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Dynamic Fault Trees in Reliability Engineering. Reliability and availability mea-
sures, such as system failure probability during a given mission time and system mean-
time-between-failures, are often important measures to assess in embedded systems de-
sign. There exist several techniques and formalisms for reliability/availability assessment.
One such formalism is dynamic fault trees (DFT) [6]. DFTs are a graphical, high-level
and versatile formalism to analyze the reliability of computer-based systems, describing
the failure of a system in terms of the failure of its components. A DFT is comprised
of basic events (modeling the failure of physical components) and gates (modeling how
component failures induce system failures). DFTs extend standard (or static) fault trees
by allowing the modeling of complex system components’ behaviors and interactions.
Typically, a DFT is analyzed by first converting it into a continuous-time Markov chain
(CTMC) and by then computing the reliability measures from this CTMC. For over a
decade now, DFTs have been experiencing a growing success among reliability engineers.

Unfortunately, a number of issues remain when using DFTs, most notably: (1) the
DFT semantics is rather imprecise and the lack of formality has, in some cases, led to
undefined behavior and misinterpretation of the DFT model. (2) DFTs lack modular
analysis. That is, even if independent sub-modules exist in a DFT module, these sub-
modules can not always be solved separately. Consequently, DFTs become vulnerable to
the well-known state-space explosion problem; that is the size of the underlying CTMC
grows exponentially with the number of basic events in the DFT. (3) DFTs also lack
modular model-building, i.e. there are some rather severe restrictions on the type of
allowed inputs to certain gates which greatly diminish the modeling flexibility and power
of DFTs.

Our solution: Compositional modeling and analysis of DFTs. We have provided
a formal semantics to DFTs by translating DFTs to input/output interactive Markov
chains (I/O-IMCs); I/O-IMCs extend CTMCs with discrete input, output and internal
actions [8, 4].

By being formal, our semantics provides a rigorous basis for the interpretation and
analysis of DFTs, thus solving issue (1) mentioned above. Our semantics is also fully
compositional. That is, the semantics of a DFT is expressed in terms of the semantics of
its elements (i.e. basic events and gates). More precisely, we provide an I/O-IMC for each
DFT element and obtain the semantics of the whole DFT by composing the semantics
of all elements, using the parallel composition operator available for I/O-IMCs. This
method enables an efficient analysis of DFTs through compositional aggregation, which
helps to alleviate the state-space explosion problem by incrementally building the DFT
state space. Our technique is completely modular, which allows us to overcome issue (2).
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We have also tackled issue (3) and lifted some previously enforced restrictions on DFTs,
thus extending the applicability of the DFT model.

We have implemented our methodology by developing a prototype tool, called Coral
(COmpositional Reliability and Availability anaLysis). This tool uses the CADP tool
set [7]. We have compared our approach to the analysis tool Galileo [2], one of the
standard analysis tools for DFTs. In many cases, our approach compares favorably to
Galileo and demonstrates its effectiveness by seriously reducing the state space to be
analyzed [4]. Our prototype tool takes as input a DFT in Galileo’s textual format and
a composition script describing, in a simple textual format, the order in which the I/O-
IMC models must be composed. The tool proceeds in three steps:

1. Translation: The DFT is translated into a group of I/O-IMC models. In particular,
each DFT element is translated into a corresponding elementary (with few states
and few transitions) I/O-IMC model.

2. Compositional aggregation: Using the composition script the I/O-IMC mod-
els are iteratively composed, abstracted and aggregated until one I/O-IMC model
remains.

3. Analysis: In most cases, the resulting I/O-IMC model can be easily transformed
into a CTMC. Standard analysis techniques for CTMCs, such as transient analysis,
implemented in the CADP tool set can then be applied to compute for instance the
system unreliability. In some cases the structure of the DFT causes the resulting
I/O-IMC to contain non-determinism. The I/O-IMC can then be transformed into
a continuous-time Markov decision process for further analysis [3].

The compositional semantics also allows the DFT formalism to be easily extended or
modified. In [5] we show how several of these extensions (for instance, repairable compo-
nents) could be realized in our framework. Such extensions only impact the translation
to the corresponding I/O-IMC models of the modified or added DFT elements. Thus
only the translation step (i.e. step 1) of the tool is affected.

Future work. The focus of the future work will be to further improve and automate
the tool. In particular, we plan to derive the composition script from the DFT model
automatically. Since the order in which the I/O-IMCs are composed impacts the size
of the generated state space, we are looking for heuristics leading to a minimal state
space. Other topics for future research include the use of interface constraints [9] within
our methodology. Finally, we are also currently looking at other reliability/availability
formalisms and architectural design languages (such as the architecture analysis and
design language (AADL) standard and its error model annex [1]) and trying to map
their constructs into I/O-IMC models.
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