/WP/41/T, March 1987.

G. Scollo, F. Minissale, "On the Specification in LOTOS of OSI Protocols”, in: G. Bucci
Valle (eds.), Computing '85, Proc. 8th ACM European Conf. ICS '85, Florence, Italy, M
1985, pp. 197-206, North-Holland, 1985.

[43]

G. Scollo, G. Pappalardo, L. Logrippo, E. Brinksma, "The OSI Transport Service an
Formal Description in LOTOS", in: L. Csaba, K. Tarnay, T. Szentivanyi (eds.), Comg
Network Usage: Recent Experiences, pp. 465-488, North-Holland, Amsterdam, 1986.

[44] A. J. Tocher, "OSI Transport Service: A Constraint-Oriented Specification in LOTC

[45]

[46]

[47]

ESPRIT/SEDOS/C1/WP/25/IK, ICL, Kidsgrove, August 1986.

K. J. Turner, "OSI connection-oriented network service: a constraint-oriented specificati
extended LOTOS (draft 4), SEDOS/C1/WP/15/IK, ICL Kidsgrove, England, May 1986.

P. Van Eijk, "Tools for the Specification Language LOTOS", University of Twente, Noven
1986 (submitted for publication).

M. Van Sinderen, "Draft formal specification of the OSI connection-oriented session serv
LOTOS (version 5)", SEDOS/C1/WP/35/T, November 1986.

