Automatically Verifying an Object-Oriented
Specification of the Steam-Boiler System

Paulo J. F. Carreira and Miguel E. F. Costa
{pcarreira, ecosta}@oblog.pt

OBLOG Software S.A.,
Alameda Anténio Sérgio 7, 1-A
2795-023 Linda-a-Velha, Lisboa - PORTUGAL
tel: 4+351-214146930 fax:+351-214144125

Abstract. Correctness is a desired property of industrial software sys-
tems. Although the employment of formal methods and their verification
techniques in embedded real-time systems has started to be a common
practice, the same cannot be said about object-oriented software. This
paper presents an experiment of a technique for the automated verifica-
tion of a subset of the object-oriented language OBLOG. In our setting,
object-oriented models are automatically translated to LOTOS specifi-
cations using a programmable rule-based engine included in the Develop-
ment Environment of the OBLOG language. The resulting specifications
are then verified by model-checking using the CADP tool-box. To illus-
trate the concept we develop and verify an object-oriented specification
of a well known case study—the Steam-Boiler Control System.

Keywords: Automatic Verification, Code Generation, LOTOS,
Model-Checking, Object-Oriented Systems, Steam-Boiler.

1 Introduction

The employment of an automatic method for verifying properties about formal
specifications known as model-checking [QS82,CES86,VW86,Kur90] experienced
a dramatic growth. It has emerged as an effective way of finding errors and
proving correctness of hardware, and, more recently, software systems.

However, the applicability of this technique depends on the existence of mod-
els for the specifications with a finite number of states. Specifications of real-
-world systems often have state-spaces that are infinite or so large that would
disable their verification in an automated'! way. Nevertheless, much effort has
been put in additional techniques that, when used in a combined way, allow the
exploration of the state-spaces of many real-world systems [CW96].

The lack of automated tools is only one of the reasons for the weak ac-
ceptance of formal methods for software development. Another lies in the fact
that specification languages still require some degree of mathematical sophisti-
cation. Object-oriented graphical languages like UML [BJR97] and StateCharts

! By automated we mean fully automated, without user intervention.

[HLN*90] were proposed and advocated as means to overcome the above situ-
ation. However, producing complete specifications using graphical specification
languages is a labor-intensive task. Such specifications often become overwhelm-
ing thus compromising the initial goal of being easier to read.

The object-oriented language OBLOG [OBL99] is being used in industry
for the specification and deployment of critical parts of software systems [AS96].
OBLOG models can be developed by using both graphical and textual notations,
making feasible the specification of complete systems with thousands of objects
and classes.

In this paper we illustrate the applicability of model-checking technology
in the verification of object-oriented software specifications. We present an ex-
periment with a technique that allows fully automated verification of a subset
of OBLOG specifications by applying model-checking to corresponding LTSs
(Labelled Transition Systems). To obtain these LTSs the formal semantics for
OBLOG should have been defined. However, since the language is still under
development, only an intuitive semantics is available. We chose to base our ap-
proach on an intermediate translation to LOTOS [ISO88] specifications that are
subsequently expanded to LTSs, thus bridging the gap between the intuitive
semantics of OBLOG and the needed formal semantics over LTSs. Further-
more, the effort of implementing an algorithm to expand data non-determinism
is greatly reduced by using Cmsar.Apt [Gar89], an abstract datatype compiler
for LOTOS included in Capp [FGKT96].

In order to test our ideas, we decided to work with a simplified version of the
Steam-Boiler Control System, a well known example from literature [ABL96],
which allowed a faster analysis of the problem and provided other results for
comparison.

Our paper is organized as follows: In Section 2, we present the requirements
of a simplified version of the Steam-Boiler Control System and its modeling with
OBLOG. The translation mechanism for producing LOTOS code is detailed in
Section 3. We present and verify a formalization of the system requirements in
Section 4, and Section 5 draws the conclusions of this work.

1.1 Related Work

There have been other attempts to verify the Steam-Boiler System by model-
-checking but none of them, to the best of our knowledge, used a high lev-
el object-oriented language. In [WS96], Willig and Schieferdecker developed a
Time-Extended LOTOS specification. The system was validated through simu-
lation and verified for deadlock freedom using full state-space exploration tech-
niques. They used Capp on a restricted model without time and without failures.

A formalization of the problem into PROMELA without time is given by Duval
and Cattel [DC96]. Their model also abstracts from communication failures and
major properties of the system are reported to have been verified on a fully
automated way using the SPIN Model-Checker. Jansen et al. [JMMS98] report
the verification of AMBER specifications using a translation into PROMELA. This

translation allowed the use of SPIN in the automated verification of finite-state
subsets of AMBER.

2 Modeling the Steam-Boiler Controller System

The Steam-Boiler Control system is composed of a Micro-Controller connected to
a physical system apparatus consisting of an Operator Desk and a Steam-Boiler
attached to a turbine. There is also a Pump to provide water to the Boiler,
an Escape Valve to evacuate water from the Boiler and devices for measuring
the level of water inside the Boiler and the quantity of steam coming out. The
Boiler is characterized by physical limits M1 and M2, and a safety range between
N1 and N2. When the system is operating, the water level can never go above
M1 or below M2, otherwise the Boiler could be seriously damaged. The safety
range establishes boundaries that, when reached, must cause a reaction from the
Controller that reverts the increasing or decreasing tendency of the water level.

2.1 System requirements

The Controller has different modes of operation, namely: stopped, initialization,
normal and emergency stop. Initially the Steam-Boiler is switched off and the
Controller is in stopped mode. System operations start when the start button of
the operator desk is pressed. However, before the Boiler can start, the Controller
must ensure that the water inside the Boiler is at an adequate level (between
N1 and N2). To do this, it enters the initialization mode in which it uses the
Water Pump and the Escape Valve to regulate the water level. When a safe
range is reached, the Controller switches to normal mode and the production
of steam initiates. In normal mode the Controller guarantees a safe water level
inside the Boiler by starting and stopping the Pump. If something goes wrong,
and the operator pushes the stop button, the Controller enters emergency stop
mode and shuts down the Steam-Boiler.

The system can be further characterized by a set of requirements that are
summarized as follows:

1. When the start button is pressed and the system is stopped the Controller
enters the initialization mode.

2. When the Controller is in the initialization mode and the water level is below
N1, the Pump must be started.

3. When the Controller is in the initialization mode and the water level is above
N2, the Valve must be opened.

4. When the Controller is in the initialization mode and the water level is in
the range N1 to N2, the Controller switches to normal mode.

5. When the Controller switches to normal mode and the Valve is opened, the
Valve must be closed.

6. When the Controller is in normal mode, the Pump is started and the water
level is above N2, the Pump must be stopped.

7. When the Controller is in normal mode, the Pump is stopped and the water
level is below N1, the Pump must be started.
8. When the stop button is pressed the Controller enters emergency stop mode.
9. When the water level of the Boiler is greater than N2, it will eventually
become lesser than or equal to N2.
10. When the water level of the Boiler is less than N1, it will eventually become
greater than or equal to N1.
11. If the Pump is started, the water will never reach a level above M2.
12. If the Boiler is started, the water will never reach a levegl below M1.
13. The Valve can only be opened if the Controller is in initialization mode.

2.2 The OBLOG Model

OBLOG (OBject LOGic) refers both to a language and a development
environment. The language OBLOG is a strongly-typed object-oriented spec-
ification language. Specifications are developed in a hierarchical fashion using
specification regions. A specification region can be a class or an object encap-
sulating local declarations consisting of constants, attributes and operations as
well as local specifications of datatypes and nested specification regions. Class
and object operations can be implemented by several methods distinguished by
corresponding enabling conditions.

In the original specification of the Steam-Boiler problem, the Controller in-
teracts with the physical units through a single communication medium which
has a specialized protocol defined for it. Our specification abstracts communi-
cation by modeling it with usual interaction between objects i.e., calls to object
operations. However, we attempted to preserve the Controller’s viewpoint by
which the physical units are seen as a single entity composed of several other
simpler entities.

start a
OperatorDesk stop Ll Controller
Pump Steamieasurer

£ oti fy startBoiler

stopBoiler
Clock startPump Boiler
stopPump

openValve >
closeValve

ti otify h
"\ Yalwve WaterMeasurer
PhysicalSystem
v

Fig. 1. a) Top-level objects; b) Objects in the PhysicalSystem specification region

At the top-level of our specification we have the Controller object which
models the Controller software component and the PhysicalSystemobject mod-

eling the unified composition of all the physical units comprising the Steam-
-Boiler apparatus. In the specification region of this object are models of those
units, namely the Boiler, Valve, Pump, WaterMeasurer and SteamMeasurer
objects. Finally, also at top-level, are the OperatorDesk object and the Clock
object, which is used to model time evolution.

In OBLOG there are two ways of initiating activity, signal reaction op-
erations (denoted with a prefixing ~) and self-fire operations (denoted with a
prefixing !). Reactions are triggered by signals sent by the external environment
and we use them to model the events of pressing the start and stop buttons in
the operator desk. Self-fire operations are used to model pro-active behavior. In
our setting, since we do not have time constructs in OBLOG, time evolution
was modeled with a self-fire operation of the Clock object named !clockTic().

The !clockTic() operation notifies both the PhysicalSystemand the Con-
troller. The PhysicalSystem forwards this notification to the Boiler, which
computes the new water level based on the current water level, the state of the
Valve and Pump objects and its own internal state’. When the Controller is
notified, it takes the appropriate actions according to its current operation mode
as detailed above in the requirements section.

When a signal corresponding to the action of pressing the start or stop but-
ton is sent to the system, it is caught by the OperatorDesk object which con-
tains two corresponding signal reaction operations named ~“startButton() and
“stopButton() respectively. When the Controller is in stopped mode and the
“startButton () operation is triggered, the Controller is started. Similarly, when
the “stopButton () operation is triggered, the Controller is sent to emergency
stop mode.

3 Translating OBLOG Specifications into LOTOS

An OBLOG specification can be automatically translated to another language
using an automatic code generation tool included in the OBLOG tool-set. Using
this, we developed a translation of a sequential subset of the OBLOG language
into LOTOS, which is a standard Formal Description Language for software sys-
tems. This language is composed of two specialized sub-languages for specifying
data and control parts. The data part is specified using the language AcTONE
[EMS85] which is based on the theory of abstract datatypes. The control part is
specified using a process algebraic language that combines and extends features
of both CSP [Hoa85] and CCS [Mil89].

3.1 Translation Framework

The current framework is an evolution from previous studies in emulating subsets
of the OBLOG language with process algebraic approaches to allow automatic

2 Recall that the Valve object can be either opened or closed, and both the Boiler
and the Pump can be either started or stopped.

object Controller
declarations

data types
OperationMode = enumf{
Stopped,
Initialization,
Normal,
Emergency,
} default Stopped;

attributes
object
mode : Operationlode
:= Stopped;
operations
object
start();
stop();
timeNotify();

body
methods
start
method start is
if mode = Stopped

set mode := Initialization;
endif
end
timeNotify
method tnStopped
enabling

mode = Stopped;
is

skip;
end

timeNotify
method tnInit
local
waterLevel
enabling
mode = Initialization;
is

Integer;

call PhysicalSystem.
getWaterLevel (waterLevel) ;
if waterLevel < N1
call PhysicalSystem.
startPump() ;
endif

if waterLevel > N2
call PhysicalSystem.openValve ()
endif
if (N1 <= waterLevel) AND
(waterLevel <= N2)
call PhysicalSystem.closeValve();
call PhysicalSystem.startBoiler();

set mode := Normal;
endif
end
timeNotify
method tnNormal
local
waterLevel Integer;
enabling
mode = Normal;

is
call PhysicalSystem.
getWaterLevel (waterLevel) ;
if waterLevel < N1
call PhysicalSystem.startPump() ;
endif
if waterLevel > N2
call PhysicalSystem.stopPump () ;
endif
end

timeNotify
method tnEmergency
enabling

mode = Emergency;
is

skip;
end

stop
method stop is
if (mode = Normal) OR
(mode = Initialization)
call PhysicalSystem.stopPump() ;
call PhysicalSystem.closeValve();
call PhysicalSystem.stopBoiler();
set mode := Emergency;
endif

end

end object

Fig. 2. Specification code of the Controller object

verification [Car99]. These approaches are based on a translation that represents
each object as a parallel composition of two recursively instantiated processes,
one dedicated to the state and the other to the behavior of the object. The two
processes synchronize through designated gates for reading and writing attribute
values. In fact, this coding relies heavily on LOTOS gates, also using them for
both operation calls and parameter passing, resulting in a high degree of non-
-determinism which causes the explosion of the state-space. In our framework,
in order to produce a LOTOS specification that can be compiled and verified
in sensible time, an attempt was made to reduce non-determinism as much as
possible; thus, gates were used as least as possible.

The state attributes of all the objects were merged into a global system
variable that undergoes transformations corresponding to the behavior of the
objects. To support this, special abstract datatypes are defined, namely type
ObjType that for each object Obj; (i ranging in the number of objects in the
system) with attributes Ay : Ta,,..., A, : T4, defines a sort named ObjSort;,
and type SysState that provides a representation of the global system state using
each of the ObjSort; sorts. The definition is as follows, where n is the number
of attributes of object Obj; and m is the number of objects in the system:

type ObjState is Ta,,...,Ta, type SysState is ObjType
sorts sorts
ObjSort; SysState
constructors constructors
mkObj; : Ta; X -+ X Ta, — mkSys : ObjSort: X --- X ObjSort, —
ObjSort; SysState
functions functions
setObj; Ay : ObjSort; x Ta; — setObj; : SysState x ObjSort; —
ObjSort; SysState

getObj; A1 : ObjSort; — TAl

setObj; Ay : ObjSort; x Ta, —
ObjSort;
getObj; Ayn : ObjSort; — Ta,
equations

getObj1 : SysState — ObjSort1

setObj,, : SysState x ObjSort,, —
SysState
getObjn, : SysState — ObjSortm,
equations

V1 :Tay, . s@n: Ta, Yuy : ObjSorti, ..., um : ObjSort,,
Vyr:Tays - s yn: Ta, Yvy : ObjSorty, ..., vm : ObjSort,,
setObj; A1 (mkObj; (z1,...,2n),y1) = setObji (mkSys(ui,...,um),v1) =
mkObj; (y1, 2, ..., &n) mkSys(vi,uz, ..., um)
getObj; A1 (mkObj; (z1,...,2,)) = 21 getObj1 (mkSys(ui, ..., um)) = u1
5et0bj Ay, (mEObi (1, -y Tn), yn) = 5et0bjm (MkSys(ur, . . . tim), vm) =
mkObj; (z1,...,Tn—1,Yn) mkSys(ui, ..., Um—1,Um
getObj; A (mkbj(z1,...,2n)) = 2n 9etObjm (MkSys(ui, ..., Um)) = Um
endtype endtype

The main difference to previous approaches is that we do not use statements
of the kind G?7s:SysState in the LOTOS code, which are the main causes of the
state-space explosion problem because they correspond to a non-deterministic
choice ranging in the domain of the accepted variables.

In fact, no part of the system state is explicitly sent through any gate. Rather,
when operations are called, the corresponding processes that encode them are in-
stantiated taking the system state as a parameter. These processes are composed
of subprocesses that correspond to the several methods of each operation, which

are further composed of other subprocesses implementing elementary actions—
called quarks in OBLO G—like setting the value of an object attribute or calling
other operations. Generally, a behavior component be (that can be an operation,
a method or a quark) is translated to a process that receives the system state
as a parameter, forwards it to the subprocesses or applies a transformation to
it, returning a potentially altered version of the system state. The translation of
bc, denoted by proc,,., renders the following:

proc,, =
process namep. [G](s:SysState,in,.) : exit(SysState,outy.,Bool) :=
actiony.
where
subprocs,
endproc

where G is a set of gates, namey, is a unique identifier for the behavior compo-
nent, action,. is the action taken by the behavior component and subprocs,,
is the declaration of subprocesses in the case of a compound behavior compo-
nent. If be is an operation with input (resp. output) parameters, these will be
included in the ing. (resp. outy.) list. Moreover, if bc is a method with local
variables or a quark within a method with local variables, these will also be in
LMpe-

In OBLOG, a behavior component may result in failure in which case the
Bool exit value of its corresponding LOTOS process is true. This is, however,
not relevant in this report since the model we present does not allow failure in
any case. This feature was only included in the framework for genericness sake.

The translation procedure can be summarized, in terms of behavior compo-
nents, as follows:

Operations If bc is an operation composed by methods My, ..., M,, with input

parameters I : Ty,, ..., I, : T1, and output parameters Oy : To,,...,0m : To,,
we have:
actiony. = subprocs,, = PTOoCy, * - PTOC),
namen, (s, I1,...,1n)
a inbcgll:Tll,...,In:T["
1 _
namen, (s,I1,...,I,) outye =To,,...,To,,

Methods If bc is a method such that: (1) its parent operation has inputs
L :Ty,...,I, : Tr, and outputs Oy : To,,...,0n : Tp,, with default val-
ues Do, ,...,Do,.; (2) has local variables Ly : Ty,,..., Ly : Tp, with default
values Dy, ,...,Dr,; (3) @ is its implementation quark; we have:

actiong. = subprocs,. = procg

nameqg(s,I1,...,1,,
Doy s---3D0oy, s DLy s, D) inge = 11:Try, .- In:To,

>> accept s2:SysState,
I{:T}l,...,IL:T}n,
O1:Toy s +s0m:To,, »
L;:Til,”.,L;:Tik,
f:Bool

in
exit(s2,01,...,0,,,1)

outy. = T01 P /5%

m

Quarks In the context of a quark, no distinction is made between input param-
eters, output parameters and method local variables. Instead, if bc is a quark,
we say that it has a working set of variables declared as V4 : Ty,,...,Vy : Ty,
that subsume the previous declarations.

If be is an operation call quark of the form call op(![;<<Vr, ,..., ' [,<<V} ,
101>>Vo, 5.+ .5 1Om>>Vo,) where '1;<<Vj}, is an input binding associating in-
put parameter I; to a local variable Vj,, and 'O;>>V(, is an output binding
associating output parameter O; to a variable Vp,, we have that:

actiony. = iny. = V1 :’TV1 s VaiTy,
name,y (s, Vry,...,Vr,)
>> accept s2:SysState, outy. = Ty T
=1vy, ... 1y,
O1:Toy s +s0m:To,, » "
f:Bool

in

exit(s2,V[0;/Vo,;],1)

where V' represents the list of variables V1,...,V,, and V]O;/Vp,] represents
the list obtained from V by replacing each variable Vp, with its corresponding
bound value O;.

To verify the system requirements, these will later be translated to formulas
using predicates on the state of the objects. The generation procedure is param-
eterized with the predicates that belong to a particular formula. The obtained
LOTOS specification is such that when modifying an object attribute, if the
assignment causes any of these predicates to become true, an appropriate gate
is signaled.

Let p1,...,pn be predicates that involve an attribute A that is modified and,
for each p;, let p;(s) designate the evaluation of the predicate in a given state
s. The predicate checking procedure for attribute A is defined by the following
processes, where ¢ ranges in 1,... n:

check; =
process checkPi[gatepl,...,gatepn] (s1:SysState,s2:SysState) : exit :=
[NOT(p;(s1)) AND p;(s2)] -> gatepi , checkP;yq [gatep1 . 7gatepn] (s1,s2)
1
[pi(s1) OR NOT(p;(s2))] -> checkP; 1 I:gatep1 - ,gatepn] (s1,s2)
endproc
check, 1 =
process checkP, 1 I:gat:ep1 ,-..,gate, 1 (sl:SysState,s2:SysState) : exit :=
exit

endproc

where s and s’ represent the state of the system respectively before and after
the modification of the attribute, and gate,, is the corresponding gate for each
p; predicate. If be is an attribute modification quark of the form set A := exp
where A is an attribute of an object Obj and exp is an expression of the same
type as A, we have:

actiony. =
checkP; [gate,, ,...,gate,] (s,setObj(s,set A(getObj(s),exp)))
>>
exit(setObj(s,set A(getObj(s),exp)),V ,false)

subprocs, . = check; ---check, 1 inpe = Vi:Tyy, ..., Va:Ty,

outy. = ’TV1 s ooa Ty,
Other quarks include the modification of local variables and the sequential and
conditional quark compositions.

In order to prevent the state-space explosion, another important issue is
where activity starts. Instead of allowing any operation to be initiated at any
time, activity initiates at only a few well-determined points at a single top-
-level recursive process, corresponding to the triggering of self-fire operations
and reactions to external events. In each instantiation of this scheduler process,
every enabled self-fire operation and every reaction to received external signals
is called. In this context, the reception of signals is modeled as a choice between
receiving or not receiving them i.e., calling the corresponding reaction operations
or not. As with predicates, we can also configure the translation procedure to
include gates that are used as observers of receptions of signals.

On the first instantiation of the scheduler, the system state is initialized with
the default values specified in the declaration of the objects. If an attribute of
an object was not given a default value, we convention the corresponding initial
value to be non-deterministically chosen in the range of the domain of that
attribute. While not affecting the semantic mapping, this convention allows us to
verify our properties for every possible initial scenario, in our case in particular,
for every possibility of the water level inside the boiler at start-up.

3.2 Automatic generation

OBLOG language concepts are represented in an object-oriented Meta-Model as
classes. An OBLOG repository can thus be regarded as a collection of instances
of these classes.

The OBLOG Generator tool transforms repositories into actual implementa-
tions using transformation rules that map concepts described in the Meta-Model
into constructs of a given target language. These transformation rules are writ-
ten in RDL [OBL99] which is a scripting language executed in a specialized

rule-execution engine in the following way: rules can access properties and rela-
tionships of repository object; rules execute within a given object context; rules
may consist of statements for producing side effects (e.g., outputting to a file),
navigating in the repository and calling other rules; navigating in the repository
can be done explicitly through the use of a context switching operator or im-
plicitly by iterating through collections of objects; when a rule calls another, the
calling rule implicitly passes its context to the called one.

4 Verification

Our ultimate goal is to demonstrate that the Controller operates correctly, i.e.,
that all the system requirements are guaranteed. A formal representation for
each of the requirements must be produced and verified.

4.1 Requirements formalization

A natural way of expressing properties about object-oriented systems is using a
logic that allows one to express properties about states and actions, e.g., when the
Controller is in stopped mode, the valve will never open. In our setting, states
are caracterised by predicates like Controller.mode = Stopped and actions can
be signal receptions like “StartButtonPressed or calls to object operations like
Valve.close(). The AcTL (Action CTL) temporal logic [NV90] is appropri-
ate for formalizing the Steam-Boiler requirements being expressive enough for
writing properties about states and actions. We selected a fragment of ACTL
containing the following operators (besides usual logic connectors). Let p be a
predicate, a a set of action labels and ¢ an ACTL formula:

B = p| (VB | [a]® | A[Ba U] | A[, U, P

Informally, the semantics of (a)® and [a]® is that “eventually” (respectively
“always”) we reach states satisfying @ performing “one” (respectively “all”)
actions denoted by a. The operator A[®,U®P'| means that in all paths, ¢ holds
through « steps until it reaches &'. The operator A[®,U, ®'] means that in all
paths, @ holds through « steps until it reaches @' through an o' step. We write
AG(®) as a shorthand for A[®;,.,.U false], meaning that all paths consist of
states satisfying ®.

The system requirements can thus be formalized as:

1. AG(Controller.mode = Stopped =
[*StartButtonPressed]A [truesrye UController.mode = Initialization])

2. AG(Controller.mode = Initialization A Boiler.waterLevel < N1 =
Aftruetrue Upump.startO) v "stopButtonpressed {7 UE])

3. AG(Controller.mode = Initialization A Boiler.waterLevel > N2 =
Aftruetrue Uvalve.open() v "stopButtonpressed (T UE])

4. AG(Controller.mode = Initialization A N1 < Boiler.waterLevel < N2 =
Altruesrye U(Controller.mode = Normal V ("StopButtonPressed)true)])

5. AG(Controller.mode = Initialization A
N1 < Boiler.waterLevel < N2 A Valve.state = ValveOpened =
A[t’f‘uetrue UValve.close()true])

6. AG(Controller.mode = Normal A Pump.state = PumpStarted A Boiler.waterLevel > N2 =
Altrueirye U(Pump.state = PumpClosed V Controller.mode = Emergency)])

7. AG(Controller.mode = Normal A Pump.state = PumpStopped A Boiler.waterLevel < N1 =
Altrueirye U(Pump.state = PumpStarted V Controller.mode = Emergency)])

8. AG(Controller.mode = Initialization V Controller.mode = Normal =
[~StopButtonPressed|A[trues, e UController.mode = Stopped)])

9. AG(Controller.mode # Stopped A Boiler.waterLevel > N2 =
Aftruesrye U(Boiler.waterLevel < N2 V Controller.mode = Emergency)])

10. AG(Controller.mode # Stopped A Boiler.waterLevel < N1 =
Aftruesrye U(Boiler.waterLevel > N1 V Controller.mode = Emergency)])

11. AG(—Pump.state = PumpStarted A Boiler.waterLevel > M2)
12. AG(—Boiler.state = BoilerStarted A Boiler.waterLevel < M1)

13. AG(—Controller.mode # Initialization A Valve.state = ValveOpened)

4.2 Requirements verification

To verify the above properties, we used the EVALUATOR Model-Checker included
in the Capp tool-box [FGKT96]. Capp is a set of integrated tools for produc-
ing and analysing Labelled Transition Systems. LTSs can be obtained from low
level descriptions, networks of communicating automata and high-level LOTOS
specifications. Analysis functionalities include interactive simulation and verifi-
cation through comparison of LTSs according to different simulation relations
and model-checking.

However, this Model-Checker does not allow the evaluation of predicates, and
observations on the system state must be included as actions in the model. As
was mentioned before, the generated LOTOS code can be augmented with gates
that are signaled when a given condition p becomes true. The subsequent LTSs
will be likewise enriched with transitions, labelled «,, that are taken when that
predicate is verified. In view of this, we can reformulate the properties, to a form
allowed by the Model-Checker, as follows:

1. AG([aconara]Aftruetrye U[StartButtonPressed Aftruetrue Ua,,, 44 5)tTuell)
2. AG([aconaz] AltruetrueU pump.start () v -stopbuttonpressea) t7U€])

3. AG([aconas]A[truetrueU(vaive.open() v ~Stopbuttonpressea) t7U€])

4. AG([aconasalAltruerueUa,, 445)V(-stopsuttonpressea) tTUE])

5. AG([aconds]A[truet,,ueU(Valve_close())true])

6. AG([aconasalAltruetrueUca,,, 455 tTue])

7. AG([aconaralAltruetrueUca,,, 4o p5)true])

8. AG([aconasa]Altruesru. U["StopButtonPressed|Aftruesrue Ua ytrue]])

cond8B

9. AG([aconasa]AltruetrueUa ytrue])

cond9B Y ¥conddC

10. AG([aconatoalAltruetrueUga ytrue])

cond10BY¥cond10C
11. AG(—(@condi1)true)
12. AG(~(@condi12)true)

13. AG(—(@condi3)true)

where:
condlA = (Controller.mode = Stopped)
condlB = (Controller.mode = Initialization)
cond2 = (Controller.mode = Initialization A Boiler.waterLevel < N1)
cond3 = (Controller.mode = Initialization A Boiler.waterLevel > N2)
cond4A = (Controller.mode = Initialization A N1 < Boiler.waterLevel < N2)
cond4B = (Controller.mode = Normal)

condb = (Controller.mode = Initialization A

N1 < Boiler.waterLevel < N2 A Valve.state = ValveOpened)

cond6A = (Controller.mode = Normal A Pump.state = PumpStarted A
Boiler.waterLevel > N2)

cond6B = (Pump.state = PumpStopped V Controller.mode = Emergency)

cond7A = (Controller.mode = Normal A Pump.state = PumpStopped A
Boiler.waterLevel < N1)

cond7B = (Pump.state = PumpStarted V Controller.mode = Emergency)

cond8A = (Controller.mode = Initialization V Controller.mode = Normal)
cond8B = cond9C = cond10C = (Controller.mode = Emergency)
cond9A = (Controller.mode # Stopped A Boiler.waterLevel > N2)
cond9B = (Boiler.waterLevel < N2)
cond10A = (Controller.mode # Stopped A Boiler.waterLevel < N1)
cond10B = (Boiler.waterLevel > N1)
condll = (Pump.state = PumpStarted A Boiler.waterLevel > M2)

condl2 = (Boiler.state = BoilerStarted A Boiler.waterLevel < M3)
condl3 = (Controller.mode # Initialization A Valve.state = ValveOpened)

The verification yielded the following results, using a CADP installation on a
500MHz Intel machine with 128Mb of RAM running the Linux operating system:

Requirement Lines of LOTOS Number Number Verification

number LOTOS compilation of of time
code timings states transitions
1 1762 0053.27” 215191 221763 00'22.22”
2 1786 00°49.68” 159815 164725 00°16.32”
3 1786 00°50.02” 159765 164675 00°16.26”
4 1806 ~ 00°56.00” 251418 259112 00°28.39”
5 1808 00°51.71” 160687 165597 00°16.08”
6 1838 00’55.69” 252625 260346 00°28.28”
7 1838 00°57.15” 253569 261263 00°28.43”
8 1762 00’51.77” 216362 222904 00'22.42”
9 1832 00°54.56” 252911 260605 00°46.43”
10 1804 00°57.16” 252896 260590 00°41.33”
11 1774 00°52.67” 159029 163939 00°16.35”
12 1774 00°49.10” 159526 164436 00°15.80”

—
w

1763 00°47.35” 140117 144421 00°13.73”

Each requirement corresponded to the generation of a single LOTOS spec-
ification from an OBLOG source file with 548 lines of code. All specifications
were compiled and verified with a restriction on the integer domain to a range
between 0 and 50.

5 Conclusions

Writing specifications using a high-level object-oriented language can be highly
desirable. Typically, in many problem domains, using them for writing specifica-
tions is much easier. This promotes their use by domain experts wanting to skip
the mathematical background needed by traditional specification languages.

We have seen how to verify properties of a subset of object-oriented specifica-
tions in a completely automated way. Our approach is based on a translation to
LOTOS, which allowed us to establish a verification framework for the OBLOG
language taking advantage of existing verification tools.

In the formalization of the system requirements, expressing apparently simple
properties resulted initially in complex specification patterns. This seems to
confirm [DAC98] that formalization in temporal logic can be quite error prone,
although this effort increased our understanding of the problem through the
analysis of the counter-examples provided by the Model-Checker. Indeed, some
errors in our model were found and corrected.

Concerning the overhead of using an intermediate language, it can be claimed
that a direct translation from OBLOG to LTSs could avoid many undesired
transitions resulting from the LOTOS compilation. This direct translation can
be enhanced through connecting to the API provided with the OPEN/C&EsAR
environment for generation and on-the-fly exploration of LTSs. However, by
analyzing the obtained LOTOS specifications as high level representations of
LTSs, we were able to isolate sources of non-determinism and devise strategies
to optimize our initial translation.

This work is a contribution to a broader project that aims to the verifica-
tion of OBLOG specifications. For the moment we are leaving out features like
dynamic creation of objects, dynamic references and exception handling which
can result in infinite state-spaces. To cope with this, we are planning to incor-
porate techniques based on abstraction [CGL94], in particular we are looking at
recent developments in the combined use of abstraction and program analysis
techniques [DHZ99,5S98].

A formal semantics document for OBLOG is currently being organized. It
will allow us to extend the supported subset of specifications and verify the
correctness of this translation framework.

References

[ABL96] J. Abrial, E. Boger, and H. Langmaack, editors. Formal Methods for Indus-
trial Applications — Specifying and Programming the Steam Boiler Control,
volume 1165 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[AS96]

[BJRO7]

[Car99]

[CESS6]

[CGLY4]

[CW96]

[DACYS]

[DCY6]

[DHZ99]

[EMS5]

Luis F. A. Andrade and Amilcar Sernadas. Banking and Management In-
formation System Automation. In Proceedings of the 18th world congress of
the International Federation of Automatic Control (San Francisco, USA),
volume L, pages 113-136. Elsevier-Science, 1996.

Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling
Language User Guide. Addison-Wesley, 1997.

Paulo J. F. Carreira. Automatic Verification of OBLOG Specifications.
Master’s thesis (to be published), Faculdade de Ciéncias da Universidade de
Lisboa, Departamento de Informatica, 1700 Campo Grande - Lisboa, 1999.
E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification
of Finite State Concurrent Systems Using Temporal Logic Specifications.
volume 8(2) of ACM Transactions on Programming Languages and systems,
pages 244-263. 1986.

E.M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstrac-
tion. volume 16(5) of ACM Transactions on Programming Languages and
Systems, pages 834-871. 1994.

E. M. Clarke and J. M. Wing. Formal Methods: State of the Art and Future
Directions. volume 28(4es) of ACM Computing Surveys. December 1996.
Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property
Specification Patterns for Finite-state Verification. In Proceedings of the
2nd Workshop on Formal Methods in Software Practice, Clearwater Beach,
Florida, USA, March 1998.

Gregory Duval and Thierry Cattel. Specifying and Verifying the Steam
Boiler Problem with SPIN. In Jean-Raymond Abrial, Egon Béger, and Hans
Langmaack, editors, Formal Methods for Industrial Applications — Specifying
and Programming the Steam Boiler Control, volume 1165 of Lecture Notes
in Computer Science, pages 203-217. Springer-Verlag, 1996.

Matthew B. Dwyer, John Hatcliff, and Hongjun Zheng. Slicing Software for
Model Construction. In ACM SIGPLAN Partial Evaluation and Program
Manipulation. January 1999.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification, volume I.
Springer-Verlag, 1985.

[FGK196] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu,

[Gar89]

Laurent Mounier, and Mihaela Sighireanu. CADP (CESAR/ALDEBARAN
Development Package): A Protocol Validation and Verification Toolbox. In
Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Con-
ference on Computer-Aided Verification (New Brunswick, New Jersey, US-
A), volume 1102 of LNCS, pages 437-440. Springer-Verlag, August 1996.
Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T.
Vuong, editor, Proceedings of the 2nd International Conference on Formal
Description Techniques FORTE’89 (Vancouwver B.C., Canada), pages 147—
162. North-Holland, December 1989.

[HLN"90] David Harel, H. Lachover, A. Naamad, Amir Pnueli, M. Politi, R. Sherman,

[Hoa85]
[ISO88]

A. Shtul-Trauring, and M. Trakhtenbrot. STATEMATE: A Working Envi-
ronment for the Development of Complex Reactive Systems. volume 4 of
IEEE Transactions on Software Engineering, pages 403-414. 1990.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
ISO/IEC. LOTOS — A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour. International Standard 8807,
International Organization for Standardization — Information Processing
Systems — Open Systems Interconnection, Geneéve, September 1988.

[JTMMS98] Wil Janssen, Radu Mateescu, Sjouke Mauw, and Jan Springintveld. Verify-

[Kur90]

[Mil89]

[NV90]

[OBL99)

[QS82]

[SSs]

[VW86]

[WS96]

ing Business Processes using SPIN. In Proceedings of the 4th International
SPIN Workshop (Paris, France), 1998.

Robert P. Kurshan. Analysis of Discrete Event Coordination. In W. P.
de Rover J. W. de Bakker and G. Rozenberg, editors, Stepwise Refinemen-
t of Distributed Systems: Models, Formalisms, Correctness, volume 430 of
Lecture Notes in Computer Science, pages 414-453, Berlin, 1990. Springer-
Verlag.

Robin Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989.

R. De Nicola and F. W. Vaandrager. Action versus State Based Logics
for Transition Systems. volume 469 of Lecture Notes in Computer Science,
pages 407-419. Springer-Verlag, 1990.

OBLOG. The OBLOG Technical Information. Technical report, OBLOG
Software S.A., www.oblog.com/tech, 1999.

J. P. Queille and J. Sifakis. Specification and Verification of Concurrent
Systems in CAESAR. In M. Dezani-Ciancaglini and U. Montanari, editors,
International Symposium on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337-351, Berlin, 1982. Springer-Verlag.

D. A. Schmidt and B. Steffen. Data-Flow Analysis as Model-Checking of
Abstract Interpretations. In G. Levi, editor, Proceedings of the 5th Static
Analysis Symposium, volume 1165 of Lecture Notes in Computer Science,
Pisa, Italy, September 1998. Springer-Verlag.

Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach to
Automatic Program Verification. In Logic in Computer Science. IEEE Com-
puter Society Press, page 332. 1986.

Andreas Willig and Ina Schieferdecker. Specifying and Verifying the Steam
Boiler Control System with Time Extended LOTOS. In Jean-Raymond
Abrial, Egon Boger, and Hans Langmaack, editors, Formal Methods for In-
dustrial Applications — Specifying and Programming the Stem Boiler Con-
trol, volume 1165 of Lecture Notes in Computer Science, pages 473-492.
Springer-Verlag, 1996.

