
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

Software ENgineering

Formal Analysis of a Fair Payment Protocol

J.G. Cederquist, M.T. Dashti

REPORT SEN-R0410 JULY 2004

SEN
Software Engineering



CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X



Formal Analysis of a Fair Payment Protocol

ABSTRACT
We formally specify a payment protocol. This protocol is intended for fair exchange of time-
sensitive data. Here the µCRL language is used to formalize the protocol. Fair exchange
properties are expressed in the regular alternation-free µ-calculus. These properties are then
verified using the finite state model checker from the CADP toolset. Proving fairness without
resilient communication channels is impossible. We use the Dolev-Yao intruder, but since the
conventional Dolev-Yao intruder violates this assumption, it is forced to comply to the resilient
communication channel assumption.

2000 Mathematics Subject Classification:  68Q60; 68M12; 68N30
Keywords and Phrases: Fair exchange protocols; Model checking; Dolev-Yao intruder
Note: This work was carried out under project ACCOUNT: Accountability in Electronic Commerce Protocols. The first
author is supported by an ERCIM fellowship.



Formal Analysis of a Fair Payment Protocol

Jan Cederquist and Muhammad Torabi Dashti

CWI, Amsterdam, The Netherlands
{Cederqui,Dashti}@cwi.nl

Abstract

We formally specify a payment protocol described in [14]. This pro-
tocol is intended for fair exchange of time-sensitive data. Here the µCRL
language is used to formalize the protocol. Fair exchange properties are
expressed in the regular alternation-free µ-calculus. These properties are
then verified using the finite state model checker from the CADP toolset.
Proving fairness without resilient communication channels is impossible.
We use the Dolev-Yao intruder, but since the conventional Dolev-Yao in-
truder violates this assumption, it is forced to comply to the resilient
communication channel assumption.

1 Introduction

A fair exchange protocol aims at exchanging items in a fair manner. Informally,
fair means that all involved parties receive a desired item in exchange for their
own, or neither of them does so. It has been shown that fair exchange is
impossible without a trusted third party [10]. Vogt et al. describe a protocol
for fair exchange of money for an item using customer’s smart card as a trusted
party [14]. This protocol considers time-sensitive items and is adapted for
wireless and mobile applications which lack a reliable communication channel.
Here a version of that protocol is considered. We describe, in contrast to [14],
the exact contents of all messages. The protocol is formally specified and the
fairness properties are verified using a finite-state model checker.

In comparison to other security issues, such as secrecy and authenticity,
fairness has not been studied formally so intensively. There are however some
notable exceptions. Shmatikov and Mitchell [13] use the finite state model
checker Murϕ to analyze fair exchange and contract signing protocols. They
use an external intruder, based on the Dolev-Yao intruder, that collaborates
with one of the participants to model the malicious participant. Liveness can
in general not be expressed in the Murϕ language. Most fairness properties
can however be expressed as safety properties. But this is not the case with
termination (of protocol). Termination thus relies on other arguments than a
verification using Murϕ. Kremer and Raskin [8] use a game based approach for
verifying non-repudiation and fair exchange. They use alternating transition
systems (ATS) to model protocols and alternating temporal logic (ATL) to
express the requirements. The method is automated using the model checker

1



Mocha. They have no explicit intruder. Instead different versions of players are
considered; honest and arbitrary. ATL then offers very neat ways of expressing
all desired requirements, including liveness under fairness constraints. In ATS
all players follow predetermined finite sequences of steps, including intruders
(arbitrary versions of players). However due to complexity, we believe that, it
would be impractical to describe an intruder (powerful enough) for the protocol
investigated in our work in such a way. In [12] a non-repudiation protocol is
modeled using CSP, and proofs are generated by hand. Belief logic is used to
formalize a protocol in [15] and it is discussed what may be needed for the
verification of non-repudiation protocols. In [2] the theorem prover Isabelle
is used to model a non-repudiation protocol by an inductive definition and to
prove some desired properties.

In our work we formally specify a payment protocol in the process algebraic
language µCRL [7]. The idea of this protocol comes from [14], but there are
some differences (see section 6). Fairness properties for this protocol are formu-
lated in the regular alternation-free µ-calculus [9] and verified using the model
checker EVALUATOR 3.0 [9] from the CADP tool set [6].

Our formalization in µCRL contains a Dolev-Yao intruder [5]. The intruder
is not separated from malicious participants. Instead, we consider different
versions of participants, honest and malicious, where a malicious participant
is an intruder that has access to the participant’s private key. Some fairness
properties are liveness properties and to prove liveness properties resilient com-
munication channels are needed. Since the Dolev-Yao intruder has complete
control over network, some cooperation from the intruder is needed when ver-
ifying liveness properties (i.e. sent messages should eventually be delivered).
This cooperation is obtained using fairness constraints on the labelled transi-
tion system generated from the protocol specification in µCRL. We have an
intruder that can synthesize new messages from its knowledge, without being
forced to do so. Moreover using fairness constraints, it is forced to comply to
the resilient communication channel assumption.

One of the major problems during this work was state space explosion.
Several techniques have been used to reduce the spaces and avoid generating
the whole state spaces when possible (see section 4.8).

The rest of the paper is organized as follows. In section 2 we give an overview
of properties for fair exchange protocols. The fair exchange protocol we inves-
tigate is described in section 3. In section 4 the formal analysis is described.
Here the intruder model is presented and all properties verified using the model
checker are given. Included in section 4 is also a brief description of some opti-
mization techniques used to generate the state spaces. In section 5 the protocol
is described in a practical context. The fairness properties for this “more prac-
tical” setting follow from fairness for the protocol described in section 3. Some
concluding remarks are given in section 6. Finally in the appendices A and B,
our formalization of the protocol in µCRL is presented.

2



2 Fair Exchange Protocols

We assume two parties A and B. When the protocol starts, both parties have
an item m and a description h of what they would like to have in exchange
for m. The notation mA and mB is used for A’s and B’s item, respectively, and
h(mB) and h(mA) for the description of the item that A and B, respectively,
would like to have in exchange for their own.

According to Asokan [1], a fair exchange protocol is a protocol satisfying
effectiveness, fairness, timeliness and non-repudiability. Effectiveness means
that if both parties behave according to the protocol and none of them want to
abort during the protocol round (mA satisfies h(mA) and mB satisfies h(mB)),
then the protocol will terminate in a state where A has mB and B has mA.
An exchange protocol is called fair if, when it has terminated, either A has
received B’s item and B has received A’s item, or none of the parties have lost
their items. Timeliness means that the protocol will terminate for all parties
(that behave according to the protocol) and after the termination point the
degree of achieved fairness will not change. Non-repudiability is, in general,
not considered as a primary requirement for fair exchange protocols, and it is
omitted here.

Asokan [1] distinguishes between strong and weak fairness. Strong fairness
is the fairness described above. Weak fairness means that either strong fairness
is achieved, or it is possible for a participant to prove to an outside party that
an unfair situation has occurred. Pagnia et al. [11] extend Asokan’s definitions
by considering the parties’ willingness to cooperate and compensation for suf-
fered disadvantage. A protocol may thus guarantee different levels of fairness,
with or without third party intervention, providing resolution procedures versus
providing proofs to be used in external disputes.

3 Protocol Description

Here we describe the protocol which is to be analyzed in section 4. The protocol
aims at fair exchange of time-sensitive data for some amount of money, between
a customer (C) and a vendor (V ). The exchange uses a bank (B) as a trusted
online payment system and a trusted smartcard (S) attached to C. S is a
tamper-proof hardware. The identity of S is however not necessarily known
by V . Moreover, C is assumed to have a secure communication channel with S.
When the protocol starts, V has an item m and a description h(m) of m is
known publicly. C wants to buy m for the amount a. Note that the item m
is assumed to be confidential and should not be revealed for untrusted parties
unless they pay for it. Below we describe the intended scenarios of the protocol,
when all participants are honest.

In the protocol description, pay(C, V, a) means that C shall pay the amount a
to V , (m)X is the notation for the message m signed by X (using X’s private
key), and {m}X is the notation for m encrypted for X (using X’s public key).
It is assumed that m comes along with (m)X and can be extracted by anyone.
For an encrypted message {m}X only X can extract m. A publicly known hash

3



function h is used for describing items and payments.
The main scenario (when none of the participants want to abort the proto-

col) is described as follows:

1. C → S : pay(C, V, a), h(m)
S : initiate(n)

[2a. S → C : (h(m), t, n, v, a)S ]
2b. S → V : h(m), (pay(C, V, a), n)S

3. V → B : (pay(C, V, a), n)S

B : block(n)
4. B → V : (T, h((pay(C, V, a), n)S))B

V : commit(n)
5. V → S : {(m, n)v}S

6. S → C : T, n
7. C → S : T, n

S : receive(n)
8. S → C : m
9. S → B : (n, T)S

B : transfer(n), terminate(n).

S

4

3

92a,6,8

1,7

5

2b

VC

B

1. C sends a query to S for buying item m from V for amount a. On
this request, S generates a fresh nonce. In this way, a protocol session
possesses a unique nonce. Implicitly, S also notes the time t.

2a. Implicitly, S sends the nonce associated to the request and time to C.
Later on, in step 6, when S asks C if the item is still interesting, it just
needs to send the nonce. This simplifies the formalization. The time
information is signed by S to prevent C from changing it.

2b. S signs and forwards the request together with the nonce to V . Since S
is trusted, this message will be sent only upon a request from C.

3. If V wants to sell m to C for price a, it forwards the request to B. B
notices the signature of S, checks whether the nonce n is fresh and that C
has the amount a in its account. If this is the case, the money is blocked
on C’s account.

4. B notifies V that a transfer of amount a from C’s account to V ’s account
is possible. After this step V knows S is trusted.

5. V informs S that C can buy m for the amount a. Since this message could
be received in parts and then assembled, the item is signed to protect
integrity of transferred data.

6. S validates the received item by comparing it with h(m) and asks if C is
still interested in the item.

7. If C still wants the item, it answers T. The possibility to reject items is
described in another scenario below.

4



8. S sends the item m to C.

9. S asks B to transfer the money, that was blocked on C’s account, to V ’s
account. On this request B performs the transaction.

(The actions initiate(n), block(n), receive(n), transfer(n) and terminate(n) are
explained with more details in section 4.4, and so are the actions unblock(n)
and cancel(n) below.)

There are some alternative scenarios of the protocol. When B receives a
payment request, the nonce n may not be fresh or C may not have the required
amount of money on its account:

41. B → V : (F, h((pay(C, V, a), n)S))B

51. V → S : (n)V

61. S → C : F, n
71. S → B : (n, F)S

B : unblock(n), terminate(n).

41. B notifies V that the transaction is not possible.

51. V informs S that C cannot buy m for the amount a.

61. S informs C that it cannot buy m for the amount a.

71. S asks B to unblock money at C’s account. If the money was blocked
earlier, with the same nonce, B unblocks it.

If V does not want to sell m to C for the amount a, step 51 follows immediately
after step 2b.

After step 2 and before step 6 (61), C has the possibility to cancel the
payment. This prevents V from blocking C’s money without sending the item
to S:

C : cancel(n)
62. C → S : n
72. S → B : (n, F)S

82. S → V : (F, n)S

B : unblock(n), terminate(n).

S erases the session information after sending unblock (or transfer) commands
to B, and does not consider any message with a nonce from completed sessions.
In our model, messages do not contain the intended receiver’s name, so dif-
ferent patterns are used to indicate different recipients (i.e.B or V above) and
preventing type flaw attacks by intruder.

In exchange of items whose value may change during time, the protocol
provides a possibility for C to reject items in case of (intentional) delay in
delivery. So, C can answer F after step 6:

73. C → S : F, n
83. S → B : (n, F)S

B : unblock(n), terminate(n).

5



After step 2b, S can perform a timeout :

S : timeout
34. S → C : F, n
44. S → V : (F, n)S

54. S → B : (n, F)S

B : unblock(n), terminate(n).

The timeout forces a time limit on the steps 2b–7, it prevents in particular C
from waiting arbitrarily before answering in step 7. Concerning timeout, our
description is non-deterministic. But it can also be assumed that S reads the
start time t, that was sent to C in step 2a, and that it has a limit ∆t either
hard coded in S or provided by V . If the current time is greater than t + ∆t,
it generates a timeout.

4 Formal Analysis

The formalization of the protocol described in section 3 is carried out in µCRL [7].
The µCRL toolset includes an automatic state space (labelled transition sys-
tems) generator and symbolic state space reduction tools. The properties ef-
fectiveness, timeliness and fairness are expressed in the regular alternation-free
µ-calculus [9]. The model checker EVALUATOR 3.0 [9] from the CADP tool
set [6] is then used to verify these properties (the formulas 1 to 12, in the
sections 4.4 to 4.7).

For fair exchange protocols, beside protection from external intruders, the
participants need to be protected from each other. In our formal model(s), we
have three cases: (i) both C and V behave according to the protocol, (ii) C is
malicious (C is the attacker) and (iii) V is malicious (V is the attacker). In
the cases (ii) and (iii) all messages go via the attacker, with exception of the
messages between C and S, which are sent over a secure link. When verifying
effectiveness, case (i) is considered. All other properties are verified for the
cases (ii) and (iii). A formalization of the protocol, in case (ii), in the process
algebraic language µCRL is given in appendix A.

4.1 The µCRL specification language

Here we briefly describe the symbols used in the formalization below. For a
complete description of the syntax and semantics for µCRL we refer to [7].

The symbols . and + are used for the sequential and alternative composi-
tion operator, respectively. The sum and product operators

∑
d∈D P (d) and∏

d∈D P (d) behave like P (d1) + P (d2) + · · · and P (d1).P (d2). · · · , respectively.
The process expression if b then p else q, where b is a term of sort bool and,
p and q are processes, behaves like p if b is true, and like q if b is false. Finally,
the constant δ expresses that, from now on, no action can be performed.

The notations send(x, m, y) and recv(x, m, y) are used for the actions “X
sends message m to Y ” and “Y receives message m from X”, respectively.
In our model, send and recv actions are synchronized, i.e. X can only per-
form send(x, m, y) if Y at the same time performs recv(x, m, y) and vice versa.

6



This synchronization point is denoted com(x, m, y) (in section 3, the notation
X → Y : m was used for that).

4.2 Regular Alternation-free µ-calculus

The regular alternation-free µ-calculus is used here to formulate properties of
(states in) labelled transition systems (see the sections 4.4–4.7). It is a fragment
of µ-calculus that can be efficiently checked. Here we just briefly describe what
is needed for expressing the fairness properties of the protocol we investigate.
For a complete description of the syntax and semantics we refer to [9]. The
regular alternation-free µ-calculus is built up from three types of formulas:
action formulas, regular formulas and state formulas. We use ’.’, ’∨’ and ’∗’ for
concatenation, choice and transitive-reflexive closure, respectively, for regular
formulas. F and T are used in both action formulas and state formulas. In
action formulas they represent no action and any action, respectively. The
meaning of F and T in state formulas are the empty set and the entire state
space, respectively. The operators 〈· · · 〉 and [· · · ] have their usual meaning (�
and � in modal logics). Finally, µ is the minimal fixed point operator.

4.3 Intruder Models

We consider the Dolev-Yao intruder [5]. It can remember all messages that have
been transmitted over network. It can decrypt and sign messages, if it knows
the corresponding key. It can compose new messages from its knowledge. It
can also remove or delay messages in favour of others being communicated.
Moreover, in cases where an agent does not know the identity of another agent
it communicates with (for instance, V does not know the identity of S), the
intruder can play the role of the second agent.

Below we define two intruder models in µCRL, I and I ′. Both of them are
equivalent to the Dolev-Yao intruder, but they behave differently under fairness
constraints. I is used when verifying safety properties and I ′ when verifying
liveness properties. The reason for using both of them is that I is not suitable
for liveness properties, and I ′ is expensive to use when generating state spaces
(see section 4.8).

The intruder I acts as customer (or vendor), intruder and network. All
messages (x) are sent to I explicitly. I decomposes (decomp) the messages and
adds the pieces to its knowledge (X). I then uses its knowledge to synthesize
(synth) new messages. In general, how well the decomposition and the synthesis
work depend on what private keys the intruder knows (abilities to sign and
decrypt messages), decomp and synth are thus parameterized over known keys.

7



For efficiency reasons the union
⋃

also depend on known private keys.

I (X) = (
∑

p∈Player ,x∈Message

recv(p, x, i).I (X
⋃

i decompi(x)) +
if synth i(x, X)
then send(i, x, p).I (X)
else δ ) +

(
∑

m∈Item

if synth i(m, X)
then got−hold−of (m).I (X)
else δ )

In order to prove liveness properties, resilient communication channels1 are
assumed. In fact, without this assumption fair exchange is not possible, be-
cause then the attacker can simply choose to never send the item to one of the
participants. In the presence of an intruder, resilient communication channels
are obtained by imposing fairness constraints2 on the labelled transition sys-
tem generated from the protocol specification. These fairness constraints are
expressed directly in regular µ-calculus formulas (see property 7 in section 4.6).
The use of fairness constraints makes the model checker “skip circuits” and,
in particular, it eventually forces the intruder to try to synthesize and send
messages whenever there is a recipient. Some amount of cooperation from the
intruder is usually needed in order to prove liveness properties. But, the fact
that the intruder I does not forget anything and its abilities to construct mes-
sages itself together with fairness constraints can make “too many” liveness
properties true. In fact, an erroneous protocol that does not terminate without
intruder, may terminate with the intruder I and fairness constraints.

The second intruder I ′ can synthesize new messages from its knowledge,
without being forced to do so. Moreover using fairness constraints, it is forced to
comply to the resilient communication channel assumption. It is parameterized
over a set of “resilient links” and all messages sent over these links should
eventually be delivered. In our case the resilient link is the link between S
and B. The corresponding messages are represented by the set Z. As I, I ′

gathers a set X of knowledge by intercepting all communications. But, it can
explicitly forget pieces from this knowledge. The intruder uses a separate buffer
(sorted list Y ) of messages transmitted over the resilient links. When fairness
constraints are used, the intruder is forced to eventually send all messages from
this buffer. The resilient channel assumption will thus be preserved. Since
I ′ can forget, it is not forced to generate new messages. However, this does
not restrict the intruder’s power in general, as it has the choice of keeping its

1All sent messages will eventually be delivered.
2We are using two notions of fairness; fairness of a protocol and fairness constraints of a

labelled transition system. The second one is used to describe “fair” execution traces. In our
case, a trace is fair when no possibilities are excluded forever. Then only fair execution traces
are considered when proving the desired (liveness) property. To avoid confusion, we refer to
these two notions as “fairness” and “fairness constraints”.

8



knowledge as well.

I ′(X, Y ) = (
∑

p∈Player ,x∈Message

recv(p, x, i).
if x ∈ Z
then I ′(decompi(x)

⋃
i X, insert(x, Y ))

else I ′(decompi(x)
⋃

i X, Y ) ) +
(

∑
x∈Message

if x ∈ X
then I ′(X \ {x}, Y )
else δ ) +

(
∑

x∈Message,p∈Player

if x ∈ Y ∨ synth i(x, X)
then send(i, x, p).I ′(X, remove(x, Y ))
else δ )

Table 1 summarizes the discussion above.

Intruder Violates resilient Regarding liveness Regarding safety
model network assumption? properties properties

Dolev-Yao (D-Y) Yes Sound, not complete Equiv. to D-Y
I ′ No Sound and complete Equiv. to D-Y
I No Complete, not sound Equiv. to D-Y

Table 1: Intruders Under Fairness Constraints

4.4 Abstract Actions

For termination, the “abstract” action terminate(n) in B (where n is a nonce)
is used, instead of actual termination points for the users (C and V ). This action
is used because it is convenient to abstract away from messages to the users
saying that a protocol round is terminated. This abstraction is safe since, if
such messages had been used, the resilient communication channel assumption
would have guaranteed their delivery. Thus terminate(n) implies that the
users terminate. Also note, the protocol may continue after terminate(n) with
a another protocol round, using another (fresh) nonce.

The CADP toolset [6] that we use to analyze the labelled transition sys-
tem generated from a µCRL specification does not allow variables in action
parameters, in regular µ-calculus formulas. So, properties containing variables
should actually be checked for each combination of constants. To avoid this,
the protocol is extended with abstract actions (initiate(n), block(n), receive(n),
transfer(n),. . . ) that can be used instead of actions containing more variables.
In fact, each protocol session is associated to a nonce, so abstract actions (which
only contain nonces) are enough for expressing most interesting properties of
the protocol. Besides, they highlight implicit steps in the protocol and render
more readable properties. However, the meaning of some of these abstract ac-
tions need to be uniquely defined. We start with block(n). Without loss of

9



generality we can assume that block(n) happens at the same time (or imme-
diately after) B receives (pay(C, V, a), n)S . So, block(n) can be defined as the
amount a is blocked (for nonce n). The fact that a indeed is the correct amount
(the amount C is willing to pay) follows from

[T∗.com(s, (h(m), (pay(C, V, a1), n)S), i).
T∗.com(i, (pay(C, V, a2), n)S , b)]F,

(1)

where a1 and a2 are different amounts, and i is either c or v, depending on who
is malicious. We define transfer(n) and unblock(n) to mean that the amount,
which was blocked in block(n), is transfered and unblocked, respectively. Now
we turn to receive(n). It can be assumed that receive(n) happens at the same
time as S sends an item m to C. That this item is the correct item (the item
C ordered) follows from

[T∗.com(c, (pay(C, V, a), h(m1)), s).initiate(n).
T∗.receive(n).com(s, m2, c)]F,

(2)

where m1 and m2 are different items.
A malicious customer could possibly get hold of an item m by other means

than from S in action com(s, m, c). To show that this is not the case, we verify

[(¬com(s, m, c))∗.got−hold−of (m)]F, (3)

where got−hold−of (m) is an abstract action that occur if the malicious customer
manages to synthesize the item m from gained knowledge.

4.5 Effectiveness

For effectiveness all participants are assumed to be honest and none of them
want to abort the protocol. First, termination is inevitable

[T∗.initiate(n)]µX(〈T〉T ∧ [¬terminate(n)]X), (4)

for an arbitrary nonce n. Second, if S does not timeout, V does not say that
C cannot buy the item, C does not answer F when S asks if the item is still
valuable, and C does not cancel the payment, then the money will be transfered
to V upon termination:

[(¬(timeout ∨ com(v, (n)v, s) ∨ com(c, (F, n), s) ∨ cancel(n)∨
transfer(n)))∗.terminate(n)]F.

(5)

Under the same conditions, the item will also be received:

[(¬(timeout ∨ com(v, (n)v, s) ∨ com(c, (F, n), s) ∨ cancel(n)∨
receive(n)))∗.terminate(n)]F.

(6)

10



4.6 Timeliness

For termination we verify that each fair trace eventually reaches terminate(n)3:

[T∗.initiate(n).(¬terminate(n))∗]〈T∗.terminate(n)〉T. (7)

Also, the degree of fairness does not change after termination:

[T∗.terminate(n).T∗.
(receive(n) ∨ block(n) ∨ unblock(n) ∨ transfer(n))]F.

(8)

4.7 Fairness4

For the properties that guarantee fairness it is important that the protocol
terminates, which is part of timeliness, section 4.6.

Here we split up the notion of fairness (introduced in section 2) into fairness
for C and V individually. We say that the protocol is fair for C if, whenever C
pays for an item, C will receive it (V potentially being malicious). Fairness for
V is defined correspondingly. Fairness for C is thus formalized as

[(¬receive(n))∗.transfer(n).(¬receive(n))∗.terminate(n)]F. (9)

From C’s point of view it is also important that if money for an item is blocked
and C does not receive the item, the block will be removed. The following
property may thus also be considered as fairness for C:

[T∗.block(n).(¬(receive(n) ∨ unblock(n)))∗.terminate(n)]F. (10)

Fairness for V means that if an item (corresponding to the nonce n) is
received, money will be transfered:

[(¬transfer(n))∗.receive(n).(¬transfer(n))∗.terminate(n)]F. (11)

From V ’s point of view it is also important that the protocol terminates even
if C does not cancel or respond when S asks if the item is still valuable:

[T∗.commit(n)]
〈(¬(com(c, (T, n), s) ∨ com(c, (F, n), s) ∨ cancel(n)))∗.
terminate(n)〉T.

(12)

4.8 Model Checking Details

One of the major obstacles during this work was state space explosion. The
case when the customer is malicious turned out to be most difficult to generate.
Our experiments show that this is mainly due to different knowledge of the
intruder, gathered during different execution traces. A common abstraction
technique in such situations is to make the intruder’s knowledge more uniform.

3Whenever terminate(n) has not occurred, there is a path leading to terminate(n)
4The notion of fairness we are proving corresponds to F5 in the hierarchy of fairness guar-

antees described in [11].

11



We do that explicitly by, at the end of a protocol round, giving the intruder
information about traces that were not taken (see appendix A, reveal(n)).
More traces will now end up in same states, with a smaller state space as result.
This extra information for the intruder should be chosen carefully though to
avoid “false attacks”. For safety properties this technique is sound, since the
intruder just becomes more powerful. For liveness properties however, it is not
sound. This technique may make “too many” liveness properties true. When
assuming fairness constraints, an intruder with more knowledge provides more
possibilities to reach a state. Instead, when generating the state space for
proving liveness properties, we explicitly put a δ (deadlock) immediately after
the action we want always to be reached. In this way, large parts of the state
space will never be generated. In addition to these two methods, all actions
except for the ones used in the properties are “hidden”5 and symbolic reduction
techniques from the µCRL toolset (see [3] for a description of these techniques)
are applied to reduce the state spaces.

Using the techniques described above we could generate the state spaces
and prove the safety properties, with 3 nonces (up to 3 concurrent protocol
sessions) and 2 different items (also 1 nonce, 2 different items with 2 possible
different prices), in the malicious customer6 and malicious vendor cases. For
liveness properties (termination in case of malicious customer and vendor), it
was impossible to consider concurrent protocol sessions. The state spaces were
generated for 2 items and 2 prices.

5 Practical Considerations

It is usually not possible for a smart card to receive large chunks of data,
and store or process them. This limitation can cause practical problems when
the item is some large software, and the smart card should store and validate
it by comparing it with a preknown hash value. On the other hand, if the
item validation phase is removed, it is not clear how the vendor is prevented
from sending fake items. Here we suggest employing an offline Item Validation
Party (IVP) that guarantees correspondence between an encrypted item and
the description of the item. The protocol in section 3 is modified to

0a. C → V : h(m)
0b. V → C : {m}pk , (h(m), h({m}pk), pk)IVP .
1. C → S : pay(C, V, a), pk

[2a. S → C : (pk , t, n, v, a)S ]
2b. S → V : pk , (pay(C, V, a), n)S

3. V → B : (pay(C, V, a), n)S

5The properties 1, 2, 3 and 12 were verified using abstract actions instead of (but equivalent
to) the concrete ones written in the formulas. This has to do with the hiding of actions before
state space generation. In our µCRL specification all concrete actions have the same type,
so either all of them are hidden or none. So by using only abstract actions in a property, all
concrete actions can be hidden.

6For this case a distributed implementation of the µCRL toolset was used.

12



4. B → V : (T, h((pay(C, V, a), n)S))B

5. V → S : {(sk , n)V }S

6. S → C : T, n
7. C → S : T, n
8. S → C : sk
9. S → B : (n, T)S .

In this scenario it is assumed that V generates key pairs (pk,sk) for encryption
and decryption of items. There is also an IVP which validate encryptions offline.
When C asks for an item with description h(m), it will receive m encrypted
with pk along with a certificate from IVP . In this way, C can validate the item
before decrypting it. Then C buys the decryption key sk from V using the
protocol (in section 3), where the public key pk replaces the description of the
item h(m) (in message 1) and S checks that sk and pk match.

Assuming perfect cryptography and that the key pairs (pk ,sk) are used
only once, makes it safe to abstract away from the two initial messages 0a and
0b. Consequently, correctness of this protocol follows from correctness of the
protocol described in section 3, which was treated formally.

6 Conclusion

We have formally specified a payment protocol and verified its fairness proper-
ties. The idea of the protocol comes from [14], but there are some differences.
A version of the protocol that has an online payment system (bank) is consid-
ered. We implement revocable payments using block , unblock and transfer (as
described in section 3). To protect the vendor from the customer being passive,
the smartcard can timeout (without timeout property 12 does not hold). We
have also relaxed the assumptions on the communication links.

We have implemented an intruder that, for safety properties, is equivalent
to the Dolev-Yao intruder (which is the most powerful intruder, see [4]). Our
intruder is also suitable for verifying liveness properties, since it does not violate
the resilient communication channel assumption under fairness constraints. It
can be used in general purpose specification languages like µCRL.

One of the major obstacles during this work was state space explosion.
Different reduction techniques were adopted when generating the state spaces
for safety and liveness.

Model checking (for finite state analysis) requires a finite state space. So,
only a finite number of concurrent protocol sessions can be verified. In general,
after a finite analysis, nothing can be claimed about the security of a protocol for
certain. However, although model checking can not be used to prove absolute
security of a protocol in general, our case study confirms that it is helpful in
finding flaws and can easily be utilized in a trial-and-error specification phase.

Acknowledgment

We are grateful to Wan Fokkink, Jaco van de Pol and Miguel Valero for dis-
cussions and comments on earlier versions of this report. We would also like to
thank Stefan Blom for help with cluster machines.

13



References

[1] N. Asokan. Fairness in electronic commerce. PhD thesis, University of
Waterloo, 1998.

[2] G. Bella and L. C. Paulson. Mechanical proofs about a non-repudiation
protocol. In R. J. Boulton and P. B. Jackson, editors, Theorem Proving
in Higher Order Logics, 14th International Conference, TPHOLs 2001,
volume 2152 of LNCS, pages 91–104. Springer-Verlag, September 2001.

[3] S. Blom, W. Fokkink, J. F. Groote, I van Langevelde, B. Lisser, and
J. van de Pol. µCRL: A toolset for analysing algebraic specifications.
In Proceedings of the 13th International Conference on Computer Aided
Verification, volume 2102 of LNCS, pages 250–254. Springer-Verlag, 2001.

[4] Iliano Cervesato. The Dolev-Yao Intruder is the Most Powerful Attacker. In
J. Halpern, editor, 16th Annual Symposium on Logic in Computer Science
— LICS’01, Boston, MA, 16–19 June 2001. IEEE Computer Society Press.

[5] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29(2):198–208, March 1983.

[6] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP: A protocol validation and verification toolbox. In
R. Alur and T. A. Henzinger, editors, Proceedings of the 8th Conference
on Computer-Aided Verification, volume 1102 of LNCS, pages 437–440.
Springer-Verlag, 1996.

[7] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In A. Ponse,
C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating
Processes ’94, Workshops in Computing Series, pages 26–62. SV, 1995.

[8] S. Kremer and J. Raskin. A game-based verification of non-repudiation
and fair exchange protocols. In Proceedings of the 12th International Con-
ference on Concurrency Theory, volume 2154 of LNCS, pages 551–565.
Springer-Verlag, 2001.

[9] R. Mateescu. Efficient diagnostic generation for boolean equation systems.
In Proceedings of 6th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems TACAS’2000, volume 1785
of LNCS, pages 251–265. Springer-Verlag, March 2000.

[10] H. Pagnia and F. C. Gärtner. On the impossibility of fair exchange without
a trused third party. Technical Report TUD-BS-1999-02, Department of
Computer Science, Darmstadt University of Technology, 1999.

[11] H. Pagnia, H. Vogt, and F. C. Gärtner. Fair exchange. The Computer
Journal, 46(1):55–7, 2003.

[12] S. Schneider. Formal analysis of a non-repudiation protocol. In Proceedings
of The 11th Computer Security Foundations Workshop, pages 54–65. IEEE
Computer Society Press, 1998.

14



[13] V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract
signing protocols. Theor. Comput. Sci., 283(2):419–450, 2002.

[14] H. Vogt, H. Pagnia, and F. C. Gärtner. Using smart cards for fair exchange.
In Electronic Commerce – WELCOM 2001, volume 2232 of LNCS, pages
101–113. Springer-Verlag, 2001.

[15] J. Zhou and D. Gollmann. Towards verification of non-repudiation proto-
cols. In International Refinement Workshop and Formal Methods Pacific
’98: Proceedings of IRW/FMP ’98, Discrete Mathematics and Theoretical
Computer Science Series, pages 370–380. Springer-Verlag, 1998.

A Formal Description of the Participants

Here we present the µCRL formalization of the case when C act as customer,
network and intruder, and V is honest. The code for C is presented in section 4.3
as I and I ′. Note that, in B and V , all messages are sent to and received from C.
Also, reveal(n) (in S) is only used when generating the state space for safety
properties. When generating the state space for proving termination, a δ is put
after each terminate(n) in the corresponding linear process operator (see [3]).

S(i) =
if i = 3
then δ
else

∑
m∈Item,d∈Price,p∈{c,v}

( recv(c, (pay(c, p, d), h(m)), s).
initiate(ni).
send(s, (h(m), (pay(c, p, d), ni)s), c).
( recv(c, {(m, ni)p}s, s).

send(s, (T, ni), c).
( recv(c, (T, ni), s).receive(ni).send(s, m, c).send(s, (ni, T)s, c) +

recv(c, (F, ni), s).send(s, (ni, F)s, c) +
timeout .send(s, (F, ni), c).send(s, (ni, F)s, c) ) +

recv(c, (ni)p, s).send(s, (F, ni), c).send(s, (ni, F)s, c) +
timeout .send(s, (F, ni), c).send(s, (ni, F)s, c) +
recv(c, ni, s).send(s, (ni, F)s, c).send(s, (ni, F)s, c) ).reveal(n) ).S(i + 1)

where
reveal(n) = send(s, (n, T)s, c).∏

m∈Item send(s, {(m, n)v}s, c).
send(s, (n)v, c).∏

d∈Price send(s, (F, h((pay(c, v, d), n)s))b, c).∏
d∈Price send(s, (T, h((pay(c, v, d), n)s))b, c)

15



B(X, Y ) =
(

∑
d∈Price,n∈Nonce,pc,pv∈Player

recv(c, (pay(pc, pv, d), n)s, b).
if n ∈ X
then send(b, (F, h((pay(pc, pv, d), n)s))b, c).B(X, Y )
else block(n).send(b, (T, h((pay(pc, pv, d), n)s))b, c).B(X, Y ∪ {n}) ) +

(
∑

n∈Nonce

recv(c, (n, F)s, b).
if n ∈ Y
then unblock(n).terminate(n).B(X ∪ {n}, Y \ {n})
else terminate(n).B(X ∪ {n}, Y ) +
recv(c, (n, T)s, b).
if n ∈ Y
then transfer(n).terminate(n).B(X ∪ {n}, Y \ {n})
else terminate(n).B(X ∪ {n}, Y ) )

V = (
∑

m∈Item,d∈Price,n∈Nonce,ps,pc∈Player

recv(c, h(m, (pay(pc, v, d), n)ps
), v).

( send(v, (n)v, c) +
( send(v, (pay(pc, v, d), n)ps

, c).
( recv(c, (T, h(pay(pc, v, d), n)ps

)b, v).
( commit(n).send(v, {(m, n)v}ps

, c) +
recv(c, (F, n)ps

, v) ) +
recv(c, (F, h(pay(pc, v, d), n)ps

)b, v).
( send(v, (n)v, c) + recv(c, (F, n)ps

, v) ) ) ) ) ).V

B Formalization of the Protocol in µCRL

B.1 Data Type Definitions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Bool Data Type

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Bool

func T,F: -> Bool

map and,or: Bool # Bool -> Bool

not: Bool -> Bool

eq: Bool # Bool -> Bool

if: Bool # Bool # Bool -> Bool

var x,x’: Bool

rew and(T,T)=T

and(F,x)=F

and(x,F)=F

or(T,x)=T

or(x,T)=T

or(F,F)=F

not(F)=T

not(T)=F

eq(x,x)=T

eq(T,F)=F

eq(F,T)=F

16



if(T,x,x’)=x

if(F,x,x’)=x’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Natural Number Data Type

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Nat

func zero: -> Nat

succ: Nat -> Nat

map eq: Nat # Nat -> Bool

leq: Nat # Nat -> Bool

var m,n: Nat

rew eq(zero,zero) = T

eq(zero,succ(n)) = F

eq(succ(n),zero) = F

eq(succ(n),succ(m)) = eq(n,m)

leq(zero,m)=T

leq(succ(m),zero)=F

leq(succ(m),succ(n))=leq(m,n)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Item Data Type.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Item

func d1,d2: -> Item

map eq: Item # Item -> Bool

leq: Item # Item -> Bool

var d: Item

rew eq(d,d)=T

eq(d2,d1)=F

eq(d1,d2)=F

leq(d,d)=T

leq(d1,d)=T

leq(d2,d1)=F

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Price Data Type

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Price

func c1,c2 :-> Price

map eq: Price # Price -> Bool

leq: Price # Price -> Bool

var pd: Price

rew eq(pd,pd)=T

eq(c1,c2)=F

eq(c2,c1)=F

leq(pd,pd)=T

leq(c1,pd)=T

leq(c2,c1)=F

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Player Data Type

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Player

func s,v,c,b :-> Player

map eq : Player # Player->Bool

leq: Player # Player->Bool

var p: Player

rew eq(p,p)=T

eq(s,v)=F eq(s,c)=F eq(s,b)=F

eq(v,s)=F eq(v,c)=F eq(v,b)=F

17



eq(c,s)=F eq(c,v)=F eq(c,b)=F

eq(b,s)=F eq(b,v)=F eq(b,c)=F

leq(p,p)=T

leq(b,c)=T leq(b,s)=T leq(b,v)=T

leq(c,b)=F leq(c,s)=T leq(c,v)=T

leq(s,b)=F leq(s,c)=F leq(s,v)=T

leq(v,b)=F leq(v,c)=F leq(v,s)=F

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Key Data Type

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Key

func key:Player->Key

map eq:Key#Key->Bool

leq:Key#Key->Bool

known:Player # Key->Bool

var x,y:Player

rew eq(key(x),key(y))=eq(x,y)

leq(key(x),key(y))=leq(x,y)

known(x,key(y))=eq(x,y)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Nonce Data Type

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Nonce

func nnc : Nat -> Nonce

map eq: Nonce # Nonce -> Bool

NonceGen : Nonce -> Nonce

if: Bool # Nonce # Nonce -> Nonce

leq: Nonce # Nonce -> Bool

var i,j : Nat

x,y: Nonce

rew eq(nnc(i),nnc(j))=eq(i,j)

NonceGen(nnc(i))=if(eq(i,succ(succ(succ(zero)))),

nnc(zero),

nnc(succ(i)))

if(T,x,y)=x

if(F,x,y)=y

leq(nnc(i),nnc(j))=leq(i,j)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Message Data Type

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Message

func bol:Bool-> Message

it:Item->Message

nonce:Nonce->Message

pay:Player#Player#Price->Message

pair:Message#Message->Message

hash:Message->Message

sign:Key#Message->Message

enc:Key#Message->Message

map eq:Message#Message->Bool

leq:Message#Message->Bool

var k1,k2:Key

m1,m2,m3,m4:Message

a,a’ : Bool

d,d’:Item

n,n’:Nonce

a1,a2,b1,b2:Player

18



pd1, pd2: Price

rew eq(m1,m1)=T

eq(bol(a), bol(a’))=eq(a,a’)

eq(it(d),it(d’))=eq(d,d’)

eq(nonce(n),nonce(n’))=eq(n,n’)

eq(pay(a1,b1,pd1),pay(a2,b2,pd2))=and(and(eq(a1,a2),eq(b1,b2)),eq(pd1,pd2))

eq(pair(m1,m2),pair(m3,m4))=and(eq(m1,m3),eq(m2,m4))

eq(hash(m1),hash(m2))=eq(m1,m2)

eq(sign(k1,m1),sign(k2,m2))=and(eq(k1,k2),eq(m1,m2))

eq(enc(k1,m1),enc(k2,m2))=and(eq(k1,k2),eq(m1,m2))

eq(bol(a), it(d))=F

eq(bol(a), nonce(n))=F

eq(bol(a), pay(a2,b2,pd2))=F

eq(bol(a), pair(m3,m4))=F

eq(bol(a), hash(m2))=F

eq(bol(a), sign(k2,m2))=F

eq(bol(a), enc(k2,m2))=F

eq(it(d), bol(a))=F

eq(it(d),nonce(n))=F

eq(it(d),pay(a2,b2,pd2))=F

eq(it(d),pair(m3,m4))=F

eq(it(d),hash(m2))=F

eq(it(d),sign(k2,m2))=F

eq(it(d),enc(k2,m2))=F

eq(nonce(n),bol(a))=F

eq(nonce(n),it(d’))=F

eq(nonce(n),pay(a2,b2,pd2))=F

eq(nonce(n),pair(m3,m4))=F

eq(nonce(n),hash(m2))=F

eq(nonce(n),sign(k2,m2))=F

eq(nonce(n),enc(k2,m2))=F

eq(pay(a1,b1,pd1),bol(a))=F

eq(pay(a1,b1,pd1),it(d’))=F

eq(pay(a1,b1,pd1),nonce(n))=F

eq(pay(a1,b1,pd1),pair(m3,m4))=F

eq(pay(a1,b1,pd1),hash(m2))=F

eq(pay(a1,b1,pd1),sign(k2,m2))=F

eq(pay(a1,b1,pd1),enc(k2,m2))=F

eq(pair(m1,m2),bol(a))=F

eq(pair(m1,m2),it(d’))=F

eq(pair(m1,m2),nonce(n))=F

eq(pair(m1,m2),pay(a2,b2,pd2))=F

eq(pair(m1,m2),hash(m3))=F

eq(pair(m1,m2),sign(k2,m3))=F

eq(pair(m1,m2),enc(k2,m3))=F

eq(hash(m1),bol(a))=F

eq(hash(m1),it(d’))=F

eq(hash(m1),nonce(n))=F

eq(hash(m1),pay(a2,b2,pd2))=F

eq(hash(m1),pair(m3,m4))=F

eq(hash(m1),sign(k2,m2))=F

eq(hash(m1),enc(k2,m2))=F

eq(sign(k1,m1),bol(a))=F

eq(sign(k1,m1),it(d’))=F

eq(sign(k1,m1),nonce(n))=F

eq(sign(k1,m1),pay(a2,b2,pd2))=F

eq(sign(k1,m1),pair(m3,m4))=F

19



eq(sign(k1,m1),hash(m2))=F

eq(sign(k1,m1),enc(k2,m2))=F

eq(enc(k1,m1),bol(a))=F

eq(enc(k1,m1),it(d’))=F

eq(enc(k1,m1),nonce(n))=F

eq(enc(k1,m1),pay(a2,b2,pd2))=F

eq(enc(k1,m1),pair(m3,m4))=F

eq(enc(k1,m1),hash(m2))=F

eq(enc(k1,m1),sign(k2,m2))=F

%definition of leq

leq(m1,m1)=T

leq(bol(a),bol(a’))=or(not(a),a’)

leq(it(d),it(d’))=leq(d,d’)

leq(nonce(n),nonce(n’))=leq(n,n’)

leq(pay(a1,b1,pd1),pay(a2,b2,pd2))=

if(eq(a1,a2),if(eq(b1,b2),leq(pd1,pd2),leq(b1,b2)),leq(a1,a2))

leq(pair(m1,m2),pair(m3,m4))=if(eq(m1,m3),leq(m2,m4),leq(m1,m3))

leq(hash(m1),hash(m2))=leq(m1,m2)

leq(enc(k1,m1),enc(k2,m2))=if(eq(k1,k2),leq(m1,m2),leq(k1,k2))

leq(sign(k1,m1),sign(k2,m2))=if(eq(k1,k2),leq(m1,m2),leq(k1,k2))

leq(bol(a), it(d))=T

leq(bol(a), nonce(n))=T

leq(bol(a), pay(a2,b2,pd2))=T

leq(bol(a), pair(m3,m4))=T

leq(bol(a), hash(m2))=T

leq(bol(a), sign(k2,m2))=T

leq(bol(a), enc(k2,m2))=T

leq(it(d), bol(a))=F

leq(it(d),nonce(n))=T

leq(it(d),pay(a2,b2,pd2))=T

leq(it(d),pair(m3,m4))=T

leq(it(d),hash(m2))=T

leq(it(d),sign(k2,m2))=T

leq(it(d),enc(k2,m2))=T

leq(nonce(n),bol(a))=F

leq(nonce(n),it(d’))=F

leq(nonce(n),pay(a2,b2,pd2))=T

leq(nonce(n),pair(m3,m4))=T

leq(nonce(n),hash(m2))=T

leq(nonce(n),sign(k2,m2))=T

leq(nonce(n),enc(k2,m2))=T

leq(pay(a1,b1,pd1),bol(a))=F

leq(pay(a1,b1,pd1),it(d’))=F

leq(pay(a1,b1,pd1),nonce(n))=F

leq(pay(a1,b1,pd1),pair(m3,m4))=T

leq(pay(a1,b1,pd1),hash(m2))=T

leq(pay(a1,b1,pd1),sign(k2,m2))=T

leq(pay(a1,b1,pd1),enc(k2,m2))=T

leq(pair(m1,m2),bol(a))=F

leq(pair(m1,m2),it(d’))=F

leq(pair(m1,m2),nonce(n))=F

leq(pair(m1,m2),pay(a2,b2,pd2))=F

leq(pair(m1,m2),hash(m3))=T

leq(pair(m1,m2),sign(k2,m3))=T

leq(pair(m1,m2),enc(k2,m3))=T

leq(hash(m1),bol(a))=F

leq(hash(m1),it(d’))=F

20



leq(hash(m1),nonce(n))=F

leq(hash(m1),pay(a2,b2,pd2))=F

leq(hash(m1),pair(m3,m4))=F

leq(hash(m1),sign(k2,m2))=T

leq(hash(m1),enc(k2,m2))=T

leq(sign(k1,m1),bol(a))=F

leq(sign(k1,m1),it(d’))=F

leq(sign(k1,m1),nonce(n))=F

leq(sign(k1,m1),pay(a2,b2,pd2))=F

leq(sign(k1,m1),pair(m3,m4))=F

leq(sign(k1,m1),hash(m2))=F

leq(sign(k1,m1),enc(k2,m2))=T

leq(enc(k1,m1),bol(a))=F

leq(enc(k1,m1),it(d’))=F

leq(enc(k1,m1),nonce(n))=F

leq(enc(k1,m1),pay(a2,b2,pd2))=F

leq(enc(k1,m1),pair(m3,m4))=F

leq(enc(k1,m1),hash(m2))=F

leq(enc(k1,m1),sign(k2,m2))=F

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Data Type for Knowledge of Intruder

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort PM

func emptyM:->PM

insert:Message#PM->PM

map in:Message#PM->Bool

synthadd:Player#Message#PM->PM

add:Message#PM->PM

rem:Message#PM->PM

union:Player#PM#PM->PM

if:Bool#PM#PM->PM

eq:PM#PM->Bool

var x,y:Message

ms,ms1,ms2:PM

U,V:PM

p: Player

rew eq(U,U)=T

eq(U,insert(x,U))=F

eq(emptyM,insert(x,U))=F

eq(insert(x,U),emptyM)=F

eq(insert(y,V),insert(x,U))=and(eq(x,y),eq(U,V))

if(T,U,V)=U

if(F,U,V)=V

in(x,emptyM)=F

in(x,insert(y,U))=or(eq(x,y),in(x,U))

% Messages are ordered in knowledge set.

add(x,emptyM)=insert(x,emptyM)

add(x,insert(y,U))=if(leq(x,y),

if(eq(x,y),insert(y,U),insert(x,insert(y,U))),

insert(y,add(x,U)))

rem(x,emptyM)=emptyM

rem(x,insert(y,U))=if(leq(x,y),if(eq(x,y),U,insert(y,U)),insert(y,rem(x,U)))

union(p,emptyM,V)=V

union(p,V,emptyM)=V

union(p,insert(x,U),V)=synthadd(p,x,union(p,U,V))

% A Message is added to knowledge set only if can not be synthesized.

synthadd(p,x,U)=if(synth(p,x,U),U,add(x,U))

21



% A Message is decomposed before being added to knowledge set.

map decomp:Player#Message->PM

var p,a,b’:Player

x:Bool

d:Item

n:Nonce

m,m’:Message

k:Key

pd1: Price

rew decomp(p,bol(x))=emptyM

decomp(p,it(d))=insert(it(d),emptyM)

decomp(p,nonce(n))=emptyM

decomp(p,pay(a,b’,pd1))=emptyM

decomp(p,pair(m,m’))=union(p,decomp(p,m),decomp(p,m’))

decomp(p,hash(m))=emptyM

decomp(p,sign(k,m))=synthadd(p,sign(k,m),decomp(p,m))

decomp(p,enc(k,m))=if(known(p,k),decomp(p,m),insert(enc(k,m),emptyM))

% Intruder can synthesize new messages from its knowledge set according

% to the following rules.

map synth:Player#Message#PM->Bool

var ms:PM

p,a,b’:Player

x:Bool

d:Item

n:Nonce

m,m’:Message

k:Key

pd1: Price

rew synth(p,bol(x),ms)=T

synth(p,it(d),ms)=or(in(it(d),ms),eq(p,v))

synth(p,nonce(n),ms)=leq(n,nnc(succ(succ(zero))))

synth(p,pay(a,b’,pd1),ms)=T

synth(p,pair(m,m’),ms)=and(synth(p,m,ms),synth(p,m’,ms))

synth(p,hash(m),ms)=if(or(eq(m,it(d2)),eq(m,it(d1))),

T,

synth(p,m,ms))

synth(p,sign(k,m),ms)=or(and(known(p,k),synth(p,m,ms)),in(sign(k,m),ms))

synth(p,enc(k,m),ms)=or(synth(p,m,ms),in(enc(k,m),ms))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Data Type for Knowledge of Bank

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Knowledge

func emptset :-> Knowledge

set: Nonce # Knowledge -> Knowledge

map add: Nonce # Knowledge -> Knowledge

rem: Nonce # Knowledge -> Knowledge

test: Nonce # Knowledge -> Bool

if: Bool # Knowledge # Knowledge -> Knowledge

eq: Knowledge # Knowledge -> Bool

var k, k’: Knowledge

a,a’: Nonce

rew add(a,set(a’,k))=if(leq(a,a’),

if(eq(a,a’),set(a,k),set(a,set(a’,k))),

set(a’,add(a,k)))

add(a,emptset)=set(a,emptset)

test(a, emptset)=F

test(a, set(a’,k))=if(leq(a,a’),eq(a,a’),test(a,k))

22



if(T, k, k’)=k

if(F, k, k’)=k’

eq(emptset,set(a,k))=F

eq(set(a,k),emptset)=F

eq(set(a,set(a’,k)),set(a’,set(a,k)))=T

eq(set(a,k),set(a’,k’))=and(eq(a,a’),eq(k,k’))

eq(k,k)=T

rem(a,set(a’,k))=if(eq(a,a’),k,set(a’,rem(a,k)))

rem(a,emptset)=emptset

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Declaration of Actions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

act send,recv,com:Player#Message#Player

timeout

% Abstract actions

initiate: Nonce

block: Nonce

commit: Nonce

cancel: Nonce

receive: Nonce

transfer: Nonce

unblock: Nonce

terminate: Nonce

got-hold-of: Item

% Synchronization point

comm send|recv=com

B.2 Honest Participants

In this section only µCRL code for players is presented. The data types are the
same as in section B.1.

proc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Customer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Customer=sum(d:Item,sum(pd:Price,

send(c,pair(pay(c,v,pd),hash(it(d))),s).

(

sum(n:Nonce,

(recv(s,pair(bol(T),nonce(n)),c).

(

send(c,pair(bol(T),nonce(n)),s).recv(s,it(d),c)

+

send(c,pair(bol(F),nonce(n)),s)

+

recv(s,pair(bol(F),nonce(n)),c)

)

)

+

recv(s,pair(bol(F),nonce(n)),c)

+

cancel(n).send(c,nonce(n),s)

)

))).Customer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23



% Smart Card

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Scard(n:Nonce)=delta<|eq(n,nnc(succ(succ(succ(zero)))))|>

(

sum(d:Item,sum(pd:Price,sum(p:Player,

(

recv(c,pair(pay(c,p,pd),hash(it(d))),s).

initiate(n).

send(s,pair(hash(it(d)),sign(key(s),pair(pay(c,p,pd),nonce(n)))),p).

(

(

recv(p,enc(key(s),sign(key(p),pair(it(d),nonce(n)))),s).

send(s,pair(bol(T),nonce(n)),c).

(

(

recv(c,pair(bol(T),nonce(n)),s).

receive(n).

send(s,it(d),c).

send(s,sign(key(s),pair(nonce(n),bol(T))),b)

)

+

(

recv(c,pair(bol(F),nonce(n)),s).

send(s,sign(key(s),pair(nonce(n),bol(F))),b)

)

+

timeout.

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),b)

)

)

+

(

recv(p,sign(key(p),nonce(n)),s).

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),b)

)

+

(

recv(c,nonce(n),s).

send(s,sign(key(s),pair(nonce(n),bol(F))),b).

send(s,sign(key(s),pair(bol(F),nonce(n))),p)

)

+

(

timeout.

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),b).

send(s,sign(key(s),pair(bol(F),nonce(n))),p)

)

)

)

))).Scard(NonceGen(n))

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Bank

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24



Bank(U:Knowledge,G:Knowledge)=

(sum(n:Nonce,sum(pc:Player,sum(pv:Player,sum(pd:Price,

(

recv(pv,sign(key(s),pair(pay(pc,pv,pd),nonce(n))),b).

(

(

send(b,sign(key(b),pair(bol(F),hash(sign(key(s),pair(pay(pc,pv,pd),nonce(n)))))),pv).

Bank(U,G)

)

<|test(n,G)|>

(

send(b,sign(key(b),pair(bol(T),hash(sign(key(s),pair(pay(pc,pv,pd),nonce(n)))))),pv).

block(n).

Bank(add(n,U),G)

)

)

)

))))

)

+

sum(n:Nonce,

recv(s,sign(key(s),pair(nonce(n),bol(F))),b).

(

unblock(n).terminate(n).Bank(rem(n,U),add(n,G))

<|test(n,U)|>

terminate(n).Bank(U,add(n,G))

)

+

recv(s,sign(key(s),pair(nonce(n),bol(T))),b).

(

transfer(n).terminate(n).Bank(rem(n,U),add(n,G))

<|test(n,U)|>

terminate(n).Bank(U,add(n,G))

)

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Vendor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Vendor=

sum(n:Nonce,sum(pd:Price,sum(d:Item,sum(ps:Player,sum(pc:Player,

(

recv(ps,pair(hash(it(d)),sign(key(ps),pair(pay(pc,v,pd),nonce(n)))),v).

(

send(v,sign(key(v),nonce(n)),ps)

+

(

send(v,sign(key(ps),pair(pay(pc,v,pd),nonce(n))),b).

(

recv(b,sign(key(b),pair(bol(T),hash(sign(key(ps),pair(pay(pc,v,pd),nonce(n)))))),v).

(

send(v,enc(key(ps),sign(key(v),pair(it(d),nonce(n)))),ps).commit(n)

+

recv(ps,sign(key(ps),pair(bol(F),nonce(n))),v)

)

+

recv(b,sign(key(b),pair(bol(F),hash(sign(key(ps),pair(pay(pc,v,pd),nonce(n)))))),v).

(

25



send(v,sign(key(v),nonce(n)),ps)

+

recv(ps,sign(key(ps),pair(bol(F),nonce(n))),v)

)

)

)

)

)))))).Vendor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Instantiation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

init encap({send,recv},Customer||Scard(nnc(zero))||Bank(emptset,emptset)||Vendor)

B.3 Vendor Combined with Intruder, Honest Customer

In this section only µCRL code for players is presented. The data types are the
same as in section B.1.

proc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Customer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Customer=sum(pd:Price,sum(d:Item,

send(c,pair(pay(c,v,pd),hash(it(d))),s).

(

sum(n:Nonce,

(recv(s,pair(bol(T),nonce(n)),c).

(

send(c,pair(bol(T),nonce(n)),s).recv(s,it(d),c)

+

send(c,pair(bol(F),nonce(n)),s)

+

recv(s,pair(bol(F),nonce(n)),c)

)

)

+

recv(s,pair(bol(F),nonce(n)),c)

+

cancel(n).send(c,nonce(n),s)

)

))).Customer

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Smart Card

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Scard(n:Nonce)=delta<|eq(n,nnc(succ(succ(succ(zero)))))|>

(

sum(d:Item,sum(p:Player,sum(pd:Price,

(

recv(c,pair(pay(c,p,pd),hash(it(d))),s).

initiate(n).

send(s,pair(hash(it(d)),sign(key(s),pair(pay(c,p,pd),nonce(n)))),v).

(

(

recv(v,enc(key(s),sign(key(p),pair(it(d),nonce(n)))),s).

send(s,pair(bol(T),nonce(n)),c).

(

26



(

recv(c,pair(bol(T),nonce(n)),s).

receive(n).

send(s,it(d),c).

send(s,sign(key(s),pair(nonce(n),bol(T))),v)

)

+

(

recv(c,pair(bol(F),nonce(n)),s).

send(s,sign(key(s),pair(nonce(n),bol(F))),v)

)

+

timeout.

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),v)

)

)

+

(

recv(v,sign(key(p),nonce(n)),s).

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),v)

)

+

(

recv(c,nonce(n),s).

send(s,sign(key(s),pair(nonce(n),bol(F))),v).

send(s,sign(key(s),pair(bol(F),nonce(n))),v)

)

+

(

timeout.

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),v).

send(s,sign(key(s),pair(bol(F),nonce(n))),v)

)

)

)

))).Scard(NonceGen(n))

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Bank

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Bank(U:Knowledge,G:Knowledge)=

(sum(n:Nonce,sum(pc:Player,sum(pv:Player,sum(pd:Price,

(

recv(v,sign(key(s),pair(pay(pc,pv,pd),nonce(n))),b).

(

(

send(b,sign(key(b),pair(bol(F),hash(sign(key(s),pair(pay(pc,pv,pd),nonce(n)))))),v).

Bank(U,G)

)

<|test(n,G)|>

(

send(b,sign(key(b),pair(bol(T),hash(sign(key(s),pair(pay(pc,pv,pd),nonce(n)))))),v).

block(n).

Bank(add(n,U),G)

27



)

)

)

))))

)

+

sum(n:Nonce,

recv(v,sign(key(s),pair(nonce(n),bol(F))),b).

(

unblock(n).terminate(n).Bank(rem(n,U),add(n,G))

<|test(n,U)|>

terminate(n).Bank(U,add(n,G))

)

+

recv(v,sign(key(s),pair(nonce(n),bol(T))),b).

(

transfer(n).terminate(n).Bank(rem(n,U),add(n,G))

<|test(n,U)|>

terminate(n).Bank(U,add(n,G))

)

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Intruder (and Vendor)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Intruder(X:PM)=

sum(p:Player,sum(m:Message,

recv(p,m,v).Intruder(union(v,decomp(v,m),X))

+

(send(v,m,p).Intruder(X)<|synth(v,m,X)|>delta)

))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Instantiation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

init encap({send,recv},Customer||Scard(nnc(zero))||

Bank(emptset,emptset)||Intruder(emptyM))

B.4 Customer Combined with Intruder, Honest Vendor - Safety
Properties

In this section only µCRL code for players is presented. The data types are the
same as in section B.1.

proc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Intruder (and Customer)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Intruder(X:PM)=

sum(p:Player,sum(m:Message,

recv(p,m,c).Intruder(union(c,decomp(c,m),X))

+

(send(c,m,p).Intruder(X)<|synth(c,m,X)|>delta)

))

+

sum(m:Item,

got-hold-of(m).Intruder(X)<|in(it(m),X)|>delta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28



% Smart Card

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Scard(n:Nonce)=delta<|eq(n,nnc(succ(succ(succ(zero)))))|>

(

sum(d:Item,sum(p:Player,sum(pd:Price,

(

recv(c,pair(pay(c,p,pd),hash(it(d))),s).

initiate(n).

send(s,pair(hash(it(d)),sign(key(s),pair(pay(c,p,pd),nonce(n)))),c).

(

(

recv(c,enc(key(s),sign(key(p),pair(it(d),nonce(n)))),s).

send(s,pair(bol(T),nonce(n)),c).

(

(

recv(c,pair(bol(T),nonce(n)),s).

receive(n).

send(s,it(d),c).

send(s,sign(key(s),pair(nonce(n),bol(T))),c)

)

+

(

recv(c,pair(bol(F),nonce(n)),s).

send(s,sign(key(s),pair(nonce(n),bol(F))),c)

)

+

timeout.

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),c)

)

)

+

(

recv(c,sign(key(p),nonce(n)),s).

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),c)

)

+

(

recv(c,nonce(n),s).

% The position of the abstract action cancel is changed.

cancel(n).

send(s,sign(key(s),pair(nonce(n),bol(F))),c).

send(s,sign(key(s),pair(bol(F),nonce(n))),c)

)

+

(

timeout.

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),c).

send(s,sign(key(s),pair(bol(F),nonce(n))),c)

)

)

)

.(

%Reveal some information about completed session to Intruder.

send(s,sign(key(s),pair(nonce(n),bol(T))),c).

29



send(s,enc(key(s),sign(key(v),pair(it(d1),nonce(n)))),c).

send(s,enc(key(s),sign(key(v),pair(it(d2),nonce(n)))),c).

send(s,sign(key(v),nonce(n)),c).

send(s,sign(key(b),pair(bol(F),hash(sign(key(s),pair(pay(c,v,pd),nonce(n)))))),c).

send(s,sign(key(b),pair(bol(T),hash(sign(key(s),pair(pay(c,v,pd),nonce(n)))))),c)

)

))).Scard(NonceGen(n))

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Bank

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Bank(U:Knowledge,G:Knowledge)=

(sum(n:Nonce,sum(pc:Player,sum(pv:Player,sum(pd:Price,

(

recv(c,sign(key(s),pair(pay(pc,pv,pd),nonce(n))),b).

(

(

send(b,sign(key(b),pair(bol(F),hash(sign(key(s),pair(pay(pc,pv,pd),nonce(n)))))),c).

Bank(U,G)

)

<|test(n,G)|>

(

send(b,sign(key(b),pair(bol(T),hash(sign(key(s),pair(pay(pc,pv,pd),nonce(n)))))),c).

block(n).

Bank(add(n,U),G)

)

)

)

)

))))

+

sum(n:Nonce,

recv(c,sign(key(s),pair(nonce(n),bol(F))),b).

(

unblock(n).terminate(n).Bank(rem(n,U),add(n,G))

<|test(n,U)|>

terminate(n).Bank(U,add(n,G))

)

+

recv(c,sign(key(s),pair(nonce(n),bol(T))),b).

(

transfer(n).terminate(n).Bank(rem(n,U),add(n,G))

<|test(n,U)|>

terminate(n).Bank(U,add(n,G))

)

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Vendor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Vendor=

sum(n:Nonce,sum(pd:Price,sum(d:Item,sum(ps:Player,sum(pc:Player,

(

recv(c,pair(hash(it(d)),sign(key(ps),pair(pay(pc,v,pd),nonce(n)))),v).

(

send(v,sign(key(v),nonce(n)),c)

+

(

30



send(v,sign(key(ps),pair(pay(pc,v,pd),nonce(n))),c).

(

recv(c,sign(key(b),pair(bol(T),hash(sign(key(ps),pair(pay(pc,v,pd),nonce(n)))))),v).

(

% The position of the abstract action commit is changed.

commit(n).send(v,enc(key(ps),sign(key(v),pair(it(d),nonce(n)))),c)

+

recv(c,sign(key(ps),pair(bol(F),nonce(n))),v)

)

+

recv(c,sign(key(b),pair(bol(F),hash(sign(key(ps),pair(pay(pc,v,pd),nonce(n)))))),v).

(

send(v,sign(key(v),nonce(n)),c)

+

recv(c,sign(key(ps),pair(bol(F),nonce(n))),v)

)

)

)

)

)

% The following condition is used to reduce the state space.

<|and(eq(pc,c),or(eq(ps,s),eq(ps,c)))|>delta

))))).Vendor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Instantiation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

init encap({send,recv},Intruder(emptyM)||Scard(nnc(zero))||

Bank(emptset,emptset)||Vendor)

B.5 Customer Combined with Intruder, Honest Vendor - Live-
ness Properties

In this section the µCRL code for generating the state space when verifying
liveness in the case of malicious Customer is presented. The data types which
are not defined here are the same as in section B.1.

% The data types Bool, Item, Price, Player, Key, Message and Knowledge

% are the same as in previous codes.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Nonce Data Type

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort Nonce

func n0,n1 :-> Nonce

map eq: Nonce # Nonce -> Bool

NonceGen : Nonce -> Nonce

if: Bool # Nonce # Nonce -> Nonce

leq: Nonce # Nonce -> Bool

var x,y: Nonce

rew eq(x,x)=T

eq(n0,n1)=F

eq(n1,n0)=F

leq(x,x)=T

leq(n0,n1)=T

leq(n1,n0)=F

NonceGen(n0)=n1

NonceGen(n1)=n0

if(T,x,y)=x

31



if(F,x,y)=y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Data Type for Knowledge of Intruder

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort PM

func emptyM:->PM

insert:Message#PM->PM

map in:Message#PM->Bool

synthadd:Player#Message#PM->PM

add:Message#PM->PM

addlist:Message#PM->PM

rem:Message#PM->PM

union:Player#PM#PM->PM

if:Bool#PM#PM->PM

eq:PM#PM->Bool

var x,y:Message

ms,ms1,ms2:PM

U,V:PM

p: Player

rew eq(U,U)=T

eq(U,insert(x,U))=F

eq(emptyM,insert(x,U))=F

eq(insert(x,U),emptyM)=F

eq(insert(y,V),insert(x,U))=and(eq(x,y),eq(U,V))

if(T,U,V)=U

if(F,U,V)=V

in(x,emptyM)=F

in(x,insert(y,U))=or(eq(x,y),in(x,U))

% Messages are ordered in knowledge set.

add(x,emptyM)=insert(x,emptyM)

add(x,insert(y,U))=

if(leq(x,y),if(eq(x,y),insert(y,U),insert(x,insert(y,U))),

insert(y,add(x,U)))

% Sorted list to keep messages which belong to resilient links

addlist(x,emptyM)=insert(x,emptyM)

addlist(x,insert(y,U))=

if(leq(x,y),insert(x,insert(y,U)),insert(y,addlist(x,U)))

rem(x,emptyM)=emptyM

rem(x,insert(y,U))=

if(leq(x,y),if(eq(x,y),U,insert(y,U)),insert(y,rem(x,U)))

union(p,emptyM,V)=V

union(p,V,emptyM)=V

union(p,insert(x,U),V)=synthadd(p,x,union(p,U,V))

% A Message is added to knowledge set only if can not be synthesized.

synthadd(p,x,U)=if(synth(p,x,U),U,add(x,U))

% A Message is decomposed before being added to knowledge base.

map decomp:Player#Message->PM

var p,a,b’:Player

x:Bool

d:Item

n:Nonce

m,m’:Message

k:Key

pd1: Price

rew decomp(p,bol(x))=emptyM

decomp(p,it(d))=insert(it(d),emptyM)

% Nonces are kept explicitly. Intruder should have a fresh nonce, like n1,

32



% to consider attacks which require a fresh nonce. If we consider all nonces

% known to the intruder, then it can not stop composing messages when fairness

% constraint are applied. But by having explicit nonces in its

% knowledge, intruder can delete them and then stop cooperation.

decomp(p,nonce(n))=insert(nonce(n),emptyM)

decomp(p,pay(a,b’,pd1))=emptyM

decomp(p,pair(m,m’))=union(p,decomp(p,m),decomp(p,m’))

decomp(p,hash(m))=emptyM

decomp(p,sign(k,m))=synthadd(p,sign(k,m),decomp(p,m))

decomp(p,enc(k,m))=if(known(p,k),decomp(p,m),insert(enc(k,m),emptyM))

% Intruder can synthesize new messages from its knowledge set according

% to the following rules.

map synth:Player#Message#PM->Bool

var ms:PM

p,a,b’:Player

x:Bool

d:Item

n:Nonce

m,m’:Message

k:Key

pd1: Price

rew synth(p,bol(x),ms)=T

synth(p,it(d),ms)=or(in(it(d),ms),eq(p,v))

synth(p,nonce(n),ms)=or(in(nonce(n),ms),eq(n,n1))

synth(p,pay(a,b’,pd1),ms)=T

synth(p,pair(m,m’),ms)=and(synth(p,m,ms),synth(p,m’,ms))

synth(p,hash(m),ms)=if(or(eq(m,it(d1)),eq(m,it(d2))),

T,

synth(p,m,ms))

synth(p,sign(k,m),ms)=or(and(known(p,k),synth(p,m,ms)),in(sign(k,m),ms))

synth(p,enc(k,m),ms)=or(synth(p,m,ms),in(enc(k,m),ms))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Declaration of Actions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

act send,recv,com:Player#Message#Player

timeout

% Abstract actions

forget

initiate: Nonce

block: Nonce

commit: Nonce

cancel: Nonce

receive: Nonce

transfer: Nonce

unblock: Nonce

terminate: Nonce

% Synchronization point

comm send|recv=com

proc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Intruder

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Intruder(X:PM,Y:PM,Z:PM)=

%learn

sum(p:Player,sum(m:Message,

recv(p,m,c).(Intruder(addlist(m,X),union(c,decomp(c,m),Y),Z)

<|in(m,Z)|>

33



Intruder(X,union(c,decomp(c,m),Y),Z))

))

+

%forget

sum(m:Message,

forget.Intruder(X,rem(m,Y),Z)<|in(m,Y)|>delta

)

+

%resilient network

sum(m:Message,

(sum(p:Player,send(c,m,p)).Intruder(rem(m,X),Y,Z))<|in(m,X)|>delta

)

+

%compose

sum(m:Message,

(sum(p:Player,send(c,m,p)).Intruder(rem(m,X),Y,Z))<|synth(c,m,Y)|>delta

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Smart Card

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Scard(n:Nonce)=delta<|eq(n,n1)|>

(

sum(d:Item,sum(p:Player,sum(pd:Price,

(

recv(c,pair(pay(c,p,pd),hash(it(d))),s).

initiate(n).

send(s,pair(hash(it(d)),sign(key(s),pair(pay(c,p,pd),nonce(n)))),c).

(

(

recv(c,enc(key(s),sign(key(p),pair(it(d),nonce(n)))),s).

send(s,pair(bol(T),nonce(n)),c).

(

(

recv(c,pair(bol(T),nonce(n)),s).

send(s,it(d),c).

send(s,sign(key(s),pair(nonce(n),bol(T))),c)

)

+

(

recv(c,pair(bol(F),nonce(n)),s).

send(s,sign(key(s),pair(nonce(n),bol(F))),c)

)

+

timeout.

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),c)

)

)

+

(

recv(c,sign(key(p),nonce(n)),s).

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),c)

)

+

(

recv(c,nonce(n),s).

34



cancel(n).

send(s,sign(key(s),pair(nonce(n),bol(F))),c).

send(s,sign(key(s),pair(bol(F),nonce(n))),c)

)

+

(

timeout.

send(s,pair(bol(F),nonce(n)),c).

send(s,sign(key(s),pair(nonce(n),bol(F))),c).

send(s,sign(key(s),pair(bol(F),nonce(n))),c)

)

)

)

))).Scard(NonceGen(n))

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Bank

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Bank(U:Knowledge,G:Knowledge)=

(

(sum(n:Nonce,sum(pc:Player,sum(pv:Player,sum(pd:Price,

(

recv(c,sign(key(s),pair(pay(pc,pv,pd),nonce(n))),b).

(

(

send(b,sign(key(b),pair(bol(F),hash(sign(key(s),pair(pay(pc,pv,pd),nonce(n)))))),c).

Bank(U,G)

)

<|test(n,G)|>

(

send(b,sign(key(b),pair(bol(T),hash(sign(key(s),pair(pay(pc,pv,pd),nonce(n)))))),c).

block(n).

Bank(add(n,U),G)

)

)

)

)

))))

+

sum(n:Nonce,

recv(c,sign(key(s),pair(nonce(n),bol(F))),b).

(

unblock(n).terminate(n).Bank(rem(n,U),add(n,G))

<|test(n,U)|>

terminate(n).Bank(U,add(n,G))

)

+

recv(c,sign(key(s),pair(nonce(n),bol(T))),b).

(

transfer(n).terminate(n).Bank(rem(n,U),add(n,G))

<|test(n,U)|>

terminate(n).Bank(U,add(n,G))

)

)

)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Vendor

35



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Vendor=

sum(n:Nonce,sum(pd:Price,sum(d:Item,sum(ps:Player,sum(pc:Player,

(

recv(c,pair(hash(it(d)),sign(key(ps),pair(pay(pc,v,pd),nonce(n)))),v).

(

send(v,sign(key(v),nonce(n)),c)

+

(

send(v,sign(key(ps),pair(pay(pc,v,pd),nonce(n))),c).

(

recv(c,sign(key(b),pair(bol(T),hash(sign(key(ps),pair(pay(pc,v,pd),nonce(n)))))),v).

(

% The position of the abstract action commit is changed.

commit(n).send(v,enc(key(ps),sign(key(v),pair(it(d),nonce(n)))),c)

+

recv(c,sign(key(ps),pair(bol(F),nonce(n))),v)

)

+

recv(c,sign(key(b),pair(bol(F),hash(sign(key(ps),pair(pay(pc,v,pd),nonce(n)))))),v).

(

send(v,sign(key(v),nonce(n)),c)

+

recv(c,sign(key(ps),pair(bol(F),nonce(n))),v)

)

)

)

)

)

% The following condition is used to reduce the state space.

<|and(eq(pc,c),or(eq(ps,s),eq(ps,c)))|>delta

))))).Vendor

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Instantiation

% Set of messages over resilient links is defined explicitly here.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

init hide({com},encap({send,recv},

Intruder(emptyM,emptyM,insert(sign(key(s),pair(nonce(n0),bol(F))),

insert(sign(key(s),pair(nonce(n0),bol(T))),emptyM)))||

Scard(n0)||Bank(emptset,emptset)||Vendor))

36


