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ABSTRACTIn this paper we explore the pra
ti
al possibilities of usingformal methods to analyze gossiping networks. In parti
u-lar, we use �CRL and Groove to model the peer samplingservi
e, and analyze it through a series of model transforma-tions to CTMCs and �nally MRMs. Our tools 
ompute theexpe
ted value of various network quality indi
ators, su
has average path lengths, over all possible system runs. Bothtransient and steady state analysis are supported. We 
om-pare our results with the simulation and emulation resultsfound in [10℄.
1. INTRODUCTIONGossiping networks provide a novel way of 
onstru
tingdistributed systems. A gossiping network 
onsists of a largenumber of simple nodes, whi
h have a limited view of thenetwork. The idea is that information is dissipated in a gos-siping style, i.e. every node 
ommuni
ates its informationto a small number of other nodes in the same way peoplespread gossip through a 
ommunity. This style of 
ommu-ni
ation is also 
alled epidemi
 for its similarity to a diseasespreading through a population. Gossiping networks havebeen used su

essfully in a number of appli
ations (for anoverview see [6℄).In [2℄ the use of formal methods is proposed to analyze thebehavior of gossiping networks. The advantage is that for-mal methods are pre
ise and the results are tra
eable (i.e.performan
e problems 
an be tra
ed ba
k to spe
i�
 de-sign de
isions). The disadvantage of formal methods is thatthey rarely s
ale. As the size of the system under analysisis in
reased, the models grow exponentially. Another prob-lem is that a system may be too 
omplex to model usinga parti
ular formalism. First, a gossiping network is inher-ently dynami
, be
ause nodes may enter or leave the system,and their 
onne
tions vary over time. Furthermore, gossip-ing network models 
ombine 
on
urren
y and probabilisti
behavior in a timed setting, whi
h leads to modeling andanalysis 
ompli
ations.In this paper, we will use formal methods (in the form ofexpli
it state model-
he
king) to analyze gossiping networks.Our main goal is to experiment with pre
ise, expli
it-state,formal models and to investigate the potential and the lim-itations of this approa
h. In parti
ular, we want to answerthe following questions:� Is it possible to model the 
omplex nature of gossipingnetworks using formal methods?� How well does expli
it state model-
he
king s
ale?

� Are the { possibly small s
ale { results useful in makingdesign de
isions?To investigate the �rst question, we model the peer sam-pling servi
e of [10℄ using the �CRL [4℄ tool-set, whi
h sup-ports the use of 
omplex data-types. The 
entral 
hallengeis to model a dynami
ally 
hanging network using stati
data-types. The �CRL spe
i�
ation is then transformed toa labeled 
ontinuous-time Markov 
hain, by 
ombining 
on-
urrent, probabilisti
 and sto
hasti
 behavior along the linesof the MLotos pro
ess algebra [9℄. We then perform analy-sis (on a normal modern workstation) to see for whi
h sizesystem we 
an still generate expli
it-state models. Finally,we 
ompare our results with the simulation and emulationresults from [10℄ to see if we 
an dete
t the same interest-ing phenomena using formal methods as are observed whenemploying simulation and emulation.Obviously, any 
omplete expli
it state method 
an onlyhandle relatively small networks. Symmetry redu
tion isparti
ularly interesting in the setting of gossiping networks,as it abstra
ts individual node identities and instead looks atthe overall stru
ture of the network (in terms of the 
onne
-tions between the nodes). We explore symmetry redu
tionfor gossiping networks by using the Groove tool [15℄. Thistool utilizes graph transformations and is therefore ideal forthe des
ription of the behavior of gossiping and other dy-nami
 networks. Furthermore, sin
e Groove handles graphsmodulo isomorphism, it automati
ally abstra
ts individualnode identities. The results obtained in this way are still
omplete and pre
ise. However, it is 
learly desirable in thefuture to also use some form of abstra
tion to 
ounter thestate-spa
e explosion problem even more drasti
ally [2℄.The paper is organized as follows. Se
tion 2 des
ribes gos-siping networks. Se
tion 3 gives an overview of the di�erentformalisms used in this paper. Se
tion 4 des
ribes how weused these formalisms to model gossiping networks. Theanalysis of the gossiping network models is then explainedin Se
tion 5. Then the results of the analysis are given inSe
tion 6. Finally, we dis
uss the possible avenues for futurework in Se
tion 7 before 
on
luding the paper in Se
tion 8.
2. GOSSIPING NETWORKSOne of the primary uses of networks is the distribution ofinformation from and to the 
onstituent nodes. Tradition-ally, spe
ial network nodes, known as servers, are designedto be responsible for this distribution; other nodes are then
alled 
lients. The drawba
k of the 
lient-server approa
his that the servers alone are responsible for the proper fun
-tioning of the whole network. Therefore, this approa
h does
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not s
ale well and is unsuitable for very large or dynami
networks with high performability requirements [17℄.An elegant alternative was found by abandoning the ideaof a 
entral server 
oordinating the proper fun
tioning [5℄.All nodes then behave a

ording to some simple algorithmand, hopefully, the proper network behavior emerges spon-taneously without any one node being responsible for the
orre
tness of the entire network. This approa
h mimi
sthe way a group of people spread gossip. No single persontakes it upon him or herself to 
olle
t all gossip and dis-tribute it to everyone, yet be
ause people naturally sharethe gossip they know, it 
an be expe
ted that in the longrun everyone knows everything about everybody. Be
auseof this similarity, these networks are referred to as gossipingnetworks (or epidemi
 networks, be
ause the way informa-tion is spread throughout the network also mimi
s the waya disease spreads throughout a population during an epi-demi
) [5℄.In the absen
e of a 
entral server, the nodes of a net-work must themselves a
quire and maintain knowledge ofthe stru
ture of the network. This is the responsibility ofthe so-
alled peer sampling servi
e. The idea is that thenodes 
ontinuously ex
hange information about the nodesthey know about. The goal of this behavior is to maintain awell-balan
ed network as this greatly improves the reliabil-ity and eÆ
ien
y of the network. In [10℄ it is assumed thatea
h node knows only a small number of its peers (the setof peers known to a node is known as its view, whi
h hasa maximum size). The a
tive behavior of a node is then asfollows:1. It sele
ts a peer from its view;2. It sele
ts what part of its view it will send;3. It sends this subview and re
eives a subview in return;4. It merges the re
eived subview with the original view;5. It prunes ex
ess peers from its view, if ne
essary.There are several parameters in this proto
ol:� The 
ommuni
ation poli
y (step 3): push, pull or both(push-pull). This refers to 
ases where, respe
tively,only the a
tive node sends its view, only the passivenode sends its view, or both nodes send their views.In this paper we study the di�eren
es between thesepoli
ies.� The sele
tion of peers to 
ommuni
ate, view to sendand peers to prune (steps 1, 2 and 5), whi
h 
an bebased on the age of the links in the network (being thetime sin
e the last 
ommuni
ation between the twonodes). In this paper we ignore all age parameters:peer sele
tion and pruning are done at random (withan equal probability for ea
h possible 
hoi
e), and al-ways the entire view is sent.Gossiping networks are diÆ
ult to analyze due to their sizeand the many di�erent parameters. Furthermore, we 
an-not analyze the nodes in isolation (a te
hnique whi
h is use-ful in analyzing 
lient-server systems) as we are spe
i�
allyinterested in behavior that emerges in (large) networks ofnodes. So far, mostly simulation and emulation have beenused [10℄, but this has a number of drawba
ks. Simulationrelies heavily on the a

ura
y of the simulation models usedand 
an only give results in the form of 
on�den
e intervals.

Emulation on the other hand is very 
ostly and the pre-
ise interpretation of the results is often obs
ure, i.e. whensomething interesting happens it is diÆ
ult to �nd out what
aused this event. Finally, both simulation and emulationstruggle to �nd so-
alled rare events, i.e. events that have avery low probability to happen (su
h that they rarely hap-pen in simulation/emulation), but are still 
ommon enoughto 
ause great problems during the operation of the network.As a �rst start we study a simple version of the gossipingproto
ol as des
ribed in [10℄ where peer sele
tion and viewsele
tion are always random. Methods to implement otherpeer sele
tion and view sele
tion strategies are dis
ussed inSe
tion 7.
3. FORMALISMSIn this se
tion, we des
ribe the formalisms used in themodeling and analysis of gossiping networks. For the sakeof brevity we keep the des
riptions short and refer to othersour
es for more detailed information about the formalisms.Figure 1 shows how these formalisms have been 
hained to-gether for the purpose of this paper.
3.1 mCRL�CRL [4℄ 
ombines pro
ess algebra (in the style of the al-gebra of 
ommuni
ating pro
esses, ACP [3℄) with abstra
tdata types. From pro
ess algebra, it inherits operators like+ (alternative 
hoi
e), � (sequential 
omposition) and jj (par-allel 
omposition). Normally, parallel pro
esses interleavetheir a
tions in an asyn
hronous way. When spe
i�ed expli
-itly, parallel pro
esses 
an syn
hronize on spe
i�
 a
tions.The data part is used to model the state of a re
ursivepro
ess (X(s) = p[X(s0)℄), 
onditional bran
hing (p / b .q) and to des
ribe the data 
ommuni
ated by syn
hro-nized a
tions (send(m)). The possibly in�nite summation(Px:N read(x)) is used to model the input of an arbitraryx : N , where N is a possibly in�nite set of values.
3.2 GrooveGroove [15℄ is a tool for the veri�
ation of graph trans-formation systems. A Groove spe
i�
ation is a set of graphtransformation rules, ea
h of whi
h 
onsists of a left handside (LHS) and a right hand side (RHS). The e�e
t of a ruleis given by the \di�eren
e" between LHS and RHS; in par-ti
ular, nodes and edges 
an be added or removed. A rule isappli
able to a graph wherever the graph 
ontains an imageof the LHS; applying the rule essentially means repla
ingthe LHS image by a 
opy of the RHS.Given a rule system and an initial graph, a model of thebehavior is obtained by exploring all rule appli
ations re-
ursively to the initial graph and all resulting new graphs.This gives rise to a transition system in whi
h the statesare graphs and the transitions are rule appli
ations. Hen
e,to model the behavior of a given system, all relevant infor-mation, in
luding the data stru
tures, should be en
odedinto the initial graph, by means of nodes and edges, and alldynami
 steps should be en
oded as graph transformationrules.A spe
ial feature is that states are 
ollapsed modulo graphisomorphism; in other words, Groove performs automati
symmetry redu
tion (see [16℄). This turns out to be of greatadvantage in for the gossip proto
ol, sin
e this 
ontains avery large degree of symmetry.
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�CRLGROOVE CTMC MRM ResultsInterpretInterpret Cal
ulation Model 
he
kingFigure 1: The analysis traje
tory.
3.3 Continuous-time Markov chainsContinuous-time Markov 
hains are a 
lass of sto
hasti
pro
esses with a dis
rete state spa
e, where state transitionso

ur after time-delays governed by negative exponentialdistributions (for an overview of CTMCs and other Marko-vian models see [8℄). A CTMC 
an be embellished with alabeling fun
tion whi
h labels ea
h state with a set of logi
alpropositions. We 
all the resulting model a labeled CTMC.In our 
ase, the states of the CTMC are labeled with dire
tedgraphs representing the state of the gossiping networks, butit is obvious that a dire
ted graph of bounded size 
an been
oded as a set of propositions.
3.4 Markov reward modelsA Markov reward model is a CTMC augmented with a re-ward stru
ture assigning a real-valued reward to ea
h statein the model [1℄. We use this reward stru
ture to measureseveral quality indi
ators of the gossiping networks: the vari-an
e of the indegree of the nodes, the average length of theshortest path between every possible 
ombination of nodesand the 
lustering 
oeÆ
ient (see [10℄ and Se
tion 5).We are interested in 
al
ulating the expe
ted value ofthese measures at 
ertain time-points as well as the expe
tedvalue of the measures in the long run. We 
an 
al
ulate thisby implementing the possible extension to CSRL �rst men-tioned in [1℄ and implemented in [11℄. The instantaneousreward 
orresponds to the expe
ted value of a measure at a
ertain time point. The instantaneous reward at time pointt is 
al
ulated by summing up, for all states s, the produ
tof the probability of being in s at time-point t (transientprobability) and the reward of s. The expe
ted reward rate
orresponds to the long-run expe
ted value of a measure.The expe
ted reward rate 
an be 
al
ulated by summing up,for all states s, the produ
t of the long-run average proba-bility (steady-state probability) of being in state s and thereward of s.
4. MODELINGIn this se
tion, we des
ribe how we modeled gossipingnetworks. First, an abstra
t overview of the behavior of anode in a gossiping network is provided. Next, the asso
i-ated �CRL spe
i�
ation is given. Finally, we des
ribe howwe modeled the gossiping networks using the graph trans-formation tool Groove.
4.1 Abstract modelThe state of one node in our gossiping network is des
ribedby its view, i.e. the other nodes it knows about, and itsinternal state. Su
h a view is modeled simply as a set ofnodes. The behavior of a node is divided into an a
tive and apassive \thread", following [10℄. A s
hemati
 representationof the di�erent internal states of a node using the push poli
y
an be seen in Figure 2.

S wait sele
t peer (1)send (3)re
eive/merge (3,4)prune view (5) Sto
hasti
 delayProbabilisti
 
hoi
eCon
urrent a
tionFigure 2: S
hemati
 of the behavior of a gossipingnetwork node using the push poli
y.Initially, a node is in its stable state (marked S in Fig-ure 2). After a sto
hasti
 delay (the wait transition in Fig-ure 2) the node may move to its a
tive thread. At thispoint the proto
ol des
ribed in Se
tion 2 starts: in its a
-tive thread the node randomly sele
ts a peer (with equalprobability, step 1), sends its view (augmented with its ownidentity) to the sele
ted peer (step 3) and returns to its sta-ble state. The sele
ted peer re
eives this view in its passivethread, provided it is in a stable state, and merges it withits own view (steps 3 and 4); it then prunes the merged viewrandomly to a 
orre
tly sized subset (with equal probability,step 5). After this view sele
tion the node returns again toits stable state.The pull poli
y is similar, ex
ept that here the a
tivethread, after sele
ting a peer, requests the view of that peer,merges it with its own view, and trun
ates it randomly. Fi-nally, in the push-pull behavior, views are ex
hanged in bothdire
tions.A full network 
onsists of N su
h nodes, working in par-allel. It is important to understand that if all nodes are ina stable state, any node 
ould start the a
tive thread, andsele
t potentially any other node. So for an N node networkthere are N(N � 1) potential 
ontinuations (limited only bythe a
tual 
ontents of the views).A major issue in any 
on
urrent setting is how the eventsof di�erent nodes are ordered. In [10℄ a round-robin s
heduleis assumed: in every round, every node a
ts exa
tly on
e.However, su
h an ordering would require a 
entral author-ity (at least a global 
lo
k), whi
h makes sure that ea
hnode a
ts at the appropriate time. But the la
k of a 
en-
9



tral authority is one of the prin
ipal properties of gossipingnetworks so we �nd this assumption too restri
tive. In thispaper we assume that all nodes a
t after a sto
hasti
allydistributed delay. The delay distributions of the nodes areidenti
al, but independent. This means that the nodes areall expe
ted to a
t at the same rate, but the independen
emeans that there is no need for a 
entral authority. In thismodel rare o

urren
es, su
h as a single node a
ting mu
hfaster than the other nodes for a period of time, are possibleeven though they will have an extremely small probability.Su
h rare o

urren
es are generally diÆ
ult to dete
t usingstandard simulation or emulation te
hniques.There 
ould be 
on
ern that a model 
omposed of severalnodes might deadlo
k. Spe
i�
ally, this would happen if twonodes would simultaneously enter their a
tive threads andattempt to 
ommuni
ate with ea
h other. Both nodes wouldthen be stu
k waiting for the other node. To avoid su
h sit-uations, the a
tive and passive threads must somehow runatomi
ally. This 
an be modeled by the maximal progressassumption [14℄, i.e. all internal behavior o

urs immedi-ately. In pra
ti
e, this means that all 
ommuni
ation andview-updating a
tions have priority over the sto
hasti
 de-lay. This 
an also be explained sto
hasti
ally: Sin
e theWait delays are drawn from 
ontinuous distributions theprobability that two timers expire at the same time is zero.If internal 
omputation times are negle
ted, the probabil-ity that another timer expires during internal 
omputationis also zero. Hen
e we may safely assume that the passivethreads are always ready to re
eive information.The sto
hasti
 delay Wait is assumed to be governed bya negative exponential distribution and is thus modeled asa 
ontinuous-time Markovian transition. In reality, how-ever, the delay 
ould be implemented as a deterministi
 de-lay. This 
an be approximated using an Erlang distribution.Su
h an Erlang distribution would 
onsist in our model ofa 
hain of identi
ally distributed exponential distributions,i.e. a 
hain of Markovian transitions. To improve the a

u-ra
y of the approximation we need to in
rease the numberof phases in the Erlang distributions, i.e. we must make the
hain longer. This, however, exponentially in
reases the sizeof the network model. We have not experimented with thisin our analysis.
4.2 mCRLUsing the �CRL language, we modeled ea
h node as aseparate pro
ess. The state parameters of ea
h node denoteits identity and its 
urrent view. Nodes are 
omposed inparallel, and 
ommuni
ate by sending/re
eiving views. Forthis, we introdu
e expli
it send and re
eive a
tions, whi
hsyn
hronize atomi
ally (handshaking). Complex operations,like merging views and sele
ting subviews, are spe
i�ed byequations in the abstra
t data part.In order to model one ex
hange (in
luding pushing andpulling views) in the proto
ol atomi
ally, we spe
ify syn-
hronized send- and re
v-a
tions with four arguments asfollows:send(i; j; v; w) denotes that (the a
tive thread of) node ipushes view v to (the passive thread of) node j, andpulls view w from it.re
v(i; j; v; w) denotes that (the passive thread of) node jre
eives view v from (the a
tive thread of) node i, andsends view w to it.

In order to model non-deterministi
 strategies for peersele
tion and view sele
tion, we in
lude two predi
ates:peersele
t(v; p) : given 
urrent view v, it is possible tosele
t p from it for the next 
ommuni
ationviewsele
t(v; u) : given a view v, it is possible to sele
tthe subview u from it.Given all these ingredients, a node with identity i and
urrent view v, and having two threads, 
an essentially bemodeled as follows:Node(i : Id; v : V iew) =
Pj:IdPw:V iewPu:V iew send(i; j; v; w) �Node(i; u)/ peersele
t(v; j) ^ viewsele
t(merge(v;w); u) . Æ+ Pj:IdPw:V iewPu:V iew re
v(j; i; w; v) �Node(i; u)/ viewsele
t(merge(v;w); u) . ÆA network with three nodes and node 2 in the 
enter is thenmodeled as:Node(1; f2g) jj Node(2; f1; 3g) jj Node(3; f2g)In fa
t, we used a slightly more 
ompli
ated model: a delaya
tion is added; the peer sele
t and view sele
t transitionsare expli
itly modeled as internal transitions; node i is prop-erly added to v and deleted from w; all datatypes, in
lud-ing the sele
tion predi
ates, must be spe
i�ed in full detail.The a
tual model that we used is parameterized over thepull/push poli
y, the sizes of the network and the view, andover the initial 
on�guration. We were also able to spe
ifypeer and view sele
tion strategies based on hop 
ounters,but these models have not been analyzed in detail.Note that we relied on the strong data spe
i�
ation 
apa-bilities of �CRL. However, �CRL has no notion of proba-bilisti
 
hoi
e, or sto
hasti
 time. So, as one 
an see abovethe 
hoi
e of peer sele
tion and view sele
tion are modeledas non-deterministi
 
hoi
e in �CRL. In order to model thedelays, the send-a
tion is pre
eded by an a
tion \delay".Only after generating the state spa
e, the other tools in thetool 
hain interpret \delay" as sto
hasti
 delay. Also, theyinterpret non-deterministi
 as equiprobable 
hoi
e.The behavior of the gossiping network is now de�ned asthe parallel 
omposition of the behaviors of its 
onstituentnodes. The maximal progress assumption is implementedby giving all other transitions priority over the delay a
-tion. The state spa
e of this network basi
ally 
onsists ofthe views of all nodes. If we interpret the peers in the viewof a node as its neighbors in a dire
ted graph, then ea
hstate in the behavior of the network is labeled by a dire
tedgraph. In Se
tion 5, we will see how we transform this be-havior to a Markov reward model and how we then analyzeit to 
ompute interesting measures for the network.

4.3 GrooveThe Groove model of the gossiping network dire
tly en-
odes the stru
ture of the network as a graph, with networknodes as graph verti
es and their view as a set of outgo-ing edges. In addition, the model in
ludes some auxiliaryverti
es and edges to 
ontrol the behavior. An example ini-tial graph, for a network of size 5 with initial view size 2organized in a ring stru
ture is given in Fig. 3.The Groove model does not in
orporate the notion of 
om-muni
ating pro
esses. Instead, the essential steps of pushing
10



Figure 3: Start graph for the Groove modelElements MeaningThin bla
k Present in the graphWide dashed Absent in the graphMedium gray Added to the graphDotted Universally quanti�edFigure 4: Rule \pull": link edges are added to thea
tive node for all links known to the passive node.and pulling the views from one node to another are ea
h 
ap-tured by a single rule, whi
h in
orporates at the same timethe role of the a
tive and the passive node. For instan
e,the rule for pulling is displayed in Fig. 4.Together with rules for 
hoosing the a
tive and passivenodes and for \
leaning up" afterwards, this forms a smallproto
ol like the one displayed in Fig. 2 for mCRL, withas main di�eren
e that there are no separate \send" and\re
eive" a
tions; rather, these are 
ombined in the \pull"and \push" rules.
5. ANALYSISIn this se
tion, we des
ribe how we analyze the �CRLand Groove models des
ribed in the previous se
tion. Thisanalysis follows the traje
tory of Figure 1. We also dis
ussthe 
omplexity of our approa
h, both in terms of the size ofthe models and the time needed to analyze the models.
5.1 From mCRL/Groove to CTMCIn Se
tion 4, we have seen that the �CRL and Groovemodels 
ontain 
ontinuous sto
hasti
 delays and dis
reteprobabilisti
 transitions. Following the strategy for theMLotos pro
ess algebra [9℄ we interpret the �CRL andGroove models as labeled CTMCs.Let's �rst 
onsider what a �CRL or Groove model of agossiping network looks like. The �CRL model is gener-ated by 
omposing all the node models in parallel, whilethe Groove model is generated by exhaustively applying allgraph transformations. The 
hoi
e of the node that willinstigate a 
ommuni
ation is modeled as a 
hoi
e betweensto
hasti
 transitions. After a node X has been sele
ted,the 
hoi
e in step 1 of the proto
ol (the peer sele
tion) is adis
rete probabilisti
 
hoi
e between the nodes in the view

of X. It is important to note that probabilisti
 
hoi
es takepla
e instantaneously and, be
ause of the maximal progressassumption, this prevents any other node from be
ominga
tive (i.e. �nishing its sto
hasti
 delay) before node X isdone with its 
ommuni
ation. The peer sele
tion is followedby another probabilisti
 
hoi
e of the result of step 5 (prun-ing). After this, the model returns to a new stable state,where all nodes are waiting on their sto
hasti
 delays. Apartial example of a model with a single pruning 
hoi
e 
anbe seen on the left side of Figure 5.Sin
e all internal transitions are substituted by probabilis-ti
 
hoi
e, there is no internal non-determinism left. We alsosee that all probabilisti
 transitions are delay-guarded1 . Thismeans that the models 
an be transformed into CTMCs asin [9℄. The main prin
iple of this transformation is thata Markovian delay (e.g. with rate �) followed by a prob-abilisti
 
hoi
e (e.g. between two transitions, one havingprobability 13 , the other having probability 23 ) is sto
hasti-
ally equivalent to a 
hoi
e between Markovian transitionssu
h that the rate of the original Markovian transition isdistributed over the new Markovian transitions a

ordingto the probabilisti
 
hoi
e (in our example we get Marko-vian transitions with rates 13� and 23� respe
tively). Thestate-labels of the �CRL and Groove models are preservedin the resulting labeled CTMCs. Ea
h label des
ribes a 
on-�guration of the gossiping network.In pra
ti
e the transformation from �CRL or Groovemodel to CTMC means that every sequen
e of wait (sto
has-ti
 delay), peer sele
t (probabilisti
 
hoi
e) and view sele
t(probabilisti
 
hoi
e) transitions is repla
ed with a groupof sto
hasti
 delay transitions by distributing the sto
hasti
delay of the wait transition over the probabilisti
 distribu-tions of subsequent transitions. A partial example of thistransformation 
an be seen in Figure 5.
5.2 From CTMC to MRMWe now have a labeled CTMC with ea
h of its states la-beled with a dire
ted graph representing the state of thegossiping network. We now 
ompute for ea
h state in theCTMC, using standard algorithms from graph theory, sev-eral measures of the graph asso
iated with the state: thevarian
e of the indegree of ea
h of the nodes, the averageshortest path length between all 
ombinations of di�erentnodes and the 
lustering 
oeÆ
ient [10℄. This gives us threeMRMs where the reward stru
ture � is the indegree varian
e,average shortest path or 
lustering 
oeÆ
ient respe
tively.The indegree varian
e is a measure on the distribution ofindegrees in the network. In a perfe
tly balan
ed networkall indegrees would be equal and the varian
e therefore 0.The higher the varian
e the more unbalan
ed the networkis, whi
h is undesirable. A low average shortest path lengthis desirable sin
e this will redu
e transmission times. And�nally the 
lustering 
oeÆ
ient measures the amount of in-ter
onne
tions between the neighbors of any node. Highvalues for this 
oeÆ
ient mean that the nodes form 
lusterswhi
h unbalan
es the network and is therefore undesirable.
5.3 From MRM to resultsObtaining the results 
onsists of two steps. First, usingthe transient and steady state analysis tools from the CADPtoolset [7℄, we 
ompute the probability to reside in ea
h state1A delay-guarded probabilisti
 transition is (eventually) pre-
eded by a sto
hasti
 transition. See [9℄ for more details
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Figure 5: Example of the transformation of part of a �CRL/Groove model to a CTMC.at 
ertain time points and on the long run. This 
an be doneon
e for the CTMC obtained after removing all labels. Theintermediate result is lumped, using rate-preserving bran
h-ing bisimulation minimalization.Next, we model-
he
k ea
h MRM separately, using the ex-tension to CSRL �rst suggested in [1℄. We have implementedthis extension using the extensible XTL model-
he
ker ofthe CADP tool-set [12℄. The CSRL extension is also sup-ported by the PRISM model 
he
ker [11℄. This extension toCSRL provides us with both instantaneous rewards, i.e. theexpe
ted value of one of the measures at some time point,as well as the long run reward rate, i.e. the expe
ted averagevalue of the measures in the long run.

5.4 ComplexityWe now 
onsider the 
omplexity of our analysis method.We �rst noti
e that the state-spa
e of the models, from�CRL or Groove to MRM, is bounded by the di�erent possi-ble network 
on�gurations (times a 
onstant fa
tor be
auseof the internal states), taken modulo isomorphism in the 
aseof Groove. For a gossiping network with N nodes and view-size (or 
onstant out-degree) C we �nd „ N � 1C «N di�er-ent 
on�gurations: ea
h node has C out of N � 1 peers inits view („ N � 1C « possibilities) and there are of 
ourse Ndi�erent nodes. We disregard the possibility of nodes havinga view smaller than the maximum view-size sin
e we 
on-sider only models where all nodes start with maximum 
a-pa
ity views. Now ea
h state is labeled with a dire
ted graphrepresenting the network. To 
al
ulate the graph measureswe need to 
ompute the shortest path length for all 
ombi-nations of nodes. This is done by using Dijkstra's shortestpath algorithm whi
h has a 
omplexity of N2. Cal
ulatingthe other two measures 
osts less time. For meaningful val-ues of N this 
al
ulation is dominated however by the needto 
al
ulate steady-state results for the resulting MRM. The
omplexity of this operation is x3 where x is the number ofstates in the model2. Overall we then �nd a time 
omplexityof O( „ N � 1C «N!3).For the 
ase of Groove, due to symmetry redu
tion thestate spa
e is (mu
h) smaller, but we know of no analyti
alway to predi
t the e�e
tive redu
tion. Note, however, thatevery 
on�guration of a network of size N , interpreted upto isomorphism, 
an represent at most N ! di�erent \plain"
on�gurations. This provides an upper bound to the de-2We disregard here the possibility of iterative algorithms,for whi
h the 
omplexity depends on the desired a

ura
y.

gree of symmetry redu
tion. In Table 1 we 
ompare the
al
ulated number of \plain" 
on�gurations (P ) with thesimulated number of 
on�gurations modulo symmetry (S),insofar we have been able to 
ompute the latter. The re-du
tion (P=S) is 
learly large (in fa
t, the reader 
an 
he
kthat it approa
hes the maximal redu
tion of N ! to more than95%), but equally 
learly, the size of the redu
ed state spa
eis still more than linear exponential in the network size, andso the problem is intra
table even for small network sizes.
6. RESULTSIn this se
tion we give the results of our analysis. We startby giving the long-run averages for indegree varian
e (IV),average shortest path length (PL) and 
lustering 
oeÆ
ient(CC). We then present graphs showing the expe
ted evo-lution of these measures and 
ompare the results with the
on
lusion found in [10℄.
6.1 Long-run averagesTable 2 gives the long run average results for gossipingnetworks for the three di�erent transmission poli
ies pull,push and pull-push (marked \both" in the table), for di�er-ent network and view sizes. Moreover, the table also indi-
ates the size of the models in �CRL and Groove. The ratiobetween these two numbers is similar to the potential redu
-tion predi
ted in Table 1. Note that for N = 7 we were notable to 
ompute the �CRL models; with Groove we 
ouldgenerate up to network size 7, but the results 
ould not beanalyzed. We 
on
lude from these results that, a
ross theboard, pull-push is the best transmission poli
y, followed
losely by push, while pull is mu
h worse than the others.Note that this 
orresponds to the �ndings of [10℄.Another observation is that the number of rea
hable (sta-ble) network 
on�gurations (modulo isomorphism) is almostalways equal to the total number of 
on�gurations a

ord-ing to Table 1, ex
ept for the push poli
y for N = 6; 7 andC = 2, where apparently a very few 
on�gurations are notrea
hable. We have not analyzed this further.A very interesting set of results emerges for N = 6 andC = 2. For the push and the pull-push strategies we see thaton the long run the network will have an indegree varian
eof 0, a relatively high path length of 3.33 and a 
lustering
oeÆ
ient of 1. For pull, a similar e�e
t o

urs, but in this
ase the indegree varian
e is rather large, instead of 0.The reason for these values is that (for push and pull-push strategies with N = 6 and C = 2) a gossiping networkwill always eventually partition into a 
on�guration 
on-sisting of two fully 
onne
ted groups of 3 nodes, shown inFigure 6 (left). This indeed has IV = 0, CC = 1 and averagePL = 3 13 . There is no way for the network to re
over from
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C = 2 C = 3 C = 4 C = 5N Plain (P ) Sym. (S) P=S P S P=S P S P=S P S P=S4 81 6 145 7776 79 98 1024 13 796 1.0�106 1499 667 1.0�106 1499 667 15625 40 3917 1.7�108 35317 4838 1.3�109 257290 4975 1.7�108 35317 4838 279936 100 27998 3.8�1010 967255 39103 2.3�1012 { { 2.3�1012 { { 3.8�1012 { {Table 1: Network 
on�guration 
ounts and symmetry redu
tion for various network and view sizes.N C Poli
y IV PL CC Full state spa
e Stable�CRL Groove Groove4 2 Pull 1.50 1.38 1.00 981 87 64 2 Push 1.03 1.16 0.79 945 80 64 2 Both 0.94 1.14 0.77 1989 96 65 2 Pull 2.93 2.16 1.00 121176 2006 795 2 Push 1.51 1.67 0.68 117936 1850 795 2 Both 1.53 1.63 0.64 408456 2064 795 3 Pull 2.40 1.48 1.00 16144 338 135 3 Push 1.15 1.07 0.81 17984 321 135 3 Both 1.02 1.05 0.79 39184 419 136 2 Pull 4.31 1.00 3.00 1.9�107 56843 14996 2 Push 0.00 1.00 3.33 1.8�107 56843 14986 2 Both 0.00 1.00 3.33 8.2�107 64389 14996 3 Pull 4.75 2.28 1.00 2.4�107 56843 14996 3 Push 2.02 1.39 0.70 2.3�107 56843 14996 3 Both 1.83 1.35 0.67 9.5�107 64389 14996 4 Pull 3.33 1.56 1.00 403075 1307 406 4 Push 1.15 1.02 0.83 386125 1247 406 4 Both 0.99 1.01 0.82 858475 1604 407 2 Pull { { { { 1515526 353177 2 Push { { { { 1405080 353147 2 Both { { { { 1429880 35317Table 2: Long run average results for gossiping networks with N nodes and view size C; IV= Indegree Varian
e,PL = average shortest Path Length, and CC = Clustering CoeÆ
ient. Additionally the size (number of stablestates) of the �CRL and Groove models is given.
Figure 6: Degenerate network 
on�gurations: noneof the strategies 
an re
over from the left hand side,and pull 
annot re
over from the right hand side.this situation. We expe
t to see a long-run partitioning forany gossiping network where N � 2(C + 1). However, thetransient analysis will show that it usually takes a long timefor a network to partition. For the pull poli
y, the righthand 
on�guration of Figure 6 (whi
h is a star topology interms of [10℄), together with other star 
on�gurations, forma similar \trap", but this time with a very high indegreevarian
e (IV = 4:5 for the 
on�guration shown).

6.2 Transient resultsFigures 7-11 show the evolution of the values of the dif-ferent measures over time. A single time unit 
orrespondsto the expe
ted time a node will take to exe
ute its a
tivethread on
e.From Figures 7-9 we 
an see that the networks of size5 stabilize fairly qui
kly. Figures 10 and 11 look at thebehavior of networks of varying view size and network size,respe
tively, under the \winning" pull-push strategy. Here,we 
an see that the shape of the fun
tion for the networkof size 6 with view size 2 is di�erent from the others: theindegree varian
e of this network (depi
ted in Figure 10) �rstseemingly stabilizes, but then slowly drops towards zero. Forthe 
lustering 
oeÆ
ient we see the same e�e
t: at �rst itappears to stabilize before it rises to 1 (as shown by thesteady-state analysis). Both e�e
ts are due to the fa
t thatthe network will eventually rea
h, with probability 1, the
on�guration of Figure 6 (left). It is also 
lear, however,that on average it takes a relatively long time for gossipingnetworks to rea
h this degenerate state.
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6.3 TraceabilityAn interesting aspe
t of formal methods is that they aretra
eable. This means that when we �nd a model whi
hbehaves in a spe
i�
 way we 
an as
ertain why it behavesin su
h a way. We take as an example the pull poli
y forgossiping proto
ols. In [10℄ it is reasoned that this is a poorpoli
y sin
e su
h gossiping networks revert to a star topol-
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oeÆ
ient graph for networkswith varying sizes with pull-push strategy.ogy. This happens when a node has no more in
oming links.No other node then 
onne
ts to it, so no one 
an pull theidentity of this node. In other words, a new link to the node
annot be established and the node will forever have no in-
oming links. With a push poli
y this is not the 
ase, as anode will push its own identity to other nodes in the net-work. Figure 12 (left) is the MRM generated in the analysisof a Groove model of a network with N = 4 and C = 2 usingthe pull poli
y. We 
an 
learly see the detrimental behaviorof the pull proto
ol. When the network rea
hes the left-most state it 
an never leave it again. The \star" topologyhere is formed by the 3 totally 
onne
ted nodes (the 
enterof the star) and the upper-left node with no in
oming links(the single point of the star). In 
ontrast, the MRM modelof a 4-node network using the push poli
y, depi
ted on theright hand side, does not show any sink states and does not
onverge to a star topology.

7. FUTURE WORKSin
e this paper is meant as a �rst exploration of thepra
ti
ality of using formal methods to analyze gossipingnetworks there is a lot of room for further resear
h.The use of sto
hasti
 delays and dis
rete probabilisti

hoi
e has not yet been formally in
orporated in the �CRLand Groove formalisms. Based on our experien
es in mod-
14
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Figure 12: Lumped MRMs of a gossiping network with 4 nodes, view size 2 and pull (left-hand side) andpush (right-hand side) poli
y. The transmission rate of ea
h node is �. The reward stru
ture represents theindegree varian
e of the gossiping network. The states are labeled with graph 
on�gurations (The bottomstate in fa
t represents two states with bisimilar behaviors but di�erent graph 
on�gurations).eling gossiping networks we do not foresee any major theo-reti
al diÆ
ulties in in
orporating sto
hasti
s in �CRL andGroove. It is important to develop this theory further asthis will also allow other interesting sto
hasti
 systems be-sides gossiping networks to be modeled using these powerfulformalisms.The design spa
e for gossiping networks is quite large.In [10℄, various strategies for peer sele
tion, view sele
tion aswell as the di�erent peer-ex
hange poli
ies have been stud-ied. In the future, we plan to model and analyze gossipingnetworks with peer and view sele
tion strategies other thanpurely random ones. This requires us to model the age of thelinks in the gossiping networks. This 
an be easily modeledusing the 
omplex data types of �CRL, where the sele
tionstrategies are parameterized by a predi
ate (
f. Se
tion 4.2).However, our initial experiments soon presented a new 
hal-lenge, as the age of the links may be unbounded, leading toin�nite models. A �rst approa
h to dealing with this prob-lem would be to investigate the me
hanism used in a
tualimplementations of gossiping networks. Another logi
al ap-proa
h is to use some form of abstra
tion to model the age

of the links.Another aspe
t of gossiping networks that is very impor-tant to investigate in the future is dynami
ally appearingand disappearing nodes as dis
ussed in [10℄. The modelingof systems that 
an grow larger and smaller over time is no-toriously diÆ
ult with 
lassi
al pro
ess algebras, but spe
ialmobile formalisms exist, su
h as the �-
al
ulus (see [13℄). Inthe graph transformation approa
h of Groove, on the otherhand, it should be easy to in
orporate this type of behavior.Regarding the type of analysis we have done, with hind-sight we 
an observe that the long-run values do not giveinteresting measures. As dis
ussed in Se
tion 6, we 
onje
-ture that real-life networks, whose size far ex
eeds the viewsize, will always tend to partition, giving rise to atypi
allong-run averages. It is more interesting to investigate ques-tions of the type \how long will it take until the networkpartitions with a probability of x", where the desired prob-ability x is a parameter. Our method in prin
iple allows toanswer this type of question.As expe
ted, we 
on
lude that s
alability is a real problemwhen formally modeling gossiping networks. Modeling net-
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works with more that six nodes turns out to be pra
ti
allyimpossible using �CRL. Although using Groove's in-builtsymmetry redu
tion allows us to analyze larger networksthe size of the models still grows exponentially, limiting theapproa
h to 7 nodes. Furthermore the modeling of moreadvan
ed 
ommuni
ation proto
ols with 
omplex peer andview sele
tion strategies would 
ause the models to be
omeeven larger. It is then obvious to look for abstra
tion te
h-niques to 
ounter this state spa
e explosion. Large networks
ould be ta
kled by only modeling a small amount of nodesexpli
itly and modeling the rest of the nodes as a singleentity behaving a

ording to some average expe
ted behav-ior. The problem of representing the age of links 
ould behandled with a form of predi
ate abstra
tion: instead of de-noting the ages of the links expli
itly the model 
ould simplylist the order of the ages. Many other abstra
tion te
hniquesare of 
ourse 
on
eivable.
8. CONCLUSIONGossiping networks 
an be analyzed using formal meth-ods. The stru
ture of a network 
an be 
aptured by usingthe abstra
t datatypes of �CRL. Alternatively, the 
hangesin the network 
an be 
aptured by the graph transforma-tions of Groove, whi
h models the network simply as a di-re
ted graph. Furthermore, the 
ombination of 
on
urrent,probabilisti
 and sto
hasti
 behavior 
an be interpreted asa CTMC in the style of the MLotos pro
ess algebra (see[9℄), although the theory behind the transformation of �CRLand Groove to labeled CTMCs needs further resear
h. The�CRL and Groove models 
an then be interpreted as aCTMC labeled with network stru
tures. By 
al
ulating in-teresting graph-measures for these network stru
tures wethen obtain MRM models whi
h 
an be analyzed using anextension to CSRL (see [1, 11℄).It was parti
ularly interesting for us to observe the devi-ation in the results that o

urs for networks of size 6, withview size 2, be
ause we had not predi
ted or expe
ted this.The explanation of this phenomenon, viz. that on the longrun, networks with a 
ertain ratio of size to view size tend topartition, implies that other types of analysis may be 
alledfor.Mu
h resear
h remains to be done in this area (see Se
-tion 7). It is desirable, but also 
hallenging, to model moreadvan
ed gossiping proto
ols. Studying larger networks, bymeans of some form of abstra
tion is also a promising avenueof resear
h. Simply abstra
ting from node identities (thusonly 
onsidering the shape of a network) by using symmetryredu
tion with Groove already provided great redu
tions instate spa
e size, but not suÆ
ient for s
alability.The main drawba
k to the pre
ise expli
it approa
h is thela
k of s
alability. In pra
ti
e, we were only able to gener-ate models of up to 6 nodes using �CRL or up to 7 nodesusing Groove. However, the results found for these smallmodels 
on�rm the simulation and emulation results foundin [10℄, suggesting that small-s
ale analysis 
an lead to in-sights in the behavior of large-s
ale networks. Furthermore,the tra
eability of the models 
an give a deeper understand-ing of the emergent behavior of a gossiping network.
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