
Arcade - A formal, extensible, model-based dependability evaluation framework ∗

Hichem Boudali1 Pepijn Crouzen2 Boudewijn R. Haverkort1 Matthias Kuntz1

Mariëlle Stoelinga1

1 University of Twente, Department of Electrical Engineering, Mathematics and Computer Science
P.O. Box 217, 7500AE Enschede, The Netherlands

2 Saarland University, Department of Computer Science
Stuhlsatzenhausweg 45, 66123 Saarbrücken, Germany

Abstract

This paper discusses the requirements that a suitable for-
malism for dependability modeling/evaluation should pos-
sess. We also discuss the outline ofArcade, an architectural
dependability formalism that we are developing.

1 Introduction

Now that computers and communication are proliferat-
ing in all kinds of devices and home appliances, requiring
high-dependability is not restricted to computers that are
being used in traditional “high dependability applications”
such as space and aircraft or (nuclear) power control sys-
tems. An important difference with these traditional sys-
tems, however, is that in modern embedded systems, high
dependability is a key concern, but that the costs to be made
to achieve it may not be high. Instead, high dependability
must be achieved as a “by product” of a sound design and
implementation trajectory, almost at no additional costs.
This poses several requirements on the modeling and anal-
ysis capabilities of a framework for dependability analysis.

In this paper we first discuss the requirements which, in
our opinion, a suitable dependability formalism should pos-
sess. We also advocate that none of the existing formalisms
we know complies with all requirements. Then we lay out
our plans for a new, formally well-rooted, and extensible
framework for dependability evaluation, that comes very
close to a design language:Arcade (for ARChitecturAl De-
pendability Evaluation). It has been designed so as to com-

∗This research has been partially funded by the Netherlands Organiza-
tion for Scientific Research (NWO) under FOCUS/BRICKS grantnumbers
642.000.505 (MOQS) and 542.000.504 (VeriGem); by the EU under grant
numbers IST-004527 (ARTIST2); and by the DFG/NWO bilateralcooper-
ation programme under project number DN 62-600 (VOSS2).

bine the strengths of previous approaches and to try to avoid
shortcomings. Key features are its formal semantics, com-
positional modelingandanalysis, as well as extensibility. In
addition, we define our framework in an architectural style,
i.e., we define a system model in terms of components or
entities that (directly) map to actual physical/logical system
components. In fact, our framework is ultimately intended
to be incorporated into an architectural design language. Fi-
nally, we show through a small example the main features
of Arcade.

2 Requirements

First, we summarize the requirements which, in our
opinion, any good dependability formalism should possess.

1. Low modeling effort. A dependability formalism
should be simple, easy and intuitive to use, thus en-
abling the dependability analyst to create a model with
a reasonable amount of effort. In this respect, graphical
models with clear constructs to model dependability
specific concerns have a clear advantage over lower-
level models (e.g., state-based), which are only man-
ageable for very small systems.

2. High expressivity. A dependability formalism should
be able to express all relevant concerns. Clearly, there
is a trade off between modeling effort and expressive-
ness: the more different and/or complex the aspects (or
features) a formalism can express, the more complex
the formalism becomes. An important requirement of
a dependability framework is, therefore, to be extensi-
ble thus allowing for future additions of features.

3. Formal semantics. Another highly desirable require-
ment is that of an unambiguous semantics. Formal se-

mantics pin down the meaning of a dependability for-
malism in a precise and unambiguous way and form
a rigorous basis for analysis and tool support: with-
out semantics, dependability models are easily misun-
derstood, misinterpreted and become unclear and un-
sound.

4. Compositionality. Compositionality (also called
modularity) is a key technique to break down the com-
plexity of large systems into smaller and manageable
pieces. We distinguish between compositional model-
ing and compositional analysis.Compositional mod-
eling entails that a model can be created by compos-
ing smaller submodels. There are two important types
of composition: parallel composition, which combines
two or more components which are at the same level of
abstraction, and hierarchical composition, where one
component is internally realized as a combination of
subcomponents.Compositional analysismeans that a
model can be analyzed by combining the results of the
analysis of the submodels. Compositional analysis is a
key feature in combating analysis complexity.

5. Analysis methods and tool support. Tool support is
another important aspect. In fact, from an engineering
point of view, a formalism has little use if it has no
adequate tool support. Of course, in order to obtain
a correct tool implementation, the formalism needs to
have a clear semantics.

3 Existing formalisms

There exists a wide range of techniques and tools for re-
liability and availability analysis. One may classify these
techniques/tools into three broad categories: (1) general-
purpose (dependability) models, (2) dependability-specific
modeling tools, and (3) model-based (or architectural) de-
pendability modeling tools.

The first category encompasses general-purpose low-
level formalisms such as continuous-time Markov chains
(CTMC), stochastic Petri nets (SPN) and their extensions
such as stochastic activity networks (SAN), stochastic pro-
cess algebras (SPA), and input/output interactive Markov
chains (I/O-IMC) [4]. In general, these formalisms, spec-
ify a system model in terms of states and transitions. This
makes them very general (and hence expressive) and pre-
cise, but these models are typically large and less structured,
hence difficult to understand, since they do not provide any
dependability-specific constructs. Some formalisms allow
compositional modeling (I/O-IMCs, SPAs, SANs) by a par-
allel composition operator “‖” and/or compositional analy-
sis (I/O-IMCs and SANs), whereas others do not (SPNs).

The second category consists of formalisms and tools
which are specifically geared towards analyzing depend-

eff expres sem compos tool
(mod/ana)

general-purpose
CTMCs - + + -/- +
I/O-IMCs - + + +/+ +
SAN - + + +/- +
SPAs - + + +/+ +
SPNs - + + -/- +

specific
DFTs + - + +/+ +
DRBDs + - - +/- -

model-based
AADL + + - +/- -
UML + + - +/- -
Arcade + + + +/+ +

Table 1. Comparison of dependability evalua-
tion formalisms.

ability. In this category, practical tools often define a
high-level modeling language, such as (dynamic) fault
trees (FTs/DFTs) and (dynamic) reliability block diagrams
(RBDs/DRBDs). To carry out the analysis, a low-level
model (such as a Markov chain) is automatically derived
from the dependability-specific model. Surprisingly, the de-
pendability specific approaches are all somehow limited in
expressiveness; although each of them incorporates certain
dependability constructs, none of them includes them all.
Although we agree that it is impossible to include all possi-
ble features, we do think that a modeling approach should
be extensible, so as to be able to accommodate any, also
future, needs. In earlier work [5], we provided a compo-
sitional semantics, analysis methods and tool support for
DFTs. Even though a similar approach could be taken for
other dependability specific formalisms such as DRBDs,
thus relieving our concerns with respect to semantics and
compositionality, the lack of expressiveness remains an im-
portant issue with these formalisms.

The third category consists of model-based (at the sys-
tem architectural level) formalisms, such as AADL and its
error annex [2], and the UML profile for modeling quality of
service and fault tolerance characteristics and mechanisms
[7]. Architectural languages require limited modeling ef-
fort, since they annotate architectural models (which play
an important role throughout the design). However, these
languages, as we know them, lack a formal semantics and
tool support for automatic dependability evaluation.

Table 1 summarizes this (partially subjective) com-
parison between the different existing dependability for-
malisms.

2

4 The Arcade approach

The aim of our recently started work onArcade is to
unite the strength of existing formalisms, while avoiding
their weaknesses.

Key features ofArcade are its architectural approach, re-
ducing the modeling effort; its extensibility, ensuring high
expressivity; its formal semantics in terms of I/O-IMCs,
which not only pins down the semantics in an unambiguous
way, but also enables compositional analysis via the compo-
sitional aggregation approach for I/O-IMCs [4]. Below, we
describe theArcade approach and discuss, in depth, how it
realizes the requirements on dependability formalisms that
we put forward earlier.

4.1 Arcade modeling approach

The basic idea behindArcade is that it defines a system
as a set of interacting components, where each component
is provided with a set of operational/failure modes, time-to-
failure/repair distributions, and failure/repair dependencies.
We propose a predefined set of components along with an
extensible set of features (such as interactions, dependen-
cies, operational/failure modes, etc).

We have identified three main components with which
we can, in a modular fashion, construct a system model: (1)
a Basic Component (BC), (2) a Repair Unit (RU), and (3) a
Spare Management Unit (SMU). The underlying semantics
of each of these components are I/O-IMCs.

A basic component represents a physical/logical system
component that has a distinct operational and failure behav-
ior. A BC can have any number of operational modes (e.g.,
active vs. inactive, normal vs. degraded) and can fail either
due to an inherent failure (realized as a Markovian transi-
tion) or due to adestructive functional dependency.

The RU component handles the repair of one or many
BCs. Variousrepair policies(e.g., first-come-first-served,
priority) and repair dependencies between BCs can be im-
plemented. Finally, the SMU handles the activation and de-
activation of BCs used as spare components.

4.2 Requirement fulfillment

Low modeling effort. TheArcade approach requires low
modeling effort since its design has been centered around
three principles:

1. Architectural approach. We advocate that depend-
ability analysis is best done at an architectural level
and, more specifically, by annotating existing architec-
tural design models with dependability-specific infor-
mation. This not only relieves the engineer from the
burden of creating new models for the purpose of de-
pendability analysis, but also provides a single model,

and thus ensuring integrity, for doing dependability
and other design-related evaluation methodologies.

2. Standard features. Arcade includes standard features
for recurring dependability features. In particular, we
provide standard operational/failure modes and behav-
ior, standard repair policies such as dedicated and first-
come-first-serve policies, and standard spare manage-
ment units.

3. Connect to standard formalisms. We plan to provide
a tight connection ofArcade to existing, graphical for-
malism such as UML and AADL. In fact, our frame-
work is ultimately intended to be incorporated into an
architectural design language.

High expressivity. To balance between expressivity and
modeling effort,Arcade is extensible. We provide standard
features whenever possible, and allow user-defined features
whenever needed. In fact,Arcade provides a standard set of
basic components, but also allows the user to define com-
ponents that, for instance, can exhibit more complex opera-
tional/failure modes.

Formal Semantics. We provide a formal semantics of
Arcade models in terms of I/O-IMCs: eachArcade com-
ponent is translated into an I/O-IMC. The semantics of the
entireArcade system model is then obtained by composing
in parallel (using the parallel operator “‖”) the I/O-IMCs of
all components.

Compositional modeling and analysis. The Arcade

modeling language incorporates both parallel and hierar-
chical composition. The parallel composition ofArcade

components is realized by simply specifying multiple com-
ponents, saying how one component depends on the op-
erational/failure modes of other components. Hierarchical
composition will be realized through interfaces, specifying
how the failures of the internal components manifest them-
selves as failures of the composite component.

On the analysis side, we use the powerful compositional
aggregation methods for I/O-IMCs. The I/O-IMC formal-
ism is equipped with several aggressive aggregation (also
called lumping or bisimulation minimization) techniques,
which replace an I/O-IMC with an equivalent, but smaller
I/O-IMC. An important feature is that aggregation is com-
positional, i.e., one can first aggregate the I/O-IMCs and
then compose them together. By performing this procedure
in a step-by-step fashion (i.e., take two (lumped) compo-
nents, compose them, lump the result, compose with an-
other (lumped) component, lump the results, etc), one ob-
tains a state space that is significantly smaller than the state
space that is obtained by composing all I/O-IMC models at
once.

3

parser
Arcade

XML

Arcade

conversion

IOIMC
CADP format

CADP

Analysis results

graphical format
Arcade Arcade

textual format UML AADL

Figure 1. Arcade tool chain.

Tool support. We are working on anArcade analysis tool
chain based on the CADP toolset [6], which is a tool for
(among others) I/O-IMC analysis and includes methods for
I/O-IMC composition, aggregation and analysis. Our tool
chain, depicted in Figure 1, takes as input anArcade model
and generates the underlying I/O-IMC models in a format
that is readable by CADP. CADP can then compose and
minimize the I/O-IMCs based on the compositional aggre-
gation approach, and calculate the desired dependability
measures. Currently, only textual input is supported (see
example in the next section), but we are planning to de-
velop a graphical language forArcade models. Moreover,
our future plans include a connection ofArcade with UML
and AADL.

5 Case study

To demonstrate the feasibility and usability of our ap-
proach, we chose a wide-spread case study from the litera-
ture, a distributed database system [8]. We briefly describe
the system functionality and show parts of itsArcade spec-
ification.

5.1 Distributed database system

In [8] a dependability model for a distributed database
architecture is described, and as a modeling formalism
stochastic activity networks (SANs) [9] were employed.

5.1.1 Verbal description

The system possesses two processors, one of which is a
spare. Four disk controllers are divided into two sets. The
system has in total 24 hard disks, which are divided in 6
clusters, i.e., each cluster consisting of four disks. Each
controller is responsible for three disk clusters, each of the
twelve disks the controller set is responsible for, is accessi-
ble by any of the two controllers in the respective set. Each
processor can access each of the four disk controllers.

The processors are administrated by a spare management
unit and share one repair unit. For each disk controller set
and disk cluster there is a repair unit responsible. All repair
units choose the next item to be repaired according to a first-
come first-served (FCFS) repair strategy.

The system is down, if one of the following conditions
is met: (1) all processors are down, or (2) in at least one
controller set, no controller is operational, or (3) more than
one disk in each cluster is down.

5.1.2 Arcade model

The Arcade models for the components of the distributed
database system are fairly simple. Most components have a
unique operational mode, except the spare processor which
has two modes (i.e., inactive and active). Below, we de-
scribe the system in a textual format. The syntax should be
self-explanatory.

1. Arcade model of processor: Here, we have twoArcade

models, one for the primary processor, and one for the
spare processor:

(a) Primary processor

COMPONENT: pp

TIME-TO-FAILURE: exp(1

2000
)

TIME-TO-REPAIR: exp(1)

The disk controllers (dc i, i = 1, · · · , 4) and the
disks (dj , j = 1, · · · , 24) have the sameArcade

model, except for a different time-to-failure in
case of the disks, which isexp(1

6000
).

(b) Spare processor:

COMPONENT: ps

OPERATIONAL MODES: (INACTIVE , ACTIVE)
TIME-TO-FAILURE: exp(1

2000
), exp(1

2000
)

TIME-TO-REPAIR: exp(1)

2. Arcade model of processor repair unit: The repair unit
for processors is responsible for both the primary and
the spare processors. A simple FCFS repair strategy is
assumed:

4

REPAIR UNIT: p.rep

COMPONENTS: pp, ps

REPAIR STRATEGY: FCFS

3. Arcade model for the evaluation criteria: The evalu-
ation criteria formalizes the conditions under which
the system is down, in terms of a Boolean expres-
sion (Fault tree). The single failure conditions are ex-
pressed in terms of the relevant1 failure modes of the
respective components.

SYSTEM DOWN:
(pp.down ∧ ps.down)
∨(dc 1.down ∧ dc 2.down)
∨(dc 3.down ∧ dc 4.down)
∨(2of4 d 1.down, ..., d 4.down)
∨... ∨ (2of4 d 21.down, ..., d 24.down)

(2of4 d 1.down, ..., d 4.down) denotes the failure of
2 out of the four disksd 1, d 2, d 3, andd 4.

5.2 Tool support and analysis

5.2.1 Tool support

In principle, for the analysis ofArcade models we have to
proceed as follows:

1. At the top-level, we write down theArcade specifica-
tions (as in Sec. 5.1.2).

2. EachArcade specification of each of the components
is translated into its corresponding I/O-IMC.

3. From the components’ I/O-IMCs, the I/O-IMC of the
overall system is obtained as follows [4]:

(a) Choose two I/O-IMCs, and compose them in par-
allel.

(b) Minimize the thus obtained I/O-IMC.

4. Repeat the previous steps, until a single I/O-IMC (rep-
resenting the overall system) is obtained.

5. Transform the I/O-IMC into a continuous-time
Markov chain (CTMC).

6. Standard techniques [10] can be used on the obtained
CTMC to compute dependability measures of interest.

1A component can have several failure modes of which not all need to
be relevant for the overall system evaluation.

5.2.2 Analysis

Using the methodology described in the previous section
we generated the CTMC representing the behavior of the
distributed database architecture system. This CTMC has
2,100 states and 15,120 transitions. During the genera-
tion of the final model the largest I/O-IMC encountered had
6,522 states and 33,486 transitions. For comparison, the fi-
nal model generated in [8] had 16,695 states.

Using the system CTMC we can analyze the availabil-
ity and reliability of the system. Table 2 shows the results
of this analysis compared to the SAN-based results in [8].
Note that the reliability results in this table are based on the
definition of reliability used in [8], i.e., the probabilityof
having no system failures within a certain mission time as-
suming that no component is ever repaired. Because of the
discrepancy in reliability results we have also analyzed the
reliability of the distributed database system with the DFT
tool Galileo [1].2

Measure Arcade SAN Galileo

A 0.999997 0.999997 -
R(5 weeks) 0.402018 0.425082 0.402018

Table 2. Dependability analysis for dis-
tributed database system

6 Summary and conclusions

In this paper we have proposed a new and extensible
framework for dependability evaluation:Arcade. Due to
its formal underlying model, it can be used composition-
ally, both for modeling and for analysis purposes. The latter
yields great computational advantages, as illustrated in the
case studies. Next to that, theArcade approach is extensi-
ble, hence, adaptable to new circumstances or application
areas. Furthermore, we seeArcade as an important step
towards design languages for large and complex systems.
Indeed, the ultimate goal is to integrateArcade in a design
environment, e.g., based on AADL or UML.

It is important to note that although the syntax of
the Arcade language bears resemblance to SAVE, the ap-
proaches are truly different. Where in SAVE the actual
semantics of the models was hidden in software program
that coded the translation from that syntax to a large (flat)
Markov chain,Arcade has a formal semantical model that
allows for compositional evaluation, as well as facilitates
the extension of the modeling language.

2It is possible to use DFTs here because we do not consider repair.

5

As for the future, we plan to work on a further automa-
tion of the tool chain, as well as connect to design ap-
proaches based on AADL and UML. Furthermore, where
we now use relatively simple fault-tree like expressions to
specify system failure, we plan to allow for CSL-type ex-
pressions [3], thus facilitating stochastic model checking of
large dependability models.

References

[1] Galileo tool. http://www.cs.virginia.edu/˜ftree.
[2] SAE Architecture Analysis and Design Lan-

guage (AADL) Annex Volume 1. SAE stan-
dards AS5506/1, June 2006. Available at
http://www.sae.org/technical/standards/AS5506/1.

[3] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. Model-
Checking Algorithms for Continuous-Time Markov Chains.
IEEE Trans. Software Eng., 29(7):1–18, July 2003.

[4] H. Boudali, P. Crouzen, and M. Stoelinga. A compositional
semantics for Dynamic Fault Trees in terms of Interactive
Markov Chains. InProc. of the 5th International Sympo-
sium on Automated Technology for Verification and Analy-
sis, pages 441–456. LNCS, 2007.

[5] H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic fault
tree analysis using input/output interactive markov chains.
In Proc. of the 37th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, pages 708–717.
IEEE, 2007.

[6] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP
2006: a toolbox for the construction and analysis of
ditributed processes. InProc. of the 19th International Con-
ference on Computer Aided Verification (CAV), 2007.

[7] OMG Group. UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms. Tech-
nical report, june 2006.

[8] W. H. Sanders and L. M. Malhis. Dependability evaluation
using composed SAN-based reward models.Journal of Par-
allel and Distributed Computing, 15(3):238–254, 1992.

[9] W. H. Sanders and J. F. Meyer. Stochastic Activity Net-
works: Formal Definitions and Concepts. InLectures on
Formal Methods and Performance Analysis, pages 315–343.
Springer, LNCS 2090, 2001.

[10] W. J. Stewart.Introduction to numerical solutions of Markov
chains. 1994.

6

