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1 Introduction

Interaction is the main and inherent characteristic of multi-agent systems (MAS) [37].
The flexible and organizational interactions among agents make MAS different from other
kind of systems, even single agent systems. Indeed, the overall capacity of a MAS can
exceed the sum of individual agent capacities [28]. This is why multi-agent technologies
are widely expected to cope with difficulties in developing heterogeneous and distributed
open systems [20]. However, A MAS is complex to design and construct, due to the
undeterministic and autonomous behaviors of agents. Especially, agents can interact in
flexible and sophisticated ways to achieve system goals. To let agents successfully work
together, there should be some constraints and rules to guide the cooperative, coordinative
or even competitive behaviors of agents. In correspondence, agent interaction protocols
(AIP) are used to define these constraints and rules [25, 23].

ATIP impose particular constraints on agent messages to manage agent communication
and negotiation. The constraints specify the set of allowed message types, message con-
tents and the correct order of messages during the conversations between agents. AIP
can enforce agents to act correctly in predictable ways. Thus, the properties of a MAS
can be preserved. For example, an auction protocol ensures that auctioneers are fair, i.e.
give equal opportunities for all buyers to win an item. In addition, ATP can be viewed as
reusable software components to design agent interaction in applications [10], because ATP
represent abstract and formal patterns of agent interaction. Since AIP play an important
and essential role in MAS development [37], formal specification and verification of AIP
are needed [24].

The protocol engineering issue remains a challenge for MAS research [24]. On the
first hand, interaction systems are complex to verify, validate and reuse [17]. Especially,
the concurrency, reactivity, autonomy, openness, and extensibility of MAS bring new
challenges. On the other hand, there is a wide gap between theory and practice. Indeed,
the advances in theories and software architecture must be complemented by the advances
in engineering techniques and methodologies [29]. In the field of multi-agent systems,
there are few tools supporting the design of interaction protocols [22]. In fact, even
though several theories and methodologies have already been proposed for developing
ATIP. However, existing methodologies of AIP suffer from some limitations, such as poor
capacity for designing complex protocols, being limited when facing the concurrency of
interactions [24], lack of suitable tools. One solution is to resort to the well-established

and well-proved formal technologies for concurrent and distributed systems [24, 38].



This paper aims to provide a generic formal computational framework to develop AIP,
and to verify their “correct behaviors” using model checking. This formal framework
is based on the formal specification language Lotos [5], which has been widely applied
in distributed and concurrent systems. In addition, several rigorous tools and sound
methodologies have already been developed for Lotos. Based on Lotos technologies, the

proposed reusable framework brings several advantages, including:

e Taking charge of concurrency and synchronization naturally because Lotos was orig-

inally designed for concurrent systems.

e Defining the generic architecture of AIP, i.e. the basic components and their con-
nectors in interactions. This architecture, which expresses many fundamental and
essential characteristics of agent interaction, can be reused to develop different pro-

tocols.

e Providing a suitable structure for formalizing agent interaction, which is important

for building correct IP specifications [31, 17].

e Providing the important correctness properties(safety, liveness and fairness) of AIP,

that any AIP application should satisfy.

e Using several tools to formally analyze, animate and verify IP specifications ex-

pressed in Lotos. Therefore, the correctness of AIP can be proved.

item Improving the understanding of dynamic behaviors of ATP through simulation.

An stepwise approach is also proposed to incrementally develop interaction protocols
using the methodology developed in [6]. Following this methodology, the overall com-
plexities are broken into serial sub-steps. Each step evaluates and takes a small amount
of decisions in isolation, and a more refined version of the design is elaborated [27]. The

specifications can be refined stepwise toward implementation in this way.

This paper is organized as follows: In Section 2, we analyze the architecture and
characteristics of multi-agent interaction. In Section 3, we provide a generic framework
for specifying agent protocols. In Section 5, we study what are the most important
properties to be verified on AIP. The generic framework is also proved correct. In Section
5, we demonstrate how to develop an English auction protocol hat is correct from the

generic framework.



1.1 Agent Interaction Protocols

A multi-agent system can be viewed as an artificial virtual society, in which agents can
cooperate or coordinate to perform tasks. The agent interaction requires a set of agreed
messages, rules for actions based upon reception of various messages, and assumptions of
the communication channels [35]. These constraints ,rules and patterns can be abstracted
and formalized as AIP, which are basis for agent negotiation and cooperation. Using the
protocols, the autonomous behaviors of agents can be somehow predictable, even though
agents are anonymous, because agents are obligated to obey some interactive rules. The

interaction protocols range from negotiation schemas to a simple request for a task.

AIP are patterns representing both message communication and the corresponding
constraints on the content of such messages. They describe an allowed sequence of mes-
sages and message content among agents [26]. AIP can also be considered as reusable
software design patterns describing problems frequently occurring in multi-agent systems
[3]. The roles and message details in an AIP can be modified to adapt to different sce-
narios to solve the problems [10]. Protocol definition consists of a set of attributes given
below [36, 10]:

e Purpose. It is the goal that an interaction is supposed to achieve.

e Messages. A message consists of a sender, a set of receivers, type of messages
and message content. The involved agents are expected to understand the message

elements defined in the protocol.
e Ontology. It gives meaning to the symbols in the content expression.

e Rules. Those rules define the dependencies and relationships between messages as
well as the constraints on the message structure, such as the types of messages

agents can receive and send in a particular situation.

e Input and output. They define the message types that can be sent and received by

a participant.

e States and transitions. An AIP is usually modelled as a Finite Transition Systems.

The state of the system changes according to the actions performed by participants.
e Participants. They include the initiator and responder roles in the conversation.

e Reasons. For example, a participant should give reasons to other agents why it

accepts or rejects a request.



e Views. AIP can be examined by different views from different participants, i.e. from

a local role’s view or from an external observer’s view.

The messages are expressed in agent communication languages, such as FIPA ACL [13]
and KQML [1]. Messages express the intention of an agent expecting what other agents
are expected to perform. Agent languages are based on the speech acts theory, which is a
model for human communication [28]. Performative act is a key concept in the theory. It
is an action that a speaker performs (speaks) in order to convey part of its mental state
to the hearer that the act is directed to [19].

Role is a set of agents satisfying distinguished properties, interfaces, service description
and behaviors. An agent role is an abstract description of an entity with the specified
functions [8]. When we compare the role of agents to the interface of objects, we can find
many similarities. An interface can be implemented by different classes and a class can
provide multiple interfaces while a role can be played by different agents and an agent
can act in several roles. For example, an agent can be a seller and buyer in two different

auction conversations undertaking concurrently.

For example, the FIPA Request Interaction Protocol [13] has a purpose that allows
one agent to request another to perform some actions. There are only one initiator and
one responder. The output of the initiator contains two kinds of messages: Request and
Cancel, the output of responder has six types of messages: Not-Understood, Refuse, Agree,
Failure, Inform-Done and Inform-Result. The behaviors of the protocol can be described
as follows: when an agent receives a Request, it may agree or refuse the request, and it
can also issue a Not-Understood. 1f it agrees, it will tell the initiator the result of its
actions according to the request. The result may be failure, Inform-Done, and Inform-
Result. During the interaction, the initiator can cancel the interaction anytime after the

interaction starts.

Agent interaction is more complex than object interaction in distributed systems be-
cause agents are autonomous and interactive [37]. Unlike objects need outside control
to execute their methods, agents have control over whether and how they process exter-
nal requests, using their knowledge of the environment and the effect of their actions.
The challenge grows when the agent has to interact with different parties, using different

protocols.

Many methodologies have been developed to help capture, represent, specify, validate
and verify AIP, such as Extended UML [23], COOL [2], Extended Finite State Machines



[23] and Petri Nets [8]. Protocols are modelled using several theories, such as ezpection

and commitment [14]. However, these theories and methdologies bear some limitations

summarized in [24], as mentioned in introduction part.

1.2 Multi-agent System Architectures

The knowledge of MAS architecture is necessary to develop a suitable AIP specification

structure. MAS are usually constructed upon agent platforms. Therefore, MAS are similar

in many aspects. A typical abstract MAS architecture is shown in figure 1, and it is based
on the FIPA specification *.

Figure 1: Agent Abstract Architecture
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Each agent features an inner control responsible for changing its status and sending

messages [32]. Agents reside in agent platforms which provide fundamental functionalities

such as:

e Lifecycle management. It is responsible for creating, activating, suspending, invok-

ing, moving and destroying agents. In its lifecycle, an agent may stay in different

states, such as unknown, active, waiting and suspending.

e Message transport service (MTS). It plays a vital role in agent communication. MTS

provides message addressing and transferring services. MTS also enforces the rules

of message buffering with respect to different states of agents. When an agent is in

a waiting state, M'TS stores the messages in its message buffer for further processing

when it becomes active. When an agent is in unknown state, MTS may discard the

messages.

e Directory service. It is used to find agents or services provided by them. It is similar

to the familiar white and yellow pages provided by tele-companies.

Thttp://www.fipa.org/repository/index.html



2 AIP Specification

The specification language Lotos is an ideal choice for the description, validation and ver-
ification of agent interaction protocols. For instance, we have applied Lotos to describe,
simulate and verify a dynamic agent-based online auction protocol [7]. First, Lotos has
been extensively studied and applied on concurrent and distributed systems, such as ISO
communication protocols. Second, Lotos is executable, modular and capable of synchro-
nization between processes [9]. Third, many tools have been developed for the validation
and verification of Lotos specifications. In addition, many aspects of system functionality
can be effectively represented in Lotos [12], such as the external and internal descrip-
tions, representing respectively what the system does and how the functionalities are
implemented. Various specification styles and development methodologies have also been
proposed to make the language useful in different development stages from requirements

capture to detailed design [33].

Our model of the interactive behaviors of an agent is based on the semantics of Lo-
tos, defined by Labelled Transition System (LTS). A protocol is modelled as a set of
communicating processes executing concurrently. They express the constraints on the
relationship between Send and Recv gates, representing sending and receiving messages.
These constraints represent the protocol mechanism. This model emphasizes the agent
collaborative aspects, namely, its interactive behaviors. It follows the social approach
to describe AIP [14, 32]. The advantage of this model is that agent interaction can be

described even internal and mental structure of agents are unclear.

Lotos is suitable to design architecture [18]. We will use it to design a flexible frame-
work for specifying agent interaction protocols. This framework will capture as many

essential properties of MAS as possible while it tries to avoid the details irrelevant to AIP.

2.1 Architecture Design

The essential techniques for effectively handling complexity of any software systems are
decomposition, abstraction and organization. Object-oriented methods decompose a sys-
tem into objects, while agent-oriented methods abstract a system as a number of agents.
The appropriate separation of concerns is vital to modularity and reuse. Interaction proto-
col specifications are decomposed into role modules and message transportation modules,

which are modelled as Lotos processes. A grey-box approach [32] is applied to design



these modules. This means that we specify both the external and internal behaviors of
agents. However, the internal aspects of an agent are only described as far as it affects
the interaction. Internal deliberations are represented as undeterministic choices. This

architecture results in a good separation of concerns.

The framework is designed to be flexible and scalable, separate the standard func-
tionality form application-specific behaviors. We try to capture the essential structure of
agent interactions and only necessary agent internal design. We keep the specifications in
appropriate abstraction level that make verification viable. Therefore, we do not mix pro-
tocol specification with life-cycle management specification, which are internal elements,

viewed from the observers.

The overall communication pattern description is accomplished by the parallel compo-
sition of the role modules and message transportation modules. This convenience is due
to the synchronization mechanisms of Lotos. These modules synchronize on the message
exchange gates to form the whole constraints on the message sequence. All the interaction
scenarios can be produced automatically by simulating the specification. These scenarios
can be represented in different formats, such as text, tree and MSC. Unlike UML that can
only model a small number of possible scenarios, our approach can simulate dynamically

almost all the possible scenarios allowed by a protocol.

Styles denote the way the designer expresses the functionality of system, making use
of language elements. The individual modules are defined first using the state-oriented
style. This style provides insight in the amount of state information to be maintained by a
resource, and the complexity of manipulating this information. The internal insight helps
transform the formal specification into a final implementation of the resource, because the
style gives much hints to develop data and program structures of final implementation.
Finally, all the individual modules are composed to obtain the overall behaviour of the

system using resource-oriented style [34, 30, 11].

We also consider the limitations of available Lotos tools. That means, we do not use

some features of Lotos language, such as recursive processes on parallel operators.

2.2 Message Structure

Messages are specified using Lotos data part, which can abstractly represent message

content. The symbolic messages are independent of any agent language. We focus on



message semantics, without caring about its physical implementation details.

A message has three parts: a sender, a set of receivers, and a content. This means that
one message can be sent to multiple agents at once. For instance, in the message msg(sid,
add(rid, nil), cnt(not-understood)), the sender is sid, the receiver is rid, and the message
content is not-understood. Because Lotos data type definition allows polymorphism, the
operation c¢nt can encapsulate any numbers and kinds of information, such as ent(request)

and cnt(inform-done, result).

2.3 Agent Role Modules

Each role in an interaction is modelled by a process, which encapsulates a set of con-
versation rules related to a role in an interaction protocol. An interaction protocol can
be viewed as a set of constraints on the temporal order of messages and the messages’
content. The overall constraints consist of local constraints through individual roles. A
role module only focuses on how an agent in a given state receives a message of specified

type, performs local actions, sends out messages, and switches to another state.

An agent interacts with its environment through sending and receiving messages. Cor-
respondingly, a role process has two gates: Send and Recv. An action Send has a common
format Send !m, where m is a expression of message type. Through this gate, a role pro-
cess synchronizes with the process Message Transportation to offer a message. A Recv
action has a common format Recv lid ?m:Message. Through this gate, a role process

synchronizes with AgentMessageBuffer to read a message.

Agents are both reactive and proactive. Agents are proactive because they not only
react, but also exhibit goal-oriented behaviors. Agents are reactive because they must
take timely actions in response to changes in the environment. In correspondence, the
role process consists of a proactive and a reactive part. The active part runs actively
depending on its inner state and events. The reactive part executes activities only when

it is triggered by incoming messages. The role’s structure is illustrated in figure 2.

In correspondence, the Lotos specification of proactive and reactive part has the fol-

lowing structure:

e The proactive part:
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([] [contentN] —> Replying with messages if necessary;
changing state

Recursivity

Figure 2: Role Process

[statel] — perform some actions, change its state ...

[

stateN] — ...

eventl] — perform some actions depending on inner event; change its state ...

]

[

[eventN] — ...

e The reactive part:

pick up a message from message buffer (
[contentl] — perform some actions depending on state and message content,

change its state...

[

[contentN] — ...

Every role process has a state data to control its message output. This state reflects
the interaction stages from an agent’s local viewpoint. A completed interaction can be
divided into several stages. In each stage, a role can only send out some specified types

of messages. From the beginning to the ending of an interaction, every role should at

11



least has an initial and a terminal state. Entering into a new state is triggered by what
messages a role has received and sent, and sometimes, the inner events, such as time-out.
Each state are simply specified in Lotos as distinct values in a sort. Those values should

be comparable, hence operations equality and non-equality should be defined.

In each stage of an interaction, a role should record its state, and other information
related to a specified application. These information is combined together as a Session
data structure. The Session has following structure: Session(Agentld, State, Infol, ...
InfoN). For example, an auctioneer agent session has the following fields: conversation
state, administrator, a set of buyers, auction item, seller, starting price, bid increment,
reserved price, current bid, current winner. We define the operations to extract each field

from a variable of session sort, such as getState, getSeller, and getBuyers.

2.4 Message Transportation Module

The protocols are layered upon an underlying asynchronous point-to-point messaging
infrastructure [10]. We use gates Send and Recv as well as buffer data structure to
describe asynchronous message exchanging. The message transportation module is the
core functionality that all protocols needs. It can be reused in all interaction protocol
specifications without any modification. It simulates the transferring of a message from

a sender to several receivers concurrently.

Message transportation module is modelled by two Lotos processes: MessTransporta-
tion [Send, Buffin] and AgentMessageBuffer [BuffIn, Recv/, as shown in figure 3. Mes-
sages transportation delivers one agent’s intention and information to other agents. Mes-
sages can be sent in a synchronous or asynchronous way. When using synchronous com-
munication, the sender waits (blocked) until it makes sure that the message has been
taken. When using asynchronous way, the sender does not wait, instead it continues
processing immediately after outputting a message. Message transportation allows both

one-to-one and one-to-many messages exchanging.

Message
(msg(Agent, Agent Set, TypeQf Act, AttributeMap)

Sender Recei vers Message Type Message Cont ent
(Agent) (Agent Set) (Typed Act) (Attri but eMip)

Figure 3: Message Transportation
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Asynchronous message exchanging is realized through three synchronization steps.

1. First, the synchronization between a sender and MessTransportation.

2. Then, the synchronization between MessTransportation and AgentMessageBuffer.

This step adds a message into a receiver’s buffer.

3. Finally, the synchronization between the receiver and AgentMessageBuffer. In this
step, an agent extracts a message and removes it from the buffer, which buffer is

vital for asynchronous message transportation.

3 Incremental Development of AIP

FIPA Interaction Protocols ! are used as examples to demonstrate AIP development using

the proposed framework and methodologies. .

The design process of complex distributed and concurrent systems is a complicated
task. Hence it is better to construct AIP in an incremental approach as defined in [31].
This approach is also called step-wise refinement [4]. The design process consists of the
steps to identify the message types, states and design the Lotos guard expressions. These
expressions specify the conditions and constraints of message pattern in an interaction

protocol. The steps are illustrated in figure 4.

: —‘ Extend Role& Agent Names ‘ :

1

Extend Attribute Keys ‘

4‘ Extend Types of Adt ‘ : \/ Design Attribute Values ‘
| : T i I
3 4‘ Identify Active Messages ‘ : Refine Interactive Rules ‘ :
: Y : :
: 4‘ Identify Incoming Messages ‘ : : Second Stage
: : e [EURU

v ; "

4‘ Add Guard Expressions

4{ Design Reactive Messages ‘ : e
] 1 : 3 Adjust Specification }]

First Stage

Figure 4: Step-Wise Refinement

The first step is to identify how many types of messages exist in an interaction protocol.

Message types are specified as constructors. Because the representation is symbolic, it is

thttp://www.fipa.org/repository/index.html
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easy and convenient to add any new message types. For example, below is the message

types in the request interaction protocol.

request, refuse, agree, failure, inform-done, inform-result, cancel, not-understood

. — MsgType

Next, decide what messages a role can send and receive. Initiator can only send out
request and cancel messages. And a responder can send out refuse, agree and so on.

Below, we defines both the initiator and responder’s possible output of messages.

Process Initiator :=
Send !msg(id, add(p, nil), cnt(request))
[]Send !msg(id, add(p, nil), cnt(cancel))

endproc

process Responder :=

Send !msg(id, add(ir, nil), cnt(not-understood));
]Send !msg(id, add(ir, nil), cnt(refuse));

]Send !msg(id, add(ir, nil), cnt(agree));

]Send !msg(id, add(ir, nil), cnt(failure));

]Send !msg(id, add(ir, nil), cnt(inform-done));
]Send !msg(id, add(ir, nil), cnt(inform-result));

endproc

Next, we have to figure out the required interactive rules. The consideration includes
the relationships between actions. For example, some requests are allowed to delay, while
some others have to be done immediately. To express that two actions occur one after
another, we should combine these two actions using the action prefix operator (;). Oth-
erwise, we should assemble them in parallel to allow them and other actions to occur

alternately.

Example 3.1 This is an example rule in the Request protocol. When a responder receives

a request, it may respond with not-understood, refuse or agree.
[messageType eq request] — (

Send !msg(...not-understood...);

[

Send !msg(...refuse...);

[

Send !msg(...agree...);

)

Then, identify the agent states from an agent’s standpoint. States identification can

be done incrementally. We can add a new state whenever we find it necessary during

14



the development. For example, below is the initiator role’s state. In its initial state,
initiator can send out a request; in its started state, it can send out a cancel message; in

its terminal state, it can do nothing related to this interaction.

initial, started, terminal

— InitiatorSessionState

Based on the above information, we can design the guard expressions to describe
the constraints of message pattern from an agent’s local viewpoint. Guards are boolean
expressions of states, the conditions that some action can be performed or not. After this
step, we can simulate the protocol. If we find something unpredicted, we can go back to

above steps to correct and refine the protocol.

Example 3.2 After a responder accept a request, it can send out the following messages

at any time.
[st eq started] rightarrow (

Send !msg(...not-understood...);

[JSend !msg(...failure...);

inform-result...);

[JSend !msg(...inform-done...);
[JSend !msg(...

This approach can help us find inconsistences and then deal with subtle situations in
the protocol. First, we can execute the protocol specification via simulation, to observe
the possible behaviors. Simulation not only helps users understand interaction pattern
between agents, but also helps users find the subtle design errors. Second, verification tools
examine the specification against the temporal logics used to describe the properties of a

protocol. This can produces all the unwanted behaviors if they exists in a specification.

4 Validation and Verification

There are several kinds of verification in MAS [15, 16], including:

e Verify protocol properties.
e Verify their implementation is equivalent to the protocol.

e Verify that an agent will always comply to an AIP.
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AIP properties can be expressed in different temporal logics, such as CTL and ACTL.
CADP offers various tools for validation and verification of Lotos Specifications [7]. Verifi-
cation can increase our confidence that a specification satisfies its requirements and meets
some important properties, such as liveness or safety. The general properties of AIP can

be categorized as below:

e Safety. It requires that a property be held in any sequence of messages. For exam-
ple, there is not deadlock in the specification before the protocol is ending. And
some actions should always occur before another actions. Deadlock freedom can be

expressed by the formula [true/ jtrue; true.

To facilitate verification, we can define some temporal logic macro expressions.
For example, the order of actions can be expressed using a predefined macro be-

fore(actionl, action2). The macro is defined as below:
Example 4.1 macro before(A, B) = not( [ (not (B))* . (A) | false ) end macro

e Liveness. It requires that a property should be satisfied by at least one sequence
of messages in the protocol. For example, there is not livelock in the specification.

LiveLock can be expressed as j true 5 ( 7" ).

e Fairness and Justice. There are different kinds of fairness properties. For example,
one requires that each action has the infinite opportunity to be performed. An

action ACT will be fairly reached initially can be expressed as: [ (not ACT) | j true
. ACT; true.

ATP properties can also be directly modelled in Lotos. The observational equivalence
between property specifications and the protocol specification is calculated automatically.
The observational equivalence is also useful to check the compliance between agents and

protocols.

4.1 Explanation

In order to design agents compliant to a protocol, we have to understand the protocol
thoroughly. Given a Lotos AIP specification, the recognition and explanation of a protocol
can be accomplished by automatic or manual simulation of the specification. Simulation

is symbolically executing a Lotos specification. It can help us understand subtle aspects

16



in AIP. By simulating a protocol expressed in Lotos, we can observe and recognize its
behaviors, and also produce different scenarios of a protocol under different situations.

Thus, we obtain an unambiguous understanding of the protocol.

Another way to examine the protocol is to generate the Labelled Transition System
(LTS) of the protocol. The edges (transitions) represent sending messages. In a LTS, there
is a distinguished initial state, in which any conversation starts, and several terminal states
that signal the ending of a conversation. The path from the initial state to a final state

represents a complete interaction between agents.

We can also obtain different views of an interaction protocol by hiding some gates.
For example, in a local interpretation, the edges either model the sending of a message, or
its reception. In contrast, from an external observer’s view (global interpretation of the
interactions among the agents), edges exclusively represent sending messages [21]. For

the second viewpoint, we can hide gates Recv and BuffIn in the specification.

5 Specialization to the Online Auction

The generic framework provides generic data types for reuse, and templates for building

correct protocols. Specialization of the framework consists of the following steps:

Extending, renaming and overloading existing data types

Deciding the types of messages

Deciding the states reflecting the evolution of a protocol

Adding constraints to remove undeterminable choices due to incompleteness

Refining the protocol to a suitable level by repeating the above steps

The agent-based auction protocol in [7] is used as an example to demonstrate the

specialization procedure.

5.1 Data part

A generic data type can be extended using operator “IS”. New agent identifiers (roles)
and new message types can be easily added as below:

17



GenericAgent
N
TYPE AuctionAgent IS GenericAgent
administrator,
auctioneer,
seller,
buyerl,
buyer2 — Agent
ENDTYPE

New session states can be defined by first renaming, and then extending.

GenericAgentState

.
TYPE GeneralAuctioneer AgentState IS
GenericAgentState renamedby
SORTNAMES
AuctioneerAgentState FOR State
ENDTYPE
_
TYPE AuctioneerAgentState IS
General Auctioneer AgentState

auctionStarted,

auctionTimeOut,

auctionDone — Auctioneer AgentState
ENDTYPE

A message content consists of a message type and other data. We can define different
message content by overloading “content”.

AuctionMessageContent

—

TYPE AuctionMessageContent is GenericMessageContent
content:
MsgType, Item, Money, Agent
(* a proposal *)
— MsgContent
content:
MsgType, Agent, Item, Agent, Money, Money
(* call for proposal *)
— MsgContent
ENDTYPE

18



5.2 Behaviour part

The GenericAgent process can be used as a template to define new process representing
a role in a protocol. For example, to design an Auctioneer process, GenericAgent will be
actualized as Auctioneer, AgentSession will be actualized as AuctioneerSession, and so

on.

PROCESS GenericAgent[Send, Recv](AgentSession as) : NOEXIT :=
LET
id : Agent = getID(as),
cst : State = getState(as),

info : SessionInfo = getSessionInfo(as)

IN (
...(* Active part *)
Recv lid 7c : Message; (
Let sender : Agent = getSender(m),
cnt : Content = getContent(m),
t : MessageType = getType(m)
IN(
... (* Reactive part *)
)
)
ENDPROC

—

PROCESS Auctioneer[Send, Recv](AuctioneerSession as) : NOEXIT :=

ENDPROC

Behavior specialization consists of the following steps:

1. Decide all the message types a role can send out actively. These actions are not

triggered immediately by received messages.

Deciding the actively outgoing messages

Send !msg(id, ..., ent(callProposal,...))

I

Send !msg(id, ..., cnt(AuctionSuccess,...))

[

Send !msg(id, ..., ent(AuctionFailure,...))

2. Decide all the message types a role will receive.

19



Deciding the incoming messages

[mt eq subscribe]

[
[

[mt eq propose]

3. Decide the actions a role will perform after it receives a specified type of message.

Deciding the reactively outgoing messages

[mt eq cancelSubscription] — (

Send !msg(id, ..., cnt(acceptCancelSub, ...)

[

Send !msg(id, ..., cnt(rejectCancelSub, ...)

4. Decide how a role will change its state and session information after receiving and

sending a message.

Deciding the transformation of state and session

Send !msg(id, ..., cnt(acceptCancelSub, ...));

AuctioneerAgent[Send, Recv](id, removeBuyer(sender, as))

I

Send !msg(id, ..., cnt(rejectCancelSub, ...));

AuctioneerAgent[Send, Recv](id, as)

5. Add more constraints to remove undeterministic choices.

[mt eq cancelSub] — (
[sender ne winner| —

Send !msg(id, ..., cnt(acceptCancelSub, ...));

I

[sender eq winner] —

Send !msg(id, ..., cnt(rejectCancelSub, ...));

The above steps will be repeated until all the constraints have been added and the
protocol is complete. During the procedure, the protocol can be simulated to examine

their behaviors even if it is not completed.
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6 Conclusion

Lotos language and its related technologies have shown their strength in specifying and an-
alyzing agent interaction protocols. First, they can ambiguously describe the requirements
of agent interaction protocols. Second, the specification can be executed symbolically to
show the dynamic behaviors of agent communication. Third, it is possible to validate
and verify the specification. The success of Lotos in specifying concurrent systems will

contribute to the agent fields.

However, Lotos has some limitations, such as that it cannot specify quantitative time
and exception handling. ELotos removes those limitations and provides better structuring
mechanisms, such as module, interface and other user-friendly features. ELotos is more
powerful for specifying distributed systems. We would like to apply ELotos in such area

but no supporting tools.
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