
Simulation and Verification of a Dynamic Online Auction
Bo Chen and Samira Sadaoui

Department of Computer Science, University of Regina
Regina SK S4S 0A2, Canada�

chen112b, sadaouis � @cs.uregina.ca

ABSTRACT
This paper deals with the formal specification, simulation
and model-checking verification of an agent-based online
auction. The need to understand dynamic behavior in auc-
tions is increasing with the popularization of Internet auc-
tions. This provides a strong motivation for the simulation
of these complex systems. Since the auction interaction
protocol is not trivial, it is suitable to use formal methods to
ensure its correct functioning. Therefore, we investigate on
the applicability of well-established techniques and tools
from distributed systems, such as the formal specification
language LOTOS, to specify and verify properties of inter-
action protocols in multiagent systems, and simulate their
behavior before the implementation.

KEY WORDS
Formal methods, LOTOS, software agents, online auctions.

1 Introduction

This paper deals with the formal specification, simulation
and model-checking verification of an agent-based online
auction. The need to understand dynamic behavior in auc-
tions is increasing with the popularization of Internet auc-
tions [15, 13]. This provides a strong motivation for the
simulation of these complex systems. Multiagent tech-
nology is considered as a viable solution for large-scale
industrial and commercial applications. Indeed, they are
suitable for modeling business process and commerce ac-
tivities such as online auction systems where sell and buy
agents can negotiate on the behalf of the customers.

There is still an increasing need for rigorous model-
ing techniques that permit the complexity of agent systems
to be effectively managed, and principled methodologies to
guide the design process [11, 3, 14]. In fact, a multiagent
system needs well defined mechanisms of management,
communication (message exchange) and synchronization
of agents staying on different platforms. Consequently, the
interaction protocols and lifecycle of agents have been in-
troduced. For instance, there are several communication
protocols defined by FIPA (Foundation for Intelligent Phys-
ical Agents) for different applications, such as Request In-
teraction Protocol and English Auction Interaction Proto-
col [6]. Considering the agent protocols are not trivial, it
is suitable to ensure their correctness using formal methods

which can specify and verify the properties of concurrent
systems, and simulate their behavior before the implemen-
tation [5].

The formal description technique LOTOS [1] is ide-
ally suited to the specification of multiagent systems. LO-
TOS brings many potential advantages: a high level of
abstraction, structuring capabilities, requirements capture
with several specification styles, specification simulation,
verification and refinements. There are many supporting
tools for LOTOS, and in this paper, we will focus on the
CADP environment [8]. CADP promotes the use of LOTOS
to model interaction protocols in multiagent systems. It is a
set of tools that assists the user through the design process:
compilation, interactive and guided simulation, test gener-
ation, and most important, it can perform efficiently verifi-
cation by equivalence and temporal logic model checking.
CADP allows rapid prototyping by generating the C code
which can be embedded in real applications.

The rest of this paper is organized as follows: Section
2 presents the informal description of an agent-based on-
line auction protocol inspired from [13, 6]. In Section 3,
we produce a LOTOS specification which provides a non-
ambiguous description of the interaction protocol. Section
4 reports about the protocol validation, including the in-
teractive and goal-oriented simulation, and also generation
of test suites for the protocol implementation. In Section
5, we verify the correctness (based on safety and liveness
properties) of the interaction protocol. Section 7 concludes
the paper with some perspectives.

2 Agent-Oriented Auction Protocol

We are interested here in the English auction protocol [15,
13, 6] where the bidding is open, the duration is fixed, the
bidding price increases gradually, only one or no winner
is chosen at the end of the auction. We consider here a
single auction with the sale of one item by one seller to n
buyers who submit their bids to the auctioneer. A buyer can
send more than one bid, being in general influenced by the
bids of others. The auction process consists of several steps
given below.

RequestOrder. A sell agent presents to the administrator agent a sell
order including the description of the item, starting price, reserve



MMM MM MM MM MM

Administrator
Agent

Auctioneer
Agent

Message Transport Service (MTS)

Agent Platform (AP)

Message (M)

MTS

Agent
Sell ...

...

AP

Buy Buy

MTS

Agent Agent
...

AP

M M

Buy
Agent

Buy
Agent

MM

Figure 1. Architecture of the auction interaction protocol.

price, bid increment, payment method, shipping method, contact
information, etc.

AcceptOrder/RejectOrder. The administrator agent may accept or re-
ject the order.

RequestAuction. If the order is accepted, the administrator agent creates
an auctioneer agent who is given all the auction rules.

InformAuction. The administrator agent looks for the registered buy
agents and sends to them a description of the auction, including
the auctioneer’s ID who will be responsible for the execution of the
auction.

Subscribe. If a buy agent is interested in this particular auction, he/she
has to subscribe to the auctioneer agent.

RefuseSubscription. The auctioneer can refuse to let a buy agent partic-
ipate in the auction.

CallForProposal. Once the auction starts (specified by the start time),
the auctioneer asks the participants to place bids by issuing a Call-
ForProposal message. A participant who receives a CallForPro-
posal means that his/her subscription has been accepted.

CancelSubscription. A buy agent can inform the auctioneer to be re-
moved from the auction.

AcceptCancel/RejectCancel. A buy agent with the best bid is not al-
lowed to cancel his/her subscription.

Propose. A buy agent can send a proposal message to the auctioneer,
including the information “I propose that the bidding level be raised
to the purchase price Z and I assert that I am able to pay Z for the
item”.

CheckProposal. After receiving a proposal, the auctioneer processes the
bid by checking for its validity, e.g. checking whether the increment
bid has been respected or not.

AcceptProposal/RejectProposal. If the proposal is valid, the auctioneer
notifies all participants with information about the current best bid
and the agent who holds it, and asks for another bid by broadcasting
a CallForProposal message. Otherwise, the auctioneer replies a Re-
jectProposal to an invalid bid and gives the reason why the proposal
is rejected.

InformResult. After the auction ends, the auctioneer notifies all the
participants and the administrator agent about the auction result.
Then, the sell and buy agents will complete the auction transaction
through payment server. It the transaction is successful, the notifi-
cation about the completion of the auction is sent to all participants.

The architecture of the auction interaction protocol
is illustrated in figure 1. The basic software elements
are agents: administrator, auctioneer, seller and n buyers.
Agents communicate by sending or receiving messages on
unidirectional communication channels. The agent com-
munication is asynchronous point-to-point message pass-

ing. The buy agents execute concurrently in order to place
bids. Agents behave to an event-reaction scheme: when re-
ceiving an event, an agent executes the appropriate reaction
which sends messages to other agents.

The Message-Transport-Service (MTS) supports the
inter-agent communication based on the standard agent
communication language [12], such as FIPA ACL [7]. This
language is expected to be universal, e.g. being platform
and agent independent. MTS is a service provided by the
Agent Platform (AP) to which an agent is attached. It sup-
ports the transportation of messages between agents on a
given AP and between agents on different APs. A message
contains three parts as a sender, a set of receivers and a
content. The sender and receivers refer to agent names
which are unique and unchangeable for each agent. MTS
handles the transferring, addressing, buffering of messages,
and also error messages. Therefore, agents are free of car-
rying out these tasks.

3 Auction Protocol Specification

LOTOS is the ISO standardized formal specification tech-
nique [1] for describing communication protocols and dis-
tributed systems. LOTOS combines a process calculus (as
defined for CCS and CSP) with an abstract data type lan-
guage [2]. The process part, describing process composi-
tion, defines the external visible behavior of a system. A
concurrent system is described as parallel processes inter-
acting by rendezvous. Processes manipulate data values
and exchange them at interaction points called gates. Each
process behavior is specified with operators defined in ta-
ble 1.

We present here the formal specification of the En-
glish online auction protocol. The architecture of the auc-
tion specification is shown in figure 2. The process MTS
stores messages into an agent’s message buffer. The buffer
allows removing deadlocks in the agent communication.
Therefore, the agent can read the messages from the buffer
at any time. Also, an agent can send a message to another
agent which can be in any state (activated or not). For our
specification, the content of a message has some of the fol-
lowing six parts: the request type, agent ID, auction item,



. . .

. . .

R
E

C
V

SE
N

D

Administrator
Agent

R
E

C
V

SE
N

D

Auctioneer
Agent

R
E

C
V

SE
N

D

R
E

C
V

SE
N

D

Buy Agent 1

R
E

C
V

SE
N

D

Buy Agent N

Agent
Message
Buffer

INBUFF

Agent
Message
Buffer

INBUFF

Agent
Message
Buffer

INBUFF

Agent
Message
Buffer

INBUFF

Agent
Message
Buffer

INBUFF

Sell Agent

Message Transport Service

Figure 2. Architecture of the auction specification

Table 1. Process operators

Syntax Operators
stop Inaction
G !V ?X:S ; B Interaction on gate G, sending value V

and receiving a value of sort S in variable X,
then execute B

B1 [ ] B2 Choice between B1 and B2�
E ��� B If E is true then execute B else stop

B1 � [G1 ... Gn] � B2 Synchronization on gates G1, ..., Gn
B1 � � � B2 Interleaving
exit Successful termination
B1 ��� B2 Sequential composition
P[G1...Gn](V1....Vn) Process call with gate parameters

G1...Gn and value parameters V1...Vn

starting price, reserve price and bid increment.

The specification uses ten data types to describe the
messages and the agent communication: agent-oriented
such as Agent, AgentSet; session-oriented such as Auc-
tionItem, AdministratorSession, SellSession, BuySession,
AuctioneerSession; message-oriented such as Message,
MessageContent, MessageBuffer. All agents, modeled as
LOTOS processes, are activated in parallel. The data part
and behavior part are defined separately. In the appendix,
the architecture of the protocol as well as the buyagent pro-
cess are specified in LOTOS.

The process composition is based on the resource-
oriented style [4] whereas the individual process uses the
state-oriented style [4]. The resource-oriented style sup-
ports modularity, parallel composition and gate hiding. In
our specification, we have several distinct resources: Ad-
ministrator, auctioneer, sell and buy agents. Each resource
is naturally a self-contained entity which can be imple-
mented by different authorities. The state-oriented style
provides an insight of how many states (situations) each
agent may have, and what can an agent do in each state,
e.g. what kinds of messages are sent and how to deal with
each received message. It is worth to note that the auction
specification supports the subscription and unsubscription
of a buyer at any time during the auction. However, the cur-
rent winner is not allowed to cancel his/her subscription; a

call for proposal is only sent to the subscribed buyers; af-
ter the auction ends, the auctioneer will refuse all the late
bids (that may be due to the network failure) and which are
answered with a RejectProposal.

It is important to notice that the dynamic creation of a
process (recursive call occurring at any side of the parallel
operator � [] � ) is supported by the language LOTOS but not
by the CADP compiler. This why in our LOTOS specifi-
cation, the auctioneer is not created by the administrator,
instead it is present from the beginning of the auction.

4 Auction Protocol Validation

Simulation allows checking the conformance of the spec-
ification to the initial requirements at early development
stages. The interactive simulation of LOTOS specifications
allows tracing and monitoring all the possible execution se-
quences, and detecting errors. We give below an example
of simulation that leads to an auction failure:

� SEND !MSG (SELLER, ADD (ADMINISTRATOR, NIL), CNT
(REQUESTORDER, ITEM1, 1, 1, 2))

(*Seller sends a RequestOrder to administrator to
sell item1, starting price is 1, bid increment is 1,
and reserved price is 2*)

� RECV !ADMINISTRATOR !SELLER !CNT (REQUESTORDER,
ITEM1, SELLER, 1, 1, 2)

(*Administrator receives the sell order*)
� SEND !MSG (ADMINISTRATOR, ADD (SELLER, NIL), CNT

(ACCEPTORDER, ITEM1))

(*Administrator sends to seller an acknowledge to
accept the order*)

� SEND !MSG (ADMINISTRATOR, ADD (AUCTIONEER, NIL), CNT
(REQUESTAUCTION, ITEM1, SELLER, 1, 1, 2))

(*Administrator submits the order to auctioneer for
processing*)

� RECV !AUCTIONEER !ADMINISTRATOR !CNT
(REQUESTAUCTION, ITEM1, SELLER, 1, 1, 2)

(*Auctioneer receives the auction request*)
� SEND !MSG (AUCTIONEER, ADD (ADMINISTRATOR, NIL), CNT

(ACCEPTAUCTION, ITEM1))

(*Auctioneer sends an acknowledge to administrator*)
� i



(*Auction starts, internal action*)

� i

(*Auction ends and no buyer has joined this auction,
internal action*)

� SEND !MSG (AUCTIONEER, ADD (ADMINISTRATOR, ADD
(SELLER, NIL)), CNT (AUCTIONFAILURE, ITEM1, 0,
NULL))

(*Auctioneer informs administrator and seller about
the auction failure*)

The tool EXIBITOR, integrated in CADP, allows gen-
erating one or all possible scenarios that satisfy a user-
defined goal. For instance, if the goal concerns the
“auction failure” which is expressed as <until> [SEND
!MSG.*.AUCTIONFAILURE.*], EXIBITOR will produce all
the execution sequences that lead to an auction failure, e.g.
the auction ends and the best bid is lower than the reserve
price, the sell order is refused by the administrator agent,
or the auction ends and no buyer has subscribed.

The tool TGV, also integrated in CADP, allows de-
riving test suites from a user-defined test purpose. These
tests are used to assess the conformance of a final im-
plementation with respect to its formal specification. For
instance, if we consider the following test purpose SEND
!MSG.*.AUCTIONFAILURE.*, the tool will then produce all
the test cases that lead to an auction failure. We notice that
the maximum bids is limited in order to cope with the state
explosion problem.

5 Auction Protocol Verification

With the simulation, we can not prove that the system is
error free. It is then necessary to use more powerful tech-
niques of automated analysis such as the verification. In-
deed, the agents and their communication should satisfy
some important correctness properties, such as the safety
properties (something bad never happens) and liveness
properties (something good eventually happens). Some
properties are local to a single agent, and some are global
to the whole protocol i.e. the agent composition. The cor-
rectness properties can be described using a temporal logic.

In LOTOS, a specification is compiled and translated
into a finite labeled transition system (LTS) which encodes
all its possible execution sequences. CADP provides model
checking tools to automatically verify the LTS against tem-
poral logic formulas which express the possible action se-
quences a LTS can perform.

Some typical safety properties are called invariants
and express that every state of the LTS satisfies some
“good” property such as deadlock and livelock free. For
the auction system under study, we have identified seven
correctness properties listed in the table below. These prop-
erties are expressed in regular free-u calculus, the temporal

logic accepted by the model-checker EVALUATOR.

Safety properties:

� The absence of deadlock, i.e. that every state has
at least one successor. This property is expressed as
[true*]

�
true � true

� The absence of livelock, i.e. useless non-progressive
internal cycles. This property is expressed as
<true*>@("i")

� A proposal can not be submitted by a buyer be-
fore his/her subscription. This property is expressed
as before(PROPOSE, SUBSCRIBE) where the macro
command before denotes the precedence of actions

� The auctioneer can not accept a subscription af-
ter the auction ends. This property is expressed
as �

true*.AUCTIONFAILURE or AUCTIONSUCESS.
true*. ACCEPTSUBSCRIBE � true.

� An unsubscribed buyer can not receive a Call-
ForProposal. This property is expressed as
not(

�
true*. ACCEPTCANCELSUB BUYER.

true*. CALLFORPROPOSAL BUYER � true)

Liveness properties:

� There exists an execution sequence that leads to
an auction success. This property is expressed as

�
true*. AUCTIONSUCCESS � true

� After a subscription, a buyer can receive a
CallForProposal. This property is expressed
as �

true*. SUBSCRIBE BUYER. true*.
CALLFORPROPOSAL BUYER � true

With the tool EVALUATOR, we can also verify if a
temporal ordering of actions is correct or not. For example,
the following sequence of actions is correct:

before (ACCEPTORDER, ACCEPTAUCTION)

and before (ACCEPTAUCTION, ACCEPTSUB)

and before (ACCEPTSUB, AUCTIONSUCCESS)

and before (ACCEPTPROPOSAL, AUCTIONSUCCESS)

and before (CALLFORPROPOSAL, AUCTIONSUCCESS)

and before (PROPOSE, AUCTIONSUCCESS)

6 Conclusion and Perspectives

In this paper, we have shown that we can make use of ex-
isting techniques and tools from distributed systems (such
as LOTOS and CADP tool set) to design interaction proto-
cols in multiagent systems. Moreover, LOTOS is suitable
to describe synchronous as well as asynchronous systems
[9]. With formal specifications, the semantics of a system is
describe precisely without any concern for implementation



details, providing a basis for verification (model checking
and temporal logic) and validation (through simulation and
test generation) of the functionality of the system.

In future work we plan to use the specification lan-
guage E-LOTOS [10] in order to take into account the time
i.e. duration of the auction. Now, we are working on the
production of a generic reusable LOTOS specification that
describes any interaction protocol in multiagent systems.
This specification can be specialized to derive, for instance,
the specification of any auction protocol such as Dutch,
Vickrey or English.

References

[1] ISO LOTOS - A Formal Description Tech-
nique Based on The Temporal Ordering of Ob-
servational Behaviour. International Organization
for Standardization- Information Processing Systems
Open Systems Interconnection, Geneve, July 1987.

[2] T. Bolognesi and E. Brinksma. Introduction to the
ISO Specification Language LOTOS. in P.H.J. van
Eijkand, C.A. Vissers and M. Diaz, eds., The Formal
Description Technique LOTOS (North-Holland, Ams-
terdam), pages 303–326, 1989.

[3] F. Brazier, D. Keplicz, N. R. Jennings, and J. Treur.
DESIRE: Modeling Multi-Agent Systems in a com-
positional Formal Framework. In International Jour-
nal of Cooperative Information Systems, vol. 6, n0 1,
1997.

[4] E. Brinksma, G. Scollo, and C. Steenbergen. LO-
TOS Specifications, Their Implementations and Their
Tests. Protocol Specification, Testing and Verifica-
tion, VI, IFIP, 1987.

[5] M. A. Cornejo, H. Garavel, and R. Mateescu. Specifi-
cation and Verification of a Dynamic Reconfiguration
Protocol for Agent-Based Applications. In Proceed-
ings of the 32nd conference on Winter Simulation,
pages 1772–1777. Society for Computer Simulation
International, 2000.

[6] FIPA. English Auction Interaction Protocol Specifi-
cation. In Foundation for Intelligent Physical Agents,
htpp://www.fipa.org/specs/fipa00031, 2001.

[7] FIPA. ACL Message Structure Specification.
In Foundation for Intelligent Physical Agents,
htpp://www.fipa.org/specs/fipa00061, 2002.

[8] H. Garavel. An Overview of the EUCALYPTUS
Toolbox. In Proc. of COST247, International work-
shop and Applied Formal Methods in System Design,
University of Maribor, Slovenia, June, 1996.

[9] J. He and K. J. Turner. Verifying and testing
asynchronous circuits using lotos. In T. Bolognesi
and D. Latella, editors, Proc. Formal Methods for
Distributed System Development (FORTE XIII/PSTV
XX), pages 267–283, London, 2000. Kluwer Aca-
demic Publishers.

[10] I. JTC1/SC21/WG7. Final Commite Draft on En-
hancements to LOTOS, May 1998.

[11] D. Kinny and M. Georgeff. Modelling and De-
sign of Multi-Agent Systems. Intelligent Agents III:
Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages ATAL-
96, 1193, 1996.

[12] Y. Labrou, T. Finin, and Y. Peng. Agent Commu-
nication Languages: The Current Landscape. IEEE
Intelligent Systems, 14(2), April 1999.

[13] H. Mizuta and K. Steiglitz. Agent-Based Simulation
of Dynamic Online Auctions. In Proceedings of 32nd
Conference on Winter Simulation, pages 1772–1777.
Society for Computer Simulation International, 2000.

[14] N. Szirbik and G. Wagner. Steps Towards Formal Ver-
ification of Agent-based E-Business Applications. In
MOCA 01, Workshop on Modelling of Objects, Com-
ponents, and Agents, August, 2001.

[15] M. Vetter and S. Pitsch. An Agent-Based Market
Supporting Multiple Auction Protocols. In Work-
shop on Agents for Electronic Commerce and Manag-
ing the Internet-Enabled Supply Chain, Third Inter-
national Conference on AUTONOMOUS AGENTS,
Seattle, Washington, May 1-5, 1999.

Appendix

Architecture Specification

hide BuffIn in (
((SellAgent[SEND,RECV](seller,sellerSession(initial of
SelSessSt,administrator,null of Item,0 of Money,0 of
Money,0 of Money))
|[RECV]|
AgentMessageBuffer[BuffIN,RECV](seller,<>))
||| (
BuyAgent[SEND, RECV](buyer1,buyerSession(initial of
BuySessSt,null of Agent,null of Item,0 of Money,0 of
Money,0 of Money,null of Agent,0 of Money,1 of Money))
|[RECV]|)
||| (
BuyAgent[SEND,RECV](buyer2,buyerSession(initial of
BuySessSt,null of Agent,null of Item,0 of Money,0
of Money,0 of Money,null of Agent,0 of Money,2 of Money))
|[RECV]|
AgentMessageBuffer [BuffIN, RECV](buyer2,<>))
||| (
AdministratorAgent[SEND, RECV](administrator,admSession(
initial of AdmSessST,add(buyer1,add(buyer2,nil)),
auctioneer,null of Item,null of Agent,0 of Money,
0 of Money,0 of Money))
|[RECV]|



AgentMessageBuffer[BuffIN, RECV](administrator,<>))
||| (
AuctioneerAgent[SEND,RECV](auctioneer,auctioneerSession(
initial of AucSessSt,administrator,nil,null of Item,
null of Agent,
0 of Money,0 of Money,0 of Money,0 of Money,
null of Agent))
|[RECV]|
AgentMessageBuffer[BuffIN,RECV](auctioneer, <>)))
|[SEND, BuffIN]|
MessageTransportation[SEND,BuffIN](null of Agent,nil,
null of MsgContent))

BuyAgent Specification

process BuyAgent[SEND,RECV](id:Agent,as:BuySess):exit:=
Let st:BuySessST=getBuySt(as),ar:Agent=getAuctioneer(as),

it:Item=getItem(as),sp:Money=getSPrice(as),
bi:Money=getBIncr(as),bp:Money=getBPrice(as),
bd:Agent=getBidder(as), mb:Money=getMyBid(as),
max:Money=getMax(as)

in (
[st eq initial] -> exit
[]
[(st eq bidReady) and (id ne bd)] ->
(
choice newbid:Money
[]
[(newbid ge bp) and (newbid le max)] ->
SEND!msg(id, dd(ar, nil),cnt(propose,it,newbid,id));
BuyAgent[SEND,RECV](id,buyerSession(bidProposed,ar,it,
sp,bi,bp,bd,newbid,max))

)
[]
[((st eq bidReady)and(id ne bd))or(st eq subAccepted)]->

SEND!msg(id,add(ar,nil),cnt(CancelSub,it));
BuyAgent[SEND,RECV](id,buyerSession(
cancelled, ar, it, sp, bi, bp, bd, mb, max))

[]
[(st eq informReceived)] -> (

SEND!msg(id,add(ar,nil),cnt(subscribe,it,id));
BuyAgent[SEND,RECV](id, buyerSession(subscribed,ar,it,
sp,bi,bp, bd, mb, max))

[]
BuyAgent[SEND,RECV](id,buyerSession(initial of BuySessSt,
ar,it,sp,bi,bp,bd,mb,max)))
[]
RECV!id?sender: Agent?c:MsgContent; (
let ac:MsgType=getMsgType(c) in (
[ac eq auctionDone] -> (
BuyAgent[SEND,RECV](id,buyerSession(initial of BuySessSt,
ar,it,sp,bi,bp,bd,mb,max)))
[]
[ac eq callProposal] -> (
[(st ne initial) and (st ne cancelled)] -> (
let sbp: Money=getBPrice(c),sbd:Agent=getBidder(c) in (
[sbd eq id] -> BuyAgent[SEND, RECV](id, as)
[]
[sbd ne id] -> (
BuyAgent[SEND, RECV](id, buyerSession(bidReady,ar,
it, sp, bi, sbp, sbd, mb, max)))))

[]
[(st eq initial) or (st eq cancelled)] ->
BuyAgent[SEND, RECV](id, as))
(* end of callForProposal *)
[]
[ac eq rejectSub] -> (
BuyAgent[SEND,RECV](id,buyerSession(initial of BuySessSt,
ar, it, sp, bi, bp, bd, mb, max)))
[]

[ac eq acceptSub] -> (
BuyAgent[SEND, RECV](id, buyerSession(subAccepted,ar,
it, sp, bi, bp, bd, mb, max)))
[]
[ac eq acceptCancelSub] ->
BuyAgent[SEND, RECV](id, buyerSession(initial of BuySessSt,
ar, it, sp, bi, bp, bd, mb, max))
[]
[ac eq rejectCancelSub] ->
(BuyAgent[SEND, RECV](id, buyerSession(initial of BuySessSt,
ar,it, sp, bi, bp, bd, mb, max)))
[]
[ac eq rejectProposal] -> (
BuyAgent[SEND, RECV](id, as))
[]
[ac eq acceptProposal] -> (
BuyAgent[SEND, RECV](id, buyerSession(bidReady,
ar, it, sp, bi, bp, id, mb, max)))

[]
[(ac eq auctionFailure) or (ac eq auctionSuccess)] ->
BuyAgent[SEND, RECV](id, buyerSession(initial of BuySessSt,
ar, it, sp, bi, bp, bd, mb, max))
[]
[ac eq informAuction] -> (
[st eq initial] ->(
let sar:Agent=getAuctioneer(c), sit:Item=getItem(c),
ssp:Money=getSPrice(c),sbi:Money=getBIncr(c) in
(BuyAgent[SEND,RECV](id,buyerSession(informReceived, sar,
sit, ssp, sbi, 0, null, 0, max)))

[]
[st ne initial] -> BuyAgent[SEND, RECV](id, as)))
(* end of message processing *)
) (* end of let in *)
) (* end of hide *)
endproc


