Applying Formal Methods to Gossiping Networks
with mCRL and Groove

Pepijn Crouzen
Department of Computer Science
Saarland University

crouzen@alan.cs.uni-sh.de

ABSTRACT

In this paper we explore the practical possibilities of using
formal methods to analyze gossiping networks. In particu-
lar, we use pCRL and Groove to model the peer sampling
service, and analyze it through a series of model transforma-
tions to CTMCs and finally MRMs. Our tools compute the
expected value of various network quality indicators, such
as average path lengths, over all possible system runs. Both
transient and steady state analysis are supported. We com-
pare our results with the simulation and emulation results
found in [10].

1. INTRODUCTION

Gossiping networks provide a novel way of constructing
distributed systems. A gossiping network consists of a large
number of simple nodes, which have a limited view of the
network. The idea is that information is dissipated in a gos-
siping style, i.e. every node communicates its information
to a small number of other nodes in the same way people
spread gossip through a community. This style of commu-
nication is also called epidemic for its similarity to a disease
spreading through a population. Gossiping networks have
been used successfully in a number of applications (for an
overview see [6]).

In [2] the use of formal methods is proposed to analyze the
behavior of gossiping networks. The advantage is that for-
mal methods are precise and the results are traceable (i.e.
performance problems can be traced back to specific de-
sign decisions). The disadvantage of formal methods is that
they rarely scale. As the size of the system under analysis
is increased, the models grow exponentially. Another prob-
lem is that a system may be too complex to model using
a particular formalism. First, a gossiping network is inher-
ently dynamic, because nodes may enter or leave the system,
and their connections vary over time. Furthermore, gossip-
ing network models combine concurrency and probabilistic
behavior in a timed setting, which leads to modeling and
analysis complications.

In this paper, we will use formal methods (in the form of
explicit state model-checking) to analyze gossiping networks.
Our main goal is to experiment with precise, explicit-state,
formal models and to investigate the potential and the lim-
itations of this approach. In particular, we want to answer
the following questions:

e [s it possible to model the complex nature of gossiping
networks using formal methods?

e How well does explicit state model-checking scale?

Jaco van de Pol

Arend Rensink
Department of Computer Science
University of Twente

{vdpol,rensink} @cs.utwente.nl

e Arethe possibly smallscale results useful in making
design decisions?

To investigate the first question, we model the peer sam-
pling service of [10] using the uCRL [4] tool-set, which sup-
ports the use of complex data-types. The central challenge
is to model a dynamically changing network using static
data-types. The pCRL specification is then transformed to
a labeled continuous-time Markov chain, by combining con-
current, probabilistic and stochastic behavior along the lines
of the MLotos process algebra [9]. We then perform analy-
sis (on a normal modern workstation) to see for which size
system we can still generate explicit-state models. Finally,
we compare our results with the simulation and emulation
results from [10] to see if we can detect the same interest-
ing phenomena using formal methods as are observed when
employing simulation and emulation.

Obviously, any complete explicit state method can only
handle relatively small networks. Symmetry reduction is
particularly interesting in the setting of gossiping networks,
as it abstracts individual node identities and instead looks at
the overall structure of the network (in terms of the connec-
tions between the nodes). We explore symmetry reduction
for gossiping networks by using the Groove tool [15]. This
tool utilizes graph transformations and is therefore ideal for
the description of the behavior of gossiping and other dy-
namic networks. Furthermore, since Groove handles graphs
modulo isomorphism, it automatically abstracts individual
node identities. The results obtained in this way are still
complete and precise. However, it is clearly desirable in the
future to also use some form of abstraction to counter the
state-space explosion problem even more drastically [2].

The paper is organized as follows. Section 2 describes gos-
siping networks. Section 3 gives an overview of the different
formalisms used in this paper. Section 4 describes how we
used these formalisms to model gossiping networks. The
analysis of the gossiping network models is then explained
in Section 5. Then the results of the analysis are given in
Section 6. Finally, we discuss the possible avenues for future
work in Section 7 before concluding the paper in Section 8.

2. GOSSIPING NETWORKS

One of the primary uses of networks is the distribution of
information from and to the constituent nodes. Tradition-
ally, special network nodes, known as servers, are designed
to be responsible for this distribution; other nodes are then
called clients. The drawback of the client-server approach
is that the servers alone are responsible for the proper func-
tioning of the whole network. Therefore, this approach does

not scale well and is unsuitable for very large or dynamic
networks with high performability requirements [17].

An elegant alternative was found by abandoning the idea
of a central server coordinating the proper functioning [5].
All nodes then behave according to some simple algorithm
and, hopefully, the proper network behavior emerges spon-
taneously without any one node being responsible for the
correctness of the entire network. This approach mimics
the way a group of people spread gossip. No single person
takes it upon him or herself to collect all gossip and dis-
tribute it to everyone, yet because people naturally share
the gossip they know, it can be expected that in the long
run everyone knows everything about everybody. Because
of this similarity, these networks are referred to as gossiping
networks (or epidemic networks, because the way informa-
tion is spread throughout the network also mimics the way
a disease spreads throughout a population during an epi-
demic) [5].

In the absence of a central server, the nodes of a net-
work must themselves acquire and maintain knowledge of
the structure of the network. This is the responsibility of
the so-called peer sampling service. The idea is that the
nodes continuously exchange information about the nodes
they know about. The goal of this behavior is to maintain a
well-balanced network as this greatly improves the reliabil-
ity and efficiency of the network. In [10] it is assumed that
each node knows only a small number of its peers (the set
of peers known to a node is known as its view, which has
a maximum size). The active behavior of a node is then as
follows:

It selects a peer from its view;
It selects what part of its view it will send;
It sends this subview and receives a subview in return;

It merges the received subview with the original view;

Ot o W N

It prunes excess peers from its view, if necessary.
There are several parameters in this protocol:

e The communication policy (step 3): push, pull or both
(push-pull). This refers to cases where, respectively,
only the active node sends its view, only the passive
node sends its view, or both nodes send their views.
In this paper we study the differences between these
policies.

e The selection of peers to communicate, view to send
and peers to prune (steps 1, 2 and 5), which can be
based on the age of the links in the network (being the
time since the last communication between the two
nodes). In this paper we ignore all age parameters:
peer selection and pruning are done at random (with
an equal probability for each possible choice), and al-
ways the entire view is sent.

Gossiping networks are difficult to analyze due to their size
and the many different parameters. Furthermore, we can-
not analyze the nodes in isolation (a technique which is use-
ful in analyzing client-server systems) as we are specifically
interested in behavior that emerges in (large) networks of
nodes. So far, mostly simulation and emulation have been
used [10], but this has a number of drawbacks. Simulation
relies heavily on the accuracy of the simulation models used
and can only give results in the form of confidence intervals.

Emulation on the other hand is very costly and the pre-
cise interpretation of the results is often obscure, i.e. when
something interesting happens it is difficult to find out what
caused this event. Finally, both simulation and emulation
struggle to find so-called rare events, i.e. events that have a
very low probability to happen (such that they rarely hap-
pen in simulation/emulation), but are still common enough
to cause great problems during the operation of the network.

As a first start we study a simple version of the gossiping
protocol as described in [10] where peer selection and view
selection are always random. Methods to implement other
peer selection and view selection strategies are discussed in
Section 7.

3. FORMALISMS

In this section, we describe the formalisms used in the
modeling and analysis of gossiping networks. For the sake
of brevity we keep the descriptions short and refer to other
sources for more detailed information about the formalisms.
Figure 1 shows how these formalisms have been chained to-
gether for the purpose of this paper.

3.1 mCRL

#CRL [4] combines process algebra (in the style of the al-
gebra of communicating processes, ACP [3]) with abstract
data types. From process algebra, it inherits operators like
+ (alternative choice), - (sequential composition) and || (par-
allel composition). Normally, parallel processes interleave
their actions in an asynchronous way. When specified explic-
itly, parallel processes can synchronize on specific actions.

The data part is used to model the state of a recursive
process (X(s) = p[X(s')]), conditional branching (p< b >
q) and to describe the data communicated by synchro-
nized actions (send(m)). The possibly infinite summation
(>,.yread(z)) is used to model the input of an arbitrary
x : N, where N is a possibly infinite set of values.

3.2 Groove

Groove [15] is a tool for the verification of graph trans-
formation systems. A Groove specification is a set of graph
transformation rules, each of which consists of a left hand
side (LHS) and a right hand side (RHS). The effect of a rule
is given by the “difference” between LHS and RHS; in par-
ticular, nodes and edges can be added or removed. A rule is
applicable to a graph wherever the graph contains an image
of the LHS; applying the rule essentially means replacing
the LHS image by a copy of the RHS.

Given a rule system and an initial graph, a model of the
behavior is obtained by exploring all rule applications re-
cursively to the initial graph and all resulting new graphs.
This gives rise to a transition system in which the states
are graphs and the transitions are rule applications. Hence,
to model the behavior of a given system, all relevant infor-
mation, including the data structures, should be encoded
into the initial graph, by means of nodes and edges, and all
dynamic steps should be encoded as graph transformation
rules.

A special feature is that states are collapsed modulo graph
isomorphism; in other words, Groove performs automatic
symmetry reduction (see [16]). This turns out to be of great
advantage in for the gossip protocol, since this contains a
very large degree of symmetry.

Interpret

Calculation

Interpret

—— Model checkin
{ MRM) & { Results)

Figure 1: The analysis trajectory.

3.3 Continuous-time Markov chains

Continuous-time Markov chains are a class of stochastic
processes with a discrete state space, where state transitions
occur after time-delays governed by negative exponential
distributions (for an overview of CTMCs and other Marko-
vian models see [8]). A CTMC can be embellished with a
labeling function which labels each state with a set of logical
propositions. We call the resulting model a labeled CTMC.
In our case, the states of the CTMC are labeled with directed
graphs representing the state of the gossiping networks, but
it is obvious that a directed graph of bounded size can be
encoded as a set of propositions.

3.4 Markov reward models

A Markov reward model is a CTMC augmented with a re-
ward structure assigning a real-valued reward to each state
in the model [1]. We use this reward structure to measure
several quality indicators of the gossiping networks: the vari-
ance of the indegree of the nodes, the average length of the
shortest path between every possible combination of nodes
and the clustering coefficient (see [10] and Section 5).

We are interested in calculating the expected value of
these measures at certain time-points as well as the expected
value of the measures in the long run. We can calculate this
by implementing the possible extension to CSRL first men-
tioned in [1] and implemented in [11]. The instantaneous
reward corresponds to the expected value of a measure at a
certain time point. The instantaneous reward at time point
t is calculated by summing up, for all states s, the product
of the probability of being in s at time-point ¢ (transient
probability) and the reward of s. The expected reward rate
corresponds to the long-run expected value of a measure.
The expected reward rate can be calculated by summing up,
for all states s, the product of the long-run average proba-
bility (steady-state probability) of being in state s and the
reward of s.

4. MODELING

In this section, we describe how we modeled gossiping
networks. First, an abstract overview of the behavior of a
node in a gossiping network is provided. Next, the associ-
ated pCRL specification is given. Finally, we describe how
we modeled the gossiping networks using the graph trans-
formation tool Groove.

4.1 Abstract model

The state of one node in our gossiping network is described
by its view, i.e. the other nodes it knows about, and its
internal state. Such a view is modeled simply as a set of
nodes. The behavior of a node is divided into an active and a
passive “thread”, following [10]. A schematic representation
of the different internal states of a node using the push policy
can be seen in Figure 2.

select peer (1)

receive/merge (3,4)

Stochastic delay
Probabilistic choice

Concurrent action

Figure 2: Schematic of the behavior of a gossiping
network node using the push policy.

Initially, a node is in its stable state (marked S in Fig-
ure 2). After a stochastic delay (the wait transition in Fig-
ure 2) the node may move to its active thread. At this
point the protocol described in Section 2 starts: in its ac-
tive thread the node randomly selects a peer (with equal
probability, step 1), sends its view (augmented with its own
identity) to the selected peer (step 3) and returns to its sta-
ble state. The selected peer receives this view in its passive
thread, provided it is in a stable state, and merges it with
its own view (steps 3 and 4); it then prunes the merged view
randomly to a correctly sized subset (with equal probability,
step 5). After this view selection the node returns again to
its stable state.

The pull policy is similar, except that here the active
thread, after selecting a peer, requests the view of that peer,
merges it with its own view, and truncates it randomly. Fi-
nally, in the push-pull behavior, views are exchanged in both
directions.

A full network consists of N such nodes, working in par-
allel. It is important to understand that if all nodes are in
a stable state, any node could start the active thread, and
select potentially any other node. So for an /N node network
there are N(IN — 1) potential continuations (limited only by
the actual contents of the views).

A major issue in any concurrent setting is how the events
of different nodes are ordered. In [10] a round-robin schedule
is assumed: in every round, every node acts exactly once.
However, such an ordering would require a central author-
ity (at least a global clock), which makes sure that each
node acts at the appropriate time. But the lack of a cen-

tral authority is one of the principal properties of gossiping
networks so we find this assumption too restrictive. In this
paper we assume that all nodes act after a stochastically
distributed delay. The delay distributions of the nodes are
identical, but independent. This means that the nodes are
all ezpected to act at the same rate, but the independence
means that there is no need for a central authority. In this
model rare occurrences, such as a single node acting much
faster than the other nodes for a period of time, are possible
even though they will have an extremely small probability.
Such rare occurrences are generally difficult to detect using
standard simulation or emulation techniques.

There could be concern that a model composed of several
nodes might deadlock. Specifically, this would happen if two
nodes would simultaneously enter their active threads and
attempt to communicate with each other. Both nodes would
then be stuck waiting for the other node. To avoid such sit-
uations, the active and passive threads must somehow run
atomically. This can be modeled by the maximal progress
assumption [14], i.e. all internal behavior occurs immedi-
ately. In practice, this means that all communication and
view-updating actions have priority over the stochastic de-
lay. This can also be explained stochastically: Since the
Wait delays are drawn from continuous distributions the
probability that two timers expire at the same time is zero.
If internal computation times are neglected, the probabil-
ity that another timer expires during internal computation
is also zero. Hence we may safely assume that the passive
threads are always ready to receive information.

The stochastic delay Wait is assumed to be governed by
a negative exponential distribution and is thus modeled as
a continuous-time Markovian transition. In reality, how-
ever, the delay could be implemented as a deterministic de-
lay. This can be approximated using an Erlang distribution.
Such an Erlang distribution would consist in our model of
a chain of identically distributed exponential distributions,
i.e. a chain of Markovian transitions. To improve the accu-
racy of the approximation we need to increase the number
of phases in the Erlang distributions, i.e. we must make the
chain longer. This, however, exponentially increases the size
of the network model. We have not experimented with this
in our analysis.

4.2 mCRL

Using the pCRL language, we modeled each node as a
separate process. The state parameters of each node denote
its identity and its current view. Nodes are composed in
parallel, and communicate by sending/receiving views. For
this, we introduce explicit send and receive actions, which
synchronize atomically (handshaking). Complex operations,
like merging views and selecting subviews, are specified by
equations in the abstract data part.

In order to model one exchange (including pushing and
pulling views) in the protocol atomically, we specify syn-
chronized send- and recv-actions with four arguments as
follows:

send(i, j,v,w) denotes that (the active thread of) node i
pushes view v to (the passive thread of) node j, and
pulls view w from it.

recv(i, j,v,w) denotes that (the passive thread of) node j
receives view v from (the active thread of) node i, and
sends view w to it.

10

In order to model non-deterministic strategies for peer
selection and view selection, we include two predicates:

peerselect(v,p) : given current view v, it is possible to
select p from it for the next communication

viewselect(v,u) : given a view v, it is possible to select
the subview u from it.

Given all these ingredients, a node with identity i and
current view v, and having two threads, can essentially be
modeled as follows:

Node(i : Id,v : View) =
Zj:ld > iVicw Domview S€NA(L, j, v, w) - Node(i, u)
a peerselect(v, j) N viewselect(merge(v,w),u) >4
+ Zj:]d D wView 2uiview TECV(J 4, w, v) - Node(i, u)

< viewselect(merge(v,w),u) > 6

A network with three nodes and node 2 in the center is then
modeled as:

Node(1,{2}) || Node(2,{1,3}) || Node(3,{2})

In fact, we used a slightly more complicated model: a delay
action is added; the peer select and view select transitions
are explicitly modeled as internal transitions; node ¢ is prop-
erly added to v and deleted from w; all datatypes, includ-
ing the selection predicates, must be specified in full detail.
The actual model that we used is parameterized over the
pull/push policy, the sizes of the network and the view, and
over the initial configuration. We were also able to specify
peer and view selection strategies based on hop counters,
but these models have not been analyzed in detail.

Note that we relied on the strong data specification capa-
bilities of pCRL. However, pCRL has no notion of proba-
bilistic choice, or stochastic time. So, as one can see above
the choice of peer selection and view selection are modeled
as non-deterministic choice in pgCRL. In order to model the
delays, the send-action is preceded by an action “delay”.
Only after generating the state space, the other tools in the
tool chain interpret “delay” as stochastic delay. Also, they
interpret non-deterministic as equiprobable choice.

The behavior of the gossiping network is now defined as
the parallel composition of the behaviors of its constituent
nodes. The maximal progress assumption is implemented
by giving all other transitions priority over the delay ac-
tion. The state space of this network basically consists of
the views of all nodes. If we interpret the peers in the view
of a node as its neighbors in a directed graph, then each
state in the behavior of the network is labeled by a directed
graph. In Section 5, we will see how we transform this be-
havior to a Markov reward model and how we then analyze
it to compute interesting measures for the network.

4.3 Groove

The Groove model of the gossiping network directly en-
codes the structure of the network as a graph, with network
nodes as graph vertices and their view as a set of outgo-
ing edges. In addition, the model includes some auxiliary
vertices and edges to control the behavior. An example ini-
tial graph, for a network of size 5 with initial view size 2
organized in a ring structure is given in Fig. 3.

The Groove model does not incorporate the notion of com-
municating processes. Instead, the essential steps of pushing

Scheduler
pull
push

lirk.

Figure 3: Start graph for the Groove model

PrUNG e SChECIUIEY Elements Meaning
Iz pul Thin black Present in the graph
prune | Wide dashed Absent in the graph

S active passive

Medium gray Added to the graph
Dotted Universally quantified

Figure 4: Rule “pull”: link edges are added to the
active node for all links known to the passive node.

and pulling the views from one node to another are each cap-
tured by a single rule, which incorporates at the same time
the role of the active and the passive node. For instance,
the rule for pulling is displayed in Fig. 4.

Together with rules for choosing the active and passive
nodes and for “cleaning up” afterwards, this forms a small
protocol like the one displayed in Fig. 2 for mCRL, with
as main difference that there are no separate “send” and
“receive” actions; rather, these are combined in the “pull”
and “push” rules.

5. ANALYSIS

In this section, we describe how we analyze the pCRL
and Groove models described in the previous section. This
analysis follows the trajectory of Figure 1. We also discuss
the complexity of our approach, both in terms of the size of
the models and the time needed to analyze the models.

5.1 From mCRL/Groove to CTMC

In Section 4, we have seen that the yCRL and Groove
models contain continuous stochastic delays and discrete
probabilistic transitions. Following the strategy for the
MLotos process algebra [9] we interpret the pCRL and
Groove models as labeled CTMCs.

Let’s first consider what a pCRL or Groove model of a
gossiping network looks like. The pCRL model is gener-
ated by composing all the node models in parallel, while
the Groove model is generated by exhaustively applying all
graph transformations. The choice of the node that will
instigate a communication is modeled as a choice between
stochastic transitions. After a node X has been selected,
the choice in step 1 of the protocol (the peer selection) is a
discrete probabilistic choice between the nodes in the view

11

of X. It is important to note that probabilistic choices take
place instantaneously and, because of the maximal progress
assumption, this prevents any other node from becoming
active (i.e. finishing its stochastic delay) before node X is
done with its communication. The peer selection is followed
by another probabilistic choice of the result of step 5 (prun-
ing). After this, the model returns to a new stable state,
where all nodes are waiting on their stochastic delays. A
partial example of a model with a single pruning choice can
be seen on the left side of Figure 5.

Since all internal transitions are substituted by probabilis-
tic choice, there is no internal non-determinism left. We also
see that all probabilistic transitions are delay-guarded". This
means that the models can be transformed into CTMCs as
in [9]. The main principle of this transformation is that
a Markovian delay (e.g. with rate A) followed by a prob-
abilistic choice (e.g. between two transitions, one having
probability %, the other having probability %) is stochasti-
cally equivalent to a choice between Markovian transitions
such that the rate of the original Markovian transition is
distributed over the new Markovian transitions according
to the probabilistic choice (in our example we get Marko-
vian transitions with rates %/\ and %/\ respectively). The
state-labels of the pyCRL and Groove models are preserved
in the resulting labeled CTMCs. Each label describes a con-
figuration of the gossiping network.

In practice the transformation from pCRL or Groove
model to CTMC means that every sequence of wait (stochas-
tic delay), peer select (probabilistic choice) and view select
(probabilistic choice) transitions is replaced with a group
of stochastic delay transitions by distributing the stochastic
delay of the wait transition over the probabilistic distribu-
tions of subsequent transitions. A partial example of this
transformation can be seen in Figure 5.

5.2 From CTMC to MRM

We now have a labeled CTMC with each of its states la-
beled with a directed graph representing the state of the
gossiping network. We now compute for each state in the
CTMC, using standard algorithms from graph theory, sev-
eral measures of the graph associated with the state: the
variance of the indegree of each of the nodes, the average
shortest path length between all combinations of different
nodes and the clustering coefficient [10]. This gives us three
MRMs where the reward structure p is the indegree variance,
average shortest path or clustering coefficient respectively.
The indegree variance is a measure on the distribution of
indegrees in the network. In a perfectly balanced network
all indegrees would be equal and the variance therefore 0.
The higher the variance the more unbalanced the network
is, which is undesirable. A low average shortest path length
is desirable since this will reduce transmission times. And
finally the clustering coefficient measures the amount of in-
terconnections between the neighbors of any node. High
values for this coefficient mean that the nodes form clusters
which unbalances the network and is therefore undesirable.

5.3 From MRM to results

Obtaining the results consists of two steps. First, using
the transient and steady state analysis tools from the CADP
toolset [7], we compute the probability to reside in each state

' A delay-guarded probabilistic transition is (eventually) pre-
ceded by a stochastic transition. See [9] for more details

Figure 5: Example of the transformation of part of a yCRL/Groove model to a CTMC.

at certain time points and on the long run. This can be done
once for the CTMC obtained after removing all labels. The
intermediate result is lumped, using rate-preserving branch-
ing bisimulation minimalization.

Next, we model-check each MRM separately, using the ex-
tension to CSRL first suggested in [1]. We have implemented
this extension using the extensible XTL model-checker of
the CADP tool-set [12]. The CSRL extension is also sup-
ported by the PRISM model checker [11]. This extension to
CSRL provides us with both instantaneous rewards, i.e. the
expected value of one of the measures at some time point,
as well as the long run reward rate, i.e. the expected average
value of the measures in the long run.

5.4 Complexity

We now consider the complexity of our analysis method.
We first notice that the state-space of the models, from
nCRL or Groove to MRM, is bounded by the different possi-
ble network configurations (times a constant factor because
of the internal states), taken modulo isomorphism in the case
of Groove. For a gossiping network with /N nodes a?vd view-
size (or constant out-degree) C' we find (N1 differ-

C

ent configurations: each node has C' out of N — 1 peers in

its view (< Na ! possibilities) and there are of course N
different nodes. We disregard the possibility of nodes having
a view smaller than the maximum view-size since we con-
sider only models where all nodes start with maximum ca-
pacity views. Now each state is labeled with a directed graph
representing the network. To calculate the graph measures
we need to compute the shortest path length for all combi-
nations of nodes. This is done by using Dijkstra’s shortest
path algorithm which has a complexity of N2. Calculating
the other two measures costs less time. For meaningful val-
ues of N this calculation is dominated however by the need
to calculate steady-state results for the resulting MRM. The
complexity of this operation is 2* where z is the number of
states in the model?. Overall we then find a time complexity

N\ 3
N -1
of O(<< C))).

For the case of Groove, due to symmetry reduction the
state space is (much) smaller, but we know of no analytical
way to predict the effective reduction. Note, however, that
every configuration of a network of size NV, interpreted up

to isomorphism, can represent at most N! different “plain”
configurations. This provides an wupper bound to the de-

We disregard here the possibility of iterative algorithms,
for which the complexity depends on the desired accuracy.

12

gree of symmetry reduction. In Table 1 we compare the
calculated number of “plain” configurations (P) with the
simulated number of configurations modulo symmetry (.5),
insofar we have been able to compute the latter. The re-
duction (P/S) is clearly large (in fact, the reader can check
that it approaches the maximal reduction of N! to more than
95%), but equally clearly, the size of the reduced state space
is still more than linear exponential in the network size, and
so the problem is intractable even for small network sizes.

6. RESULTS

In this section we give the results of our analysis. We start
by giving the long-run averages for indegree variance (IV),
average shortest path length (PL) and clustering coefficient
(CC). We then present graphs showing the expected evo-
lution of these measures and compare the results with the
conclusion found in [10].

6.1 Long-run averages

Table 2 gives the long run average results for gossiping
networks for the three different transmission policies pull,
push and pull-push (marked “both” in the table), for differ-
ent network and view sizes. Moreover, the table also indi-
cates the size of the models in pCRL and Groove. The ratio
between these two numbers is similar to the potential reduc-
tion predicted in Table 1. Note that for N = 7 we were not
able to compute the pCRL models; with Groove we could
generate up to network size 7, but the results could not be
analyzed. We conclude from these results that, across the
board, pull-push is the best transmission policy, followed
closely by push, while pull is much worse than the others.
Note that this corresponds to the findings of [10].

Another observation is that the number of reachable (sta-
ble) network configurations (modulo isomorphism) is almost
always equal to the total number of configurations accord-
ing to Table 1, except for the push policy for N = 6,7 and
C = 2, where apparently a very few configurations are not
reachable. We have not analyzed this further.

A very interesting set of results emerges for N = 6 and
C = 2. For the push and the pull-push strategies we see that
on the long run the network will have an indegree variance
of 0, a relatively high path length of 3.33 and a clustering
coefficient of 1. For pull, a similar effect occurs, but in this
case the indegree variance is rather large, instead of 0.

The reason for these values is that (for push and pull-
push strategies with N = 6 and C = 2) a gossiping network
will always eventually partition into a configuration con-
sisting of two fully connected groups of 3 nodes, shown in
Figure 6 (left). This indeed has IV = 0, CC = 1 and average
PL = 3%. There is no way for the network to recover from

C=2 C=3 C=1 C=5
N || Plain (P) | Sym. (S) | P/S P S P/S P S P/S P S | pP/S
4 81 6 14
5 7776 79 98 1024 13 79
6 1.0x10° 1499 667 1.0x10° 1499 667 15625 40 391
7 1.7x10% 35317 4838 || 1.3x10° | 257290 | 4975 || 1.7x10% | 35317 | 4838 || 279936 | 100 | 2799
8 || 3.8x10%° 967255 | 39103 || 2.3x10*2 - - 2.3x10*2 - - 3.8x10'? | - -

Table 1: Network configuration counts and symmetry reduction for various network and view sizes.

N | C | Policy | IV | PL | CC Full state space Stable
nCRL Groove || Groove

412 | Pul 1.50 | 1.38 | 1.00 981 87 6

42| Push | 1.03 | 1.16 | 0.79 945 80 6

4 | 2 | Both 0.94 | 1.14 | 0.77 1989 96 6

5| 2 Pull 2.93 | 2.16 | 1.00 121176 2006 79

52| Push || 1.51 | 1.67 | 0.68 || 117936 1850 79

52| Both || 1.53 | 1.63 | 0.64 || 408456 2064 79

513 Pull 2.40 | 1.48 | 1.00 16144 338 13

5| 3 | Push 1.15 | 1.07 | 0.81 17984 321 13

5| 3| Both [1.02 | 1.05 | 0.79 39184 419 13

6 | 2| Pull 4.31]1.00 | 3.00 || 1.9x107 | 56843 1499

6 | 2 | Push | 0.00 | 1.00 | 3.33 || 1.8x107 | 56843 1498

6 | 2 | Both || 0.00 | 1.00 | 3.33 || 8.2x107 | 64389 1499

6 | 3 Pull 4.75 [2.28 | 1.00 || 2.4x107 56843 1499

6 | 3 | Push 2.02 | 1.39 | 0.70 || 2.3x107 56843 1499

6 | 3 | Both 1.83 | 1.35 | 0.67 || 9.5%x107 64389 1499

6 | 4| Pull 3.33 | 1.56 | 1.00 || 403075 1307 40

6| 4 Push 1.15 | 1.02 | 0.83 386125 1247 40

6 | 4 | Both || 0.99 | 1.01 | 0.82 || 858475 1604 40

7 12| Pul 1515526 || 35317

7|2 | Push 1405080 || 35314

7 | 2 | Both - - - 1429880 356317

Table 2: Long run average results for gossiping networks with N nodes and view size C; IV = Indegree Variance,
PL = average shortest Path Length, and CC = Clustering Coefficient. Additionally the size (number of stable

states) of the yCRL and Groove models is given.

Figure 6: Degenerate network configurations: none
of the strategies can recover from the left hand side,
and pull cannot recover from the right hand side.

this situation. We expect to see a long-run partitioning for
any gossiping network where N > 2(C + 1). However, the
transient analysis will show that it usually takes a long time
for a network to partition. For the pull policy, the right
hand configuration of Figure 6 (which is a star topology in
terms of [10]), together with other star configurations, form
a similar “trap”, but this time with a very high indegree
variance (IV = 4.5 for the configuration shown).

13

6.2 Transient results

Figures 7-11 show the evolution of the values of the dif-
ferent measures over time. A single time unit corresponds
to the expected time a node will take to execute its active
thread once.

From Figures 7-9 we can see that the networks of size
5 stabilize fairly quickly. Figures 10 and 11 look at the
behavior of networks of varying view size and network size,
respectively, under the “winning” pull-push strategy. Here,
we can see that the shape of the function for the network
of size 6 with view size 2 is different from the others: the
indegree variance of this network (depicted in Figure 10) first
seemingly stabilizes, but then slowly drops towards zero. For
the clustering coefficient we see the same effect: at first it
appears to stabilize before it rises to 1 (as shown by the
steady-state analysis). Both effects are due to the fact that
the network will eventually reach, with probability 1, the
configuration of Figure 6 (left). It is also clear, however,
that on average it takes a relatively long time for gossiping
networks to reach this degenerate state.

Indegree variance (5 nodes, view-size 2)

Indegree variance

pull — |

. puIIlejsh

0 2 4 6 8 10 12 14 16
time

Figure 7: Indegree variance graph for a 5-node net-
work with view-size 2.

Average path length (5 nodes, view-size 2)
2.2 T T T T T T T
21

1.9 |
1.8 |
1.7 |
1.6 |
15
1.4+ 7/
13

1.2 1 1 1
0 2 4 6 8 10 12 14 16

time

Average path length

. puIIlejsh

Figure

5-node network with view-size 2.

Clustering coefficient (5 nodes, view-size 2)

09 |
08 |
07 |
06
05|
04}
0.3 —;"
0.2 —/

0.1
0 2 4 6 8 10 12 14 16

time

Clustering coefficient

pull ———
push -~ |
) puIIpLIJsh

Figure 9: Clustering coefficient graph for a 5-node
network with view-size 2.

6.3 Traceability

An interesting aspect of formal methods is that they are
traceable. This means that when we find a model which
behaves in a specific way we can ascertain why it behaves
in such a way. We take as an example the pull policy for
gossiping protocols. In [10] it is reasoned that this is a poor
policy since such gossiping networks revert to a star topol-

8: Average shortest path length graph for a

14

Indegree variance (6 nodes, view-size C)

2 T T T T T T
o 15 —/ .
Q
8 /
8
N
> L -
8 \
[=2]
(5]
E
= 0.5 | -
N=6C=2 —
N=6 C=3 -
N=6 C=4 --------
O 1 1 1 1 1 1
0 10 20 30 40 50 60 70
time

Figure 10: Indegree variance graph for networks
with varying view-size with pull-push strategy.

Clustering coefficient (N nodes, view-size 2)

0.8 | —

/
0.6 [S
I

04 ¢ -

Clustering coefficient

02 f

0 1 1 1 1
0 10 20 30 40 50 60 70

time

Figure 11: Clustering coefficient graph for networks
with varying sizes with pull-push strategy.

ogy. This happens when a node has no more incoming links.
No other node then connects to it, so no one can pull the
identity of this node. In other words, a new link to the node
cannot be established and the node will forever have no in-
coming links. With a push policy this is not the case, as a
node will push its own identity to other nodes in the net-
work. Figure 12 (left) is the MRM generated in the analysis
of a Groove model of a network with N = 4 and C = 2 using
the pull policy. We can clearly see the detrimental behavior
of the pull protocol. When the network reaches the left-
most state it can never leave it again. The “star” topology
here is formed by the 3 totally connected nodes (the center
of the star) and the upper-left node with no incoming links
(the single point of the star). In contrast, the MRM model
of a 4-node network using the push policy, depicted on the
right hand side, does not show any sink states and does not
converge to a star topology.

7. FUTURE WORK

Since this paper is meant as a first exploration of the
practicality of using formal methods to analyze gossiping
networks there is a lot of room for further research.

The use of stochastic delays and discrete probabilistic
choice has not yet been formally incorporated in the pyCRL
and Groove formalisms. Based on our experiences in mod-

Figure 12: Lumped MRMs of a gossiping network with 4 nodes, view size 2 and pull (left-hand side) and
push (right-hand side) policy. The transmission rate of each node is A\. The reward structure represents the
indegree variance of the gossiping network. The states are labeled with graph configurations (The bottom
state in fact represents two states with bisimilar behaviors but different graph configurations).

eling gossiping networks we do not foresee any major theo-
retical difficulties in incorporating stochastics in pCRL and
Groove. It is important to develop this theory further as
this will also allow other interesting stochastic systems be-
sides gossiping networks to be modeled using these powerful
formalisms.

The design space for gossiping networks is quite large.
In [10], various strategies for peer selection, view selection as
well as the different peer-exchange policies have been stud-
ied. In the future, we plan to model and analyze gossiping
networks with peer and view selection strategies other than
purely random ones. This requires us to model the age of the
links in the gossiping networks. This can be easily modeled
using the complex data types of uCRL, where the selection
strategies are parameterized by a predicate (cf. Section 4.2).
However, our initial experiments soon presented a new chal-
lenge, as the age of the links may be unbounded, leading to
infinite models. A first approach to dealing with this prob-
lem would be to investigate the mechanism used in actual
implementations of gossiping networks. Another logical ap-
proach is to use some form of abstraction to model the age

15

of the links.

Another aspect of gossiping networks that is very impor-
tant to investigate in the future is dynamically appearing
and disappearing nodes as discussed in [10]. The modeling
of systems that can grow larger and smaller over time is no-
toriously difficult with classical process algebras, but special
mobile formalisms exist, such as the m-calculus (see [13]). In
the graph transformation approach of Groove, on the other
hand, it should be easy to incorporate this type of behavior.

Regarding the type of analysis we have done, with hind-
sight we can observe that the long-run values do not give
interesting measures. As discussed in Section 6, we conjec-
ture that real-life networks, whose size far exceeds the view
size, will always tend to partition, giving rise to atypical
long-run averages. It is more interesting to investigate ques-
tions of the type “how long will it take until the network
partitions with a probability of x”, where the desired prob-
ability z is a parameter. Our method in principle allows to
answer this type of question.

As expected, we conclude that scalability is a real problem
when formally modeling gossiping networks. Modeling net-

works with more that six nodes turns out to be practically
impossible using pCRL. Although using Groove’s in-built
symmetry reduction allows us to analyze larger networks
the size of the models still grows exponentially, limiting the
approach to 7 nodes. Furthermore the modeling of more
advanced communication protocols with complex peer and
view selection strategies would cause the models to become
even larger. It is then obvious to look for abstraction tech-
niques to counter this state space explosion. Large networks
could be tackled by only modeling a small amount of nodes
explicitly and modeling the rest of the nodes as a single
entity behaving according to some average expected behav-
ior. The problem of representing the age of links could be
handled with a form of predicate abstraction: instead of de-
noting the ages of the links explicitly the model could simply
list the order of the ages. Many other abstraction techniques
are of course conceivable.

8. CONCLUSION

Gossiping networks can be analyzed using formal meth-
ods. The structure of a network can be captured by using
the abstract datatypes of pCRL. Alternatively, the changes
in the network can be captured by the graph transforma-
tions of Groove, which models the network simply as a di-
rected graph. Furthermore, the combination of concurrent,
probabilistic and stochastic behavior can be interpreted as
a CTMC in the style of the MLotos process algebra (see
[9]), although the theory behind the transformation of uCRL
and Groove to labeled CTMCs needs further research. The
pCRL and Groove models can then be interpreted as a
CTMC labeled with network structures. By calculating in-
teresting graph-measures for these network structures we
then obtain MRM models which can be analyzed using an
extension to CSRL (see [1, 11]).

It was particularly interesting for us to observe the devi-
ation in the results that occurs for networks of size 6, with
view size 2, because we had not predicted or expected this.
The explanation of this phenomenon, viz. that on the long
run, networks with a certain ratio of size to view size tend to
partition, implies that other types of analysis may be called
for.

Much research remains to be done in this area (see Sec-
tion 7). It is desirable, but also challenging, to model more
advanced gossiping protocols. Studying larger networks, by
means of some form of abstraction is also a promising avenue
of research. Simply abstracting from node identities (thus
only considering the shape of a network) by using symmetry
reduction with Groove already provided great reductions in
state space size, but not sufficient for scalability.

The main drawback to the precise explicit approach is the
lack of scalability. In practice, we were only able to gener-
ate models of up to 6 nodes using pCRL or up to 7 nodes
using Groove. However, the results found for these small
models confirm the simulation and emulation results found
in [10], suggesting that small-scale analysis can lead to in-
sights in the behavior of large-scale networks. Furthermore,
the traceability of the models can give a deeper understand-
ing of the emergent behavior of a gossiping network.

16

9. REFERENCES

[1] C. Baier, B. Haverkort, H. Hermanns, and J.-P.
Katoen. On the logical characterisation of
performability properties. In ICALP, volume 1853 of
LNCS, pages 780 792, 2000.

[2] R. Bakhshi, F. Bonnet, W. Fokkink, and B. Haverkort.
Formal analysis techniques for gossiping protocols.
ACM SIGOPS Oper. Syst. Rev., 41(5):28 36, 2007.

[3] J. Bergstra and J. Klop. Process algebra for
synchronous communication. Information and
Control, 60(1):109 137, 1984.

[4] S. Blom, W. Fokkink, J. F. Groote, I. van Langevelde,
B. Lisser, and J. van de Pol. uCRL: A toolset for
analysing algebraic specifications. In CAV, volume
2102 of LNCS, pages 250-254, 2001.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. C. Swinehart, and D. B.
Terry. Epidemic algorithms for replicated database
maintenance. ACM SIGOPS Oper. Syst. Reuv.,
22(1):8-32, 1988.

[6] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulieacute. Epidemic information
dissemination in distributed systems. IEEE Computer,
37(5):60 67, 2004.

[7] H. Garavel and H. Hermanns. On combining
functional verification and performance evaluation
using CADP. In L.-H. Eriksson and P. Lindsay,
editors, FME, volume 2391 of LNCS, pages 410-429.
Springer, 2002.

[8] B. Haverkort. Markovian models for performance and
dependability evaluation. In Euro Summer School on
Trends in Computer Science, volume 2090 of LNCS,
pages 38-83, 2000.

[9] H. Hermanns and M. Rettelbach. Towards a superset
of basic LOTOS for performance prediction. In
PAPM, 1996.

[10] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.
Kermarrec, and M. van Steen. Gossip-based peer
sampling. ACM Trans. Comput. Syst., 25(3):8, 2007.

[11] M. Kwiatkowska, G. Norman, and D. Parker.
Stochastic model checking. In SFM-07:PE, volume
4486 of LNCS (Tutorial Volume), pages 220 270.
Springer, 2007.

[12] R. Mateescu and H. Garavel. XTL: A meta-language
and tool for temporal logic model-checking. In STT'T,
volume NS-98-4 of BRICS Notes Series, 1998.

[13] R. Milner. Communicating and Mobile Systems; The
Pi Calculus. Cambridge University Press, 1999.

[14] X. Nicollin and J. Sifakis. An overview and synthesis
on timed process algebras. In CAV, volume 575 of
LNCS, pages 376 398, 1991.

[15] A. Rensink. The GROOVE simulator: A tool for state
space generation. In AGTIVE, volume 3062 of LNCS,
pages 479 485, 2004.

[16] A. Rensink. Isomorphism checking in GROOVE. In
A. Ziindorf and D. Varré, editors, Graph-Based Tools
(GraBaTs), Natal, Brazil, volume 1 of Electronic
Communications of the EASST, September 2007.

[17] W. Vogels, R. van Renesse, and K. Birman. The
power of epidemics: robust communication for
large-scale distributed systems. ACM SIGCOMM
Comput. Commun. Rev., 33(1):131 135, 2003.

