
Rich Interfaces for Dependability: Compositional Methods for Dynamic Fault
Trees and Arcade models

Hichem Boudali1 Pepijn Crouzen2 Boudewijn R. Haverkort1 Matthias Kuntz1

Mariëlle Stoelinga1

1 University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
2 Saarland University, Stuhlsatzenhausweg 45, 66123 Saarbrücken, Germany

Abstract

This paper discusses two behavioural interfaces for reli-
ability analysis: dynamic fault trees, which model the sys-
tem reliability in terms of the reliability of its components
and Arcade, which models the system reliability at an ar-
chitectural level. For both formalisms, the reliability is an-
alyzed by transforming the DFT or Arcade model to a set
of input-output Markov Chains. By using compositional ag-
gregation techniques based on weak bisimilarity, significant
reductions in the state space can be obtained.

1 Introduction

Dependability evaluation has become an important and
integral part in the design of today’s computer-based sys-
tems. To this end, a wide variety of modeling approaches
has been developed for evaluating system dependability:
General purpose models, such as CTMCs; stochastic Petri
nets [?] (and their extensions); stochastic process alge-
bras [?, ?, ?]; interactive Markov chains [?], Input/Output
IMCs [?], and stochastic activity networks (as used in Ul-
traSAN and Möbius [?]) serve the specification and vali-
dation of a wide variety of quantitative properties of com-
puter and communication systems, including dependability
properties. Dependability-specific formalisms, such as re-
liability block diagrams (RBDs), the System Availability
Estimator (SAVE) language [?], dynamic RBDs (DRBDs)
[?]; dynamic fault trees (DFTs) [?] and extended fault trees
(eFTs) [?]; OpenSESAME [?], and TANGRAM [?] con-
tains specific constructs for expressing dependability con-
cerns. Some architectural (design) languages specific “er-
ror annexes” have been developed to allow for dependabil-
ity analysis, most notably, the architectural description lan-
guage AADL [?], and the UML dependability profile [?].

Compositionality is an essential feature that, in our opin-
ion, any dependability formalism should possess, enabling
one to manage today’s involved dependability concerns by
breaking down the complexity of large systems into small
and manageable pieces. Compositionality comes in two
aspects: compositional modeling means that a model can
be created by composing smaller submodels and composi-
tional analysis means that a model can be analyzed by com-
bining the results of the analysis of the submodels.

Few of the approaches mentioned before are fully com-
positional: while dependability-specific and architectural
approaches allow compositional modeling, they lack com-
positional analysis techniques: for the architectural ap-
proaches, few systematic analysis methods exist at all; the
dependability-specific formalisms are usually analyzed by
generating the global state space of underlying CTMC in
a monolithic, non-compositional way. Several general-
purpose formalisms are compositional; however, these lack
specific constructs to model dependability concerns in a
concise and convenient way.

In this paper, we illustrate how one can obtain compo-
sitional analysis techniques for higher-level formalisms by
exploiting the compositionality properties of a lower-level,
general-purpose formalism. More specifically, we consider
two (distinct) formalisms for reliability analysis, viz. dy-
namic fault trees (DFTs) and Arcade. DFTs are a versatile,
graphical formalism had has gained popularity among re-
liability engineers. Arcade [?] is an approach that we de-
signed, by learning from the drawbacks from previous for-
malisms.

Our approach is based on a compositional translation
of both formalisms into Input-Output Interactive Markov
Chains (I/O-IMC), yielding an I/O-IMC representation for
each modeling construct in these formalisms. Thus, the
translation from a complete DFT or Arcade model is de-
fined in terms of the translations of their components. These

translations pin down the semantics of both formalisms in
a rigorous way. In this way, costly errors due to misunder-
standings or misinterpretations are avoided. Then, by us-
ing the compositional analysis methods from the I/O-IMC
formalism, we obtain compositional analysis techniques for
DFTs and Arcade models. In particular, we generate the
state space of the underlying CTMC in an efficient way by
using compositional aggregation techniques, based on the
repeated use of aggressive state space minimization tech-
niques. We show the benefits of this approach on a number
of examples, several of which feature a drastic reduction in
the number of states generated.

The rest of this paper is organized as follows: Section ??
introduces the DFT and Arcade formalisms. In Section ??
we lay out the compositional analysis methods based on
I/O-IMCs, while Section ?? reports on tools support and
case studies. Finally, Section ?? presents the conclusions.

This paper summarizes and unifies results from [?, ?, ?,
?].

2. The DFT and Arcade formalisms

2.1. Dynamic fault trees

A fault tree model describes the system failure in terms
of the failure of its components. Standard FT are combi-
natorial models and are built using static gates (the AND,
the OR, and the K/M gates) and basic events (BE). A com-
binatorial model only captures the combination of events
and not the order of their occurrence. Combinatorial mod-
els become, therefore, inadequate to model today’s complex
dynamic systems. DFT introduce three novel modeling ca-
pabilities: (1) spare componentmanagement and allocation,
(2) functional dependency, and (3) failure sequence depen-
dency. These modeling capabilities are realized using three
main dynamic gates: The spare gate, the functional depen-
dency (FDEP) gate, and the priority AND (PAND) gate.
Figure ?? depicts all DFT gates.

The PAND gate fails when all its inputs fail and fail from
left to right (as depicted on the figure) order. The spare
gate has one primary input and one or more alternate in-
puts (i.e. the spares). The primary input is initially pow-
ered on and when it fails, it is replaced by an alternate in-
put. The spare gate fails when the primary and all the al-
ternate inputs fail (or are unavailable). A spare could also
be shared among multiple spare gates. In this configura-
tion, when a spare is taken by a spare gate, it becomes un-
available (i.e. essentially seen as failed) to the rest of the
spare gates. The FDEP gate is comprised of a trigger event
and a set of dependent components. When the trigger event
occurs, it causes the dependent components to become in-
accessible or unusable (i.e. essentially failed). The FDEP
gate’s output is a ‘dummy’ output (i.e. it is not taken into

account during the calculation of the system’s failure prob-
ability). Along with static and dynamic gates, DFT also

Figure 1. DFT gates and example.

possess basic events, which are leaves of the tree. A ba-
sic event usually represents a physical component having a
certain failure probability distribution (e.g. exponential). A
DFT element has a number of operational or failed states.
In the case of a BE, operational states could be further clas-
sified as dormant or active states. A dormant state is a state
where the BE failure rate is reduced by a factor called the
dormancy factor α. An active state is a state where the BE
failure rate λ is unchanged. Depending on the value of α,
we classify BE as: cold BE (α = 0), hot BE (α = 1), and
warm BE (0 < α < 1). The dormant and active states of a
BE correspond to dormant and active modes of the physical
component. For instance, a spare tire of a car is initially in
a dormant mode and switches to an active mode when it is
fixed on the car for use.

Figure ?? shows a DFT modeling a road trip. Looking
at the top PAND gate, we see that the road trip fails (i.e. we
are stuck on the road) if the car fails after the mobile phone
has failed; if the car fails first, then we can call the road ser-
vices to tow the car and continue our journey. The car fails
if either the engine fails or the tire subsystem fails, as mod-
eled by the OR gate labeled ‘car fails’. The car is equipped
with a spare tire, which can be used to replace any of the
primary tires. When a second tire fails, the tire subsystem
fails, causing in turn a car failure. Thus, we model the tire
subsystem by four spare gates, each having a primary tire
and all sharing a spare tire The spare tire is a cold spare,
i.e. it is initially in standby mode with failure rate 0.

Galileo DIFtree [?] was the first package to introduce,
use, and analyze DFT. DIFtree allows a limited form of
compositional modeling and analysis. On the modeling
side, DFTs do allow bigger trees to be built from smaller
subtrees, however there are some rather severe restrictions
on the type of allowed inputs to certain gates (e.g. inputs to
spare gates and dependent events of functional dependency
gates have to be basic events), which greatly diminish the
modeling flexibility and power of DFT.

Moreover, DFT lack modular analysis. That is, even
though stochastically-independent sub-modules exist in a

certain DFT module (specifically those whose top-node is
a dynamic gate), these sub-modules cannot be solved sepa-
rately and still get an exact solution. Consequently, a DFT
model, which is typically analyzed by first converting it into
a Continuous Time Markov chain (CTMC), becomes vul-
nerable to the state space explosion problem, i.e. the num-
ber of states in the underlying CTMC is exponential in the
number of basic events. The DIFtree methodology allows
compositional analysis only if the top node is static, not for
dynamic top nodes.

Using the I/O-IMC framework, we enable full composi-
tionality, i.e. we lift several syntactic restrictions of DFTs
and allow compositional analysis for any DFT.

2.2 Arcade

Arcade is a high-level architectural language for depend-
ability analysis; it is a rich language as well as extensi-
ble which allows for even further expressivity. In Arcade,
one models a system as a set of interacting components,
where each component is characterized by a set of op-
erational/failure modes, time-to-failure/repair distributions,
and failure/repair dependencies, etc.

At this stage, there are, within Arcade, three types of
components (i.e. building blocks) with which one can, in a
modular fashion, construct a system model: (1) Basic Com-
ponent (BC), (2) Repair Unit (RU), and (3) Spare Manage-
ment Unit (SMU). A BC represents a physical/logical sys-
tem component that has a distinct operational and failure
behavior. A BC can have any number of operational modes
(e.g., active vs. inactive, normal vs. degraded) and can fail
either due to an inherent failure or due to its functional de-
pendency upon another component. The RU component
handles the repair of one or more BCs. Here, various re-
pair policies (e.g., first-come-first-served, priority) and re-
pair dependencies between BCs can be implemented. Fi-
nally, the SMU handles the activation and deactivation of
BCs used as spare components.

The Arcade’s building blocks can be readily modified or
new building blocks can be added depending on the applica-
tion domain. Arcade is also a formal language as the under-
lying semantics of each of these components is expressed in
terms of I/O-IMC.

Figure ?? provides an example of a simplified nuclear
reactor cooling system (NRCS) [4] modeled within Arcade.
The figure shows the NRCS architectural design model.
The NRCS consists of a reactor, two parallel pump lines, a
heat exchanger and a bypass system for the heat exchanger.
Each of the two pump lines consists of a single pump, a sin-
gle filter and a number of control valves. The heat exchang-
ing unit consists of the heat exchanger itself, a number of
valves and one filter. The bypass system can be opened and
closed by means of two motor driven valves.

All components, except the reactor itself (whose failure
behavior is not considered here), are subject to failures and
are repairable. The filters and the heat exchanger are either
operational or failed. The valves can fail in two different
modes, either stuck-open or stuck-closed. The pumps have
two different operational modes and one failure mode. The
pumps are either fully operational, or in a degraded oper-
ational mode, which is reached if one of the two pumps
fails. In the degraded mode, the remaining pump fails with
a higher failure rate. This is indeed a typical load sharing
(load shared between the two pumps) situation.

Except for the two pumps, which share a single repair
unit with a first-come-first-served (FCFS) repair strategy,
each component has its own dedicated repair unit1. The
system is down, if either none of the two pump lines is op-
erational, or both the heat exchanger and the bypass sys-
tem are not operational. A pump line is defective if one of
its components is defective; where for the valves, only the
stuck-closed case is considered to be a relevant failure. The
heat exchanging unit is defective if the heat exchanger itself
fails or one of its accompanying filters or valves fails. Fi-
nally, the bypass line fails if one of the motor driven valves
is stuck-closed.

Arcade allows modeling the dependability characteris-
tics described above by simply adding dependability anno-
tations (rightmost in figure) to the various components. The
dependability annotations are specified using a well-defined
syntax. There exists an annotation for each of Arcades three
building blocks. For example, in Figure ??, we show the an-
notations for basic components named FP1, P1, and VIP1,
and the repair unit named P.rep. Component FP1 has two
fields time-to-failure and time-to-repair indicating the type
of failure and repair distribution respectively. The annota-
tion for the repair unit P.rep shows that it is in charge of
the 2 pump components P1 and P2, and the repair policy is
FCFS.

From these dependability annotations, Arcade automat-
ically, and transparently to the user, derives a state model,
analyzes it using standard numerical methods, and finally
outputs the desired dependability measure (e.g. reliability
or availability). Solving the NRCS with Arcade for a mis-
sion time of 1 year for instance, we get a system availability
and reliability of 0.9999999990 and 0.9999986799 respec-
tively.

3. Compositional Analysis based on I/O-IMCs

3.1. Input/Output Interactive Markov
Chains

Input/Output interactive Markov chains (I/O-IMCs) [?]
are a combination of Input/Output automata (I/O-
automata) [?] and interactive Markov chains (IMCs) [?].

Figure 2. Reactor Cooling System

I/O-IMCs distinguish two types of transitions: (1) Interac-
tive transitions labeled with actions; (2) Markovian tran-
sitions labeled with rates λ, indicating that the transition
can only be taken after a delay that is governed by an ex-
ponential distribution with parameter λ. Inspired by I/O-
automata, actions can be further partitioned into:

1. Input actions (denoted a?) are controlled by the envi-
ronment. They can be delayed, meaning that a transi-
tion labeled with a? can only be taken if another I/O-
IMC performs an output action a!. A feature of I/O-
IMCs is that they are input-enabled, i.e., in each state
they are ready to respond to any of their inputs a?.
Hence, each state has an outgoing transition labeled
with a?.

2. Output actions (denoted a!) are controlled by the I/O-
IMC itself. In contrast to input actions, output actions
cannot be delayed, i.e., transitions labeled with output
actions must be taken immediately.

3. Internal actions (denoted a;) are not visible to the en-
vironment. Like output actions, internal actions cannot
be delayed.

States are depicted by circles, initial states by an incoming
arrow, Markovian transitions by dashed lines, and interac-
tive transitions by solid lines. Fig. ?? shows an I/O-IMC
with two Markovian transitions: one from S1 to S2 with
rate λ and another from S3 to S4 with rate μ. The I/O-
IMC has one input action a?. To ensure input-enabling, we
specify a?-self-loops in states S3, S4, and S51. Note that
state S1 exhibits a race between the input and the Marko-
vian transition: in S1, the I/O-IMC delays for a time that is
governed by an exponential distribution with parameter λ,
and moves to state S2. If however, before that delay ends,
an input a? arrives, then the I/O-IMC transitions to S3. The
only output action b! leads from S4 to S5. We say that two
I/O-IMCs synchronize if either (1) they are both ready to

1In the sequel we often omit these self-loops for the sake of clarity and
simplicity of the I/O-IMC representation.

S1

S2

S3

S4a? a?

a?

a?

S5
b!

λ

μ

a?

Figure 3. Example of an I/O-IMC

accept the same input action or (2) one is ready to output
an action a! and the other is ready to receive that same ac-
tion (i.e., has input action a?). I/O-IMCs are also equipped
with a parallel composition operator “||”, to build larger I/O-
IMCs out of smaller ones. The behavior of P = Q||R, i.e.,
the parallel composition of I/O-IMCs Q and R, is the joint
behavior of its constituent I/O-IMCs and can be described
as follows:

1. If an action does not require synchronization then Q
and R can evolve independently, i.e., if Q (R) can
make any transition (interactive or Markovian) and be-
haves afterwards as Q′ (R′), the same behavior is pos-
sible in the parallel context, i.e., Q||R can evolve to
Q′||R (Q||R′).

2. If an action of an interactive transition requires syn-
chronization, then both I/O-IMCs Q and R must be
able to perform that action at the same time, i.e., Q||R
evolves simultaneously into Q′||R′. Note that when an
output and an input action synchronize the result is an
output action.

Like in process algebras, the hiding operator hide A in
P makes output actions in a set A internal, such that no fur-
ther synchronization is possible over actions in A. Finally,
aggressive minimization (also called lumping) techniques
are available for I/O-IMCs that translate an I/O-IMC into
one that is equivalent, but smaller. More details on the I/O-
IMC formalism can be found in [?].

3.2. Compositional translation to I/O-
IMCs

In this section we show three examples of how one ob-
tains I/O-IMC models for the constructs in the DFT and
Arcade formalisms. The full translation can be found in
[?] and [?].

DFT basic event I/O-IMC model As pointed out in Sec-
tion ??, a basic event has a different failing behavior de-
pending on its dormancy factor. For this reason we identify
three types of basic events and correspondingly three types

of I/O-IMC. Figure ?? shows the I/O-IMC corresponding
to a cold, warm, and hot basic events (all called A). The
I/O-IMC clearly captures the behavior of the basic event
described in Section ??.

Figure 4. The I/O-IMC models of cold, warm, and hot
basic events.

DFT PAND gate I/O-IMC model The PAND gate fires
if all its inputs fail and fail from left to right order. If the in-
puts fire in the wrong order, the PAND gate moves to an op-
erational absorbing state (denoted with an X on Figure ??).
Figure ?? shows the I/O-IMC of the PAND gate P with two
inputs A and B (A being the leftmost input).

Figure 5. The I/O-IMC of the PAND gate.

Spare management unit I/O-IMC model in Arcade The
spare management unit (SMU) handles the activation and
deactivation of spare components. Figure ?? shows the
I/O-IMC translation for an SMU that handles one pri-
mary and one spare, where the primary component is al-
ways in active mode, and thus always providing the ser-
vice whenever it is operational. When the primary fails
(input failed primary?), the SMU activates (output acti-
vate spare!) the spare component which takes over the
primary. As soon as the primary is up again (input
up primary?), the spare is deactivated and the primary re-
sumes operation.

3.3 Compositional aggregation approach

Our compositional semantics allows one to build the I/O-
IMC associated to a DFT or Arcade model in a component-
wise fashion, leading to a significant state-space reduction.

Figure 6. The SMU I/O-IMC model.

This kind of compositional aggregation approach has been
previously successfully used, most notably in [?]. The com-
positional aggregation approach is to be contrasted with a
more classical approach of model generation, such as the
one used by DIFTree, where the CTMC model of a dynamic
system is generated at once and as a whole and then possi-
bly aggregated at the end. We propose the following con-
version algorithm to transform a DFT or Arcade model into
an I/O-IMC.

1. Translate each DFT or Arcade element to its corre-
sponding (aggregated) I/O-IMC.

2. Pick two I/O-IMCs and parallel compose them.

3. Hide output signals that will not be subsequently used
(i.e. synchronized on).

4. Aggregate, using weak bisimulation, the I/O-IMC ob-
tained in step 3.

5. Go to step 2 if more than one I/O-IMC is left, other-
wise stop.

The choice of I/O-IMCs we make in step 2 is important as
this has an impact on the size of the generated state space
during the intermediate steps. In the case studies (see Sec-
tion ??) we have used intuitive heuristics based on the level
of interaction between models to decide the composition or-
der.

Figure ?? illustrates the conversion algorithm on a sim-
ple DFT.

Figure 7. DFT to CTMC (or CTMDP) conver-
sion algorithm.

4 Tool Support and Case studies

Both compositional-aggregation techniques have been
implemented in a tool set based on CADP. Coral, the tool for
DFT analysis is fully automated, whereas the Arcade tool is
(still) partly manual. Using our tools, we have performed a
number of case studies and compared our approaches with
results from the literature. We summarize their results here.

Case study Analysis Maximum number Maximum number Unreliability
method of states of transitions (Mission-time = 1)

CPS DIFtree 4113 24608 0.00135668
CPS Comp-Aggr 132 426 0.00135668
CAS DIFtree 8 10 0.657900
CAS Comp-Aggr 36 119 0.657900

MDCS DIFtree 253 1383 2.00025 · 10−9

MDCS Comp-Aggr 157 756 2.00025 · 10−9

FTPP DIFtree 32757 426826 2.56114 · 10−11

FTPP Comp-Aggr 1325 14153 2.56114 · 10−11

Figure 8. The results of the case studies.

4.1 DFT case studies

To compare the compositional aggregation (Comp-Aggr)
approach with the traditional DIFtree method, we have con-
ducted four case studies (none having non-determinism):
the cascaded PAND system [?, ?] (CPS), the cardiac assist
system [?] (CAS), the multi-processor distributed comput-
ing system (MDCS) and the fault-tolerant parallel proces-
sor [?] (FTPP).

The results of the case studies are given in Figure ??.
The size of the largest model (with regard to the number of
states) appearing during analysis is given for each experi-
ment.

4.2 Arcade case studies

We carried out two case studies using the Arcade ap-
proach. First, we analyzed the nuclear reactor cooling sys-
tem described before, which was modeled in [?] using the
eFT approach. The CTMC for the pump subsystem has
10,404 states and 109,662 transitions; and the CTMC for
the heat exchanger subsystem (including the bypass) has
240 states and 1,668 transitions. The largest model encoun-
tered during generation had 98,056 states and 411,688 tran-
sitions. The computed reliability of 52.9242 · 10−10 (mis-
sion time 50 hours) coincides with [?].

Second, we analyzed a distributed database architecture
(DDA), which was evaluated in [?] using SANs. It consists
of a number of processors, disk controllers and hard disks,
several of which are redundant. Using the methodology de-
scribed in Section ??, we generated the CTMC representing
the behavior of the DDA. This CTMC has 2,100 states and
15,120 transitions. During the generation of this model, the
largest I/O-IMC encountered had 6,522 states and 33,486
transitions. For comparison, the final model generated in [?]
had 16,695 states.

5 Conclusions and Future work

In this paper, we have illustrated how one can obtain
compositional modeling and analysis methods for high-

level dependability formalisms via a element-wise transla-
tion to the I/O-IMC framework. For the two dependabil-
ity formalisms (DFTs and Arcade) we showed the increase
of the compositionality both at the analysis level and the
model-building level.

Future work include completing the tool chain for
Arcade models, considering more aggressive state space
minimization techniques and generation diagnostics, ex-
plaining the most likely cause for a system failure, based
on this framework.

Finally, we would like to stress that one could take a
similar approach to formalisms for other dependability con-
cerns, such as security or recovery, thus transferring the
benefits of compositionality to other domains.

References

[1] Architecture Analysis and Design Language (AADL). SAE
standards AS5506, Nov 2004.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with generalized stochastic
Petri nets. Wiley, 1995.

[3] M.-b. D. E. F. Arcade A Formal, Extensible. H. boudali and
p.crouzen and and b.r.h.m. haverkort and m. kuntz and m.i.a.
stoelinga.

[4] M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A The-
ory of Concurrent Processes with Nondeterminism, Priori-
ties, Probabilities and Time. Theo. CS, 202:1–54, 1998.

[5] H. Boudali, P. Crouzen, B. Haverkort, M. Kuntz, and
M. Stoelinga. Arcade - a formal, extensible, model-based
dependability framework. Technical report, University of
Twente, to appear.

[6] H. Boudali, P. Crouzen, and M. Stoelinga. A compositional
semantics for Dynamic Fault Trees in terms of Interactive
Markov Chains. LNCS, 4762:441–456, 2007.

[7] H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic fault
tree analysis using input/output interactive markov chains.
In Proc. of the 37th Annual IEEE/IFIP International Con-
ference on DSN, pages 708–717. IEEE, 2007.

[8] H. Boudali and J. B. Dugan. A discrete-time Bayesian net-
work reliability modeling and analysis framework. Reliabil-
ity Engineering and System Safety, 87(3):337–349, March
2005.

[9] H. Boudali and J. B. Dugan. A new Bayesian network ap-
proach to solve dynamic fault trees. In Reliability and Main-
tainability Symposium, Jan 2005.

[10] K. Buchacker. Modeling with extended fault trees. In 5th
IEEE Int. Symposium on High Assurance Systems Engineer-
ing, pages 238–246, Nov 2000.

[11] E. de Souza e Silva and R. M. M. Leao. The ”TANGRAM-
II” environment. In Computer Performance Evaluation.
Modelling Techniques and Tools: 11th Int. Conference,
TOOLS 2000, volume 1786, pages 366–369. LNCS, 2000.

[12] S. Distefano and L. Xing. A new approach to modeling the
system reliability: dynamic reliability block diagrams. In
RAMS’06 proceedings, pages 189–195, 2006.

[13] J. B. Dugan, S. J. Bavuso, and M. A. Boyd. Dynamic
fault-tree models for fault-tolerant computer systems. IEEE
Trans. on Reliability, 41(3):363–377, September 1992.

[14] J. B. Dugan, B. Venkataraman, and R. Gulati. DIFTree: a
software package for the analysis of dynamic fault tree mod-
els. In Reliability and Maintainability Symposium, pages
64–70, Jan 1997.

[15] A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Laven-
berg, and K. S. Trivedi. The system availability estimator. In
Proceedings of the 16th Int. Symp. on Fault-Tolerant Com-
puting, pages 84–89, July 1986.

[16] H. Hermanns. Interactive Markov Chains, volume 2428 of
Lecture Notes in Computer Science. Springer, 2002.

[17] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and
M. Siegle. Compositional performance modelling with the
TIPPtool. LNCS, 1469:51–62, 1998.

[18] H. Hermanns and J. P. Katoen. Automated compositional
Markov chain generation for a plain-old telephone system.
Science of Computer Programming, 36(1):97–127, 2000.

[19] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[20] N. Lynch and M. Tuttle. An Introduction to Input/output
Automata. CWI Quarterly, 2(3):219–246, 1989.

[21] OMG Group. UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms. Tech-
nical report, june 2006.

[22] W. H. Sanders and L. M. Malhis. Dependability evaluation
using composed SAN-based reward models. Journal of Par-
allel and Distributed Computing, 15(3):238–254, 1992.

[23] M. Walter, M. Siegle, and A. Bode. OpenSESAME: the
simple but extensive, structured availability modeling envi-
ronment. RESS, In Press, corrected proof, April 2007.

