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Abstract. We introduce Nuovo DRM, a digital rights management scheme aimed to provide formal
and practical security. The scheme is based on a recent DRM scheme, which we formally specify
in theµCRL process algebraic language. The original scheme stated thefollowing security require-
ments: effectiveness, secrecy and resistance of content masquerading. We formalise these security
requirements as well as strong fairness and formally check the original scheme against these re-
quirements. This verification step uncovered several security weaknesses, which are addressed by
Nuovo DRM. In addition to that, Nuovo DRM introduces severalprocedural practices to enhance
the practical security of the scheme. A finite model of Nuovo DRM is subsequently model-checked
and shown to satisfy its design requirements, including secrecy, fairness and resistance to content
masquerading.

1. Introduction

Recent years have seen a rapid increase in the popularity of personal devices capable of rendering dig-
ital contents. Large content providers as well as independent artists are looking forward to these new

∗Address for correspondence: Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands



2 M. Torabi Dashti et al. / Nuovo DRM Paradiso

opportunities for selling their copyrighted materials, necessitating the development of systems to protect
digital contents from illegal access and unauthorised distribution. Technologies used to enforce policies
controlling usage of digital contents are referred to as Digital Rights Management (DRM) techniques.
A major challenge in DRM is enforcing the policies after contents have been distributed to consumers.
This problem is currently addressed by limiting the distribution of protected contents to only the so-
calledcompliantdevices (e.g. iPods), that by design are guaranteed to always enforce the DRM policies
associated with the contents they render.

A unique concept of DRM-preserving contentredistributionwas proposed in [30], hereafter called
the NPGCT scheme, where users act also as content redistributors. This potentially allows consumers to
not only buy the rights to use specific content, but also to redistribute the content in a controlled man-
ner. From a security point of view, this is technically challenging, since the resulting system forms a
peer-to-peer network of independent devices, each of them aconsumer, an authorised distributor, and
also a potential attacker. The main goal of NPGCT is to enablecontent redistribution, whilst resisting
systematic content pirating. Recent sobering experience [22] has shown that DRM techniques are inher-
ently complicated and if not enforced carefully, can infringe on customers’, as well as vendors’, rights.
This serves as motivation for using formal methods to verifythe NPGCT scheme to provide both content
vendors and customers a certain degree of confidence in the security and fairness of the system.

1.1. Contributions

Our contribution in this paper is twofold. First, on the security side, we formally specify the NPGCT
protocols and analyse them. Our analysis reveals two security flaws in the scheme, a rights-replaying
flaw and a problem with fair exchange between users. We propose an extended scheme, dubbedNuovo
DRM, to address these issues. A formal specification and verification of Nuovo DRM is subsequently
presented and (a finite model of) the scheme is shown to indeedachieve its design goals.

Second, we present the used state-of-the-art formal tools and techniques to handle the verification
problem of DRM schemes. We use theµCRL process algebraic language [20] and tool set [8] to specify
the protocol participants and the intruder model. The expressive power and flexibility of theµCRL

language compares favourably to other specification languages. These factors enable us to keep the
formalisation close to the actual implementation. Due to the complexity, the size of the scheme and the
branching nature of the protocols, generating the state space is a very time-consuming process. Several
approaches to handle this so-called “state space explosion” exist, such as counter-based abstractions [32]
or parametrised abstraction techniques [33]. These techniques are not straightforwardly applicable to our
problem however, as they focus on abstracting away state details, which in a DRM setting amounts to
abstracting away rights and content – exactly the main points of interest. In order to address state space
generation, we resorted to a distributed instantiation of theµCRL tool set [7] to generate and minimise
the corresponding state spaces. In particular, since the Nuovo DRM scheme is highly non-deterministic
due to the presence of several fall-back scenarios, with theinclusion of an intruder model to the system,
it easily runs into the limits of single-machine state spacegeneration. To the best of our knowledge, we
are the first to formally verify a whole DRM scheme. Moreover,we adapt the standard formal Dolev-Yao
intruder model [14] to reflect the restricted behaviour of compliant devices in DRM systems (which are
not underfull control of the intruder, even if owned by the intruder).
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1.2. Related work

Nuovo DRM introduces an optimistic fair exchange protocol.This class of protocols was introduced
in [3] and since then have attracted much attention. The closest fair exchange protocol to our scheme
is perhaps the probabilistic synchronous protocol [4], in that it too relies on trusted computing devices
in exchange. In contrast to [4], the optimistic fair exchange protocol in Nuovo DRM is a deterministic
asynchronous protocol that achieves strong (as opposed to probabilistic) fairness, but, as a drawback, it
relies on impartial agents to secure unsupervised exchanges.

In this paper we do not address modelling semantics and derivations of rights associated with DRM-
protected contents, which constitutes a whole separate body of research, e.g. see [34]. Instead we focus
on formal analysis of transactional properties of DRM schemes. There are several works in literature on
model checking (usually small instances of) optimistic fair exchange protocols, e.g. [21, 27, 35]. What
makes our study unique is the size of the system that is automatically analysed as well as the capturing
of some DRM-specific features of the system, like compliant devices, in the model. Constraint solving
for checking fair exchange protocols proposed in [25] can detect type-flaw attacks, but is restricted to
checking safety properties. Theorem-proving approaches to checking fairness of protocols [1, 6, 15] can
provide a complete security proof at the cost of heavy human intervention, and thus cannot be easily
integrated into the protocol design phase.

1.3. Structure of the paper

We start by explaining the notations and (cryptographic) assumptions used in the paper, in Section 2.
Section 3 summarises the NPGCT scheme, which provides the basis for our refined scheme. Section 4
presents the Nuovo DRM scheme, its assumptions, its goals and security procedures. Nuovo DRM is
then formally analysed in Section 5 and shown to achieve its goals. Finally, Section 6 concludes the
paper with some possible future research directions.

2. Assumptions and notations

Throughout the paper, the following assumptions are used.

Trusted devices assumptions.Compliant devices are tamper-proof hardware, that though possibly op-
erated by malicious owners, follow only their certified software. We assume that compliant de-
vices are able to locally performatomicactions: multiple actions can be logically linked in these
devices, such that either all or none of them are executed. They also contain a limited amount of
secure scratch memory and non-volatile storage. These requirements are typically met by current
technologies. A legitimate content provider, (albeit abusively) referred to as trusted third party
(TTP), is assumed impartial in its behaviour and eventuallyavailable to respond to requests from
compliant devices.

Cryptographic assumptions and notations. In our analysis the cryptographic operations are assumed
to be ideal à la Dolev-Yao [14]. We assume access to a secure one-way collision-resistant hash
functionh; thereforeh(x) uniquely describesx. A messagem encrypted with symmetric keyK
is denoted{m}K , from which m can only be extracted usingK. Notationspk(X) and sk(X)
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denote the public and private keys of entityX, respectively. In asymmetric encryption we have
{{m}sk (X)}pk(X) = {{m}pk(X)}sk(X) = m. Encrypting withsk(X) denotes signing and for
convenience we letm be retrievable from{m}sk(X).

Additionally, the following notation is used:

d1 , d2 compliant devices

P trusted, legitimate content provider

owner (d1 ) owner of deviced1

c ∈ Cont one piece of content in the set of all contents

r ∈ Rgts one right in the finite set of all possible rights

Rd1 (c) the rights of deviced1 for contentc

It is assumed that unique descriptors (e.g. hash values) of all c ∈ Cont are publicly known.

3. The NPGCT DRM scheme

The NPGCT scheme by Nair et al. [30] was proposed as a DRM-preserving digital content redistribution
system where a consumer doubles up as a content redistributor, without this adversely affecting the
protection offered by the DRM scheme. In this section we briefly describe the NPGCT scheme and then
present the results of its formal analysis. For a detailed specification of NPGCT see [30].

3.1. NPGCT protocols

The scheme consists of two main protocols: the first distributes content from providerP to clientd1 , the
second allowsd1 to resell contents to another clientd2 .

3.1.1. Provider-customer protocol (P2C)

The protocol is initiated by the owner ofd1 who wishes to buy itemc with rights r from providerP .
From [30]:

1. d1 → P : Request content

2. d1 ↔ P : Mutual authentication, [payment]

3. P → d1 : {c}K , {K}pk(d1 ), r, σ,Λ

σ=meta-data ofc, Λ={h(P, d1 , c, σ, r)}sk(P )

The idea of step 2 is that a multi-stage authentication protocol is inserted at this step. Furthermore, in
the protocol,Λ acts as a certification thatd1 has been granted rightsr and helps in provingd1 ’s right to
redistributec to other clients. It also binds the meta-dataσ to the content, which prevents masquerading
attacks onc.
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3.1.2. Customer-customer protocol (C2C)

This part of the protocol is initiated by the owner ofd2 who wants to buyc with rightsr′ from d1 , for
whichd1 holds certificateΛ. From [30]:

1. d2 → d1 : Request content

2. d1 ↔ d2 : Mutual authentication

3. d1 → d2 : {c}K′, {K ′}pk(d2 ), Rd1 (c), r′, σ,Λ,Λ′

Λ′ = {h(d1 , d2 , c, σ, r′)}sk(d1)

4. d2 : Verifiesσ, Λ′ andRd1 (c) usingΛ

5. d2 → d1 : ψ, [payment]

ψ = {h(d1 , P, {c}K′ , σ, r′)}sk(d2)

By sendingψ, d2 acknowledges1 that it has receivedc with rights r′ from d1 , while Λ andΛ′ form a
certificate chain that helps to prove thatd2 has been granted rightsr′.

3.2. Formal analysis of NPGCT

As part of our work, we formally specified and checked the NPGCT scheme. In this section, we present
the results of this analysis. The assumptions of the scheme,the security goals it was tested against, their
formalisation, the protocol specification tool set and the model checking technology used here are similar
to those used for Nuovo DRM, which are discussed in the following sections. Details of this analysis
along with the attack traces found by the verification process are available online2.

Two security flaws in the NPGCT scheme were revealed by our analysis. First, it was found that in
the P2C (and similarly the C2C) protocol, a malicious customer can feed rights from a previous session to
the trusted device by replaying step 3. This replaying is possible because freshness of the authentication
phase is not extended to guarantee freshness of step 3 (delivery of the content-right bundle). This flaw
allowsd1 to accumulate rights without payingP for it. As a remedy, fresh nonces from the authentication
phase can be used inΛ to ensure the freshness of the whole exchange, c.f. Section 4.

Second, in the C2C protocol, payment is not bound to the request/receive messages exchanged be-
tween two customers. Thus, onced2 receivesc in step 3, the owner ofd2 can avoid payingd1 by quiting
the protocol. Since this exchange is unsupervised, the owners of compliant devices are forced to trust
each other to complete transactions. While it is reasonableto extend such trust to a legitimate content
provider, it should not be assumed for potentially dishonest device owners in C2C exchanges. (Note that
fairness in exchange is not a goal of NPGCT.)

4. The Nuovo DRM scheme

This section describes the proposed extension to the NPGCT,dubbed Nuovo DRM, which in particular
addresses the security concerns identified in Section 3.2. Here we confine to informal descriptions; a
formal specification is discussed in Section 5.

1Termψ was intended to be used in c2c-dispute resolution, althoughthat notion is not further explored in [30].
2http://www.cs.vu.nl/paradiso/formal.php
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4.1. Nuovo’s goals

The aim of Nuovo DRM is to enable content redistribution whilst resisting systematic content pirating.
Hence, Nuovo DRM provides a secure DRM scheme which encompasses content redistribution. The
security of the scheme is to address normal DRM security concerns as well as security concerns intro-
duced by content redistribution. This is captured by the following goals: We require the Nuovo DRM
scheme to achieve the following goals (which are the same as those used to analyse the NPGCT scheme
in Section 3.2):

G1 (effectiveness).A protocol achieves effectiveness iff for honest participants running the protocol in
a secure environment, it terminates successfully, i.e. a desired content-right bundle is exchanged
for the corresponding payment order. Effectiveness is a sanity check for the functionality of the
protocol and is therefore checked in a reliable communication system with no attacker.

G2 (secrecy).Secrecy states that no outsider may learn anyc ∈ Cont not intended for him. Usually,
content is encrypted for intended receivers. Nuovo DRM (similar to NPGCT) limits the distri-
bution of protected contents by encrypting them for intended compliant devices. The scheme
must thus guarantee that a DRM-protected content never appears unencrypted to any known non-
compliant device.

G3 (resisting content masquerading).Content masquerading occurs when contentc is passed off as
contentc′, for c 6= c′. Preventing this attack ensures that an intruder cannot feed c′ to a device that
has requestedc.

G4 (strong fairness). Assume Alice owns an itemmA and Bob owns an itemmB . Informally, strong
fairness states that if Alice and Bob run a protocol to exchange their items, in the end either
both or neither of them receive the other party’s item [31]. Strong fairness usually requires the
contents exchanged in the system to bestrongly generatable: in Nuovo DRM, a content provider
can provide the exact missing content if the exchange goes amiss. Strong fairness also guarantees
timeliness, which informally states that, in a finite amount of time, honest protocol participants can
safely terminate their role in the protocol with no help frommalicious parties. As this is a liveness
property3, resilient communication channels (assumption A2 below) are necessary for fairness to
hold [3]. For an in-depth discussion of fairness in exchangewe refer the interested reader to [3].

4.2. Assumptions of Nuovo DRM

The following assumptions are made regarding the working ofNuovo DRM. Note that assumptions A1
and A2 limit the power of the intruder, as explained further in Section 5.1.4.

A1 (tamper-proof devices). Consumer compliant devices are assumed tamper-proof. Owners of com-
pliant devices are however untrusted. They may collude to subvert the protocol. They can, in
particular, arbitrarily switch off their own devices (“crash failure model” in distributed computing
terminology).

3Properties of systems can often be divided into two classes:safetyproperties, stating unwanted situations do not happen, and
livenessproperties, stipulating desired events eventually happen. For a formal definition of these property classes see [2].
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A2 (resilient communication). We assume an asynchronous resilient communication model with no
global clock, i.e. the communication media deliver each transmitted message intact in a finite but
unknown amount of time. Resilience is necessary when aimingfor fairness [18], and is realizable
under certain reasonable assumptions [5].

A3 (PKI hierarchy). There exists a hierarchy of public keys, with the public key of the root authority
embedded in each compliant device and available to content providers. Using such an infrastruc-
ture, a device can prove its identity or verify other devices’ identities without having to contact
the root. Participant identities (d1 , d2 andP ) implicitly refer to these authentication certificates
issued by the trusted authorities.

A4 (price negotiations). Protocol participants negotiate the price of content in advance. In Nuovo
DRM, the price of the content being traded is bundled with therequested rights.

4.3. Nuovo DRM protocols

As in NPGCT, our scheme consists of two main protocols: the first distributes content from providerP
to clientd1 , the second allowsd1 to resell content to another clientd2 . These protocols derive from the
NPGCT schemes, but are updated to incorporate authentication and strong fairness.

Provider-customer protocol (P2C) The owner ofd1 wants to buy itemc with rightsr from content
providerP . Hered1 andP , but notowner (d1 ), are assumed trusted.

1. owner(d1 ) → d1 : P, h(c), r

2. d1 → P : d1 , nd1

3. P → d1 : {nP , nd1 , d1}sk(P )

4. d1 → P : {nd1 , nP , h(c), r, P}sk(d1 )

5. P → d1 : {c}K , {K}pk(d1 ), {r, nd1}sk(P )

In the first step, the hash of the desired content, retrieved from a trusted public directory, with a right
and the identity of a legitimate provider are fed to the compliant deviced1 . Following assumption A4,
owner (d1 ) andP have already reached an agreement on the price. WhetherP is a legitimate provider
can be checked byd1 and vice versa (see assumption A3). In step 2,d1 generates a fresh noncend1 and
sends it toP , which will continue the protocol only ifd1 is a compliant device. Message 4 completes
the mutual authentication betweend1 andP . This also constitutes apayment orderfrom d1 toP . After
receiving this message,P checks ifr is the same as previously agreed upon (assumption A4) and only
if so, stores the payment order (for future/immediate encashing) and performs step 5 after generating a
random fresh keyK. Whend1 receives message 5, it decrypts{K}pk(d1 ), extractsc and checks if it
matchesh(c) in message 1, andnd1 is the same as the nonce in message 2. If these tests pass,d1 updates
Rd1 (c) with r, e.g.r is added toRd1 (c). Note thatRd1 (c) is not necessarilyr: d1 could already have
some rights associated withc, for instance, acquired from an earlier purchase. Since we abstract away
from rights semantics (as discussed in Section 1.2), the update phase is left unspecified here.
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4.3.1. Customer-customer protocol (C2C)

The owner ofd2 wants to buy itemc with rights r′ from another compliant deviced1 . This protocol
can be seen as a fair exchange protocol whered1 andd2 want to exchange a content-right bundle for its
associated payment such that either both or neither of them receive their desired items. In deterministic
protocols, however, achieving fairness has been proven to be impossible without a TTP [16]. Assuming
that most participants are honest and protocols go wrong only infrequently, it is reasonable to use proto-
cols which require TTP’s intervention only when a conflict has to be resolved. These are usually called
optimistic fair exchange protocols [3] and contain two sub-protocols:an optimistic sub-protocol which
is executed between untrusted devices, and if a participantcannot finish this protocol run, it will initiate a
recovery sub-protocol with a designated TTP4. Our C2C protocol is an optimistic fair exchange protocol
which uses the content providerP as the TTP. The optimistic exchange sub-protocol is as follows:

1. owner(d2 ) → d2 : d1 , h(c), r′

2. d2 → d1 : d2 , nd2

3. d1 → d2 : {n′

d1 , nd2 , d2}sk(d1)

4. d2 → d1 : {nd2 , n
′

d1 , h(c), r
′, d1}sk(d2 )

5. d1 → d2 : {c}K′ , {K ′}pk(d2 ), {r
′, nd2}sk(d1 )

At step 5,d1 updates the right associated withc (reflecting that some part ofRd1 (c) has been used
for resellingc) and stores the payment order signed byd2 in an atomic action. Note that the atomicity of
these actions is necessary to guarantee thatd1 does not store the payment order without simultaneously
updating the rightRd1 (c).

In this protocol, a maliciousowner (d1 ) can abort the protocol before sending message 5 tod2 or
this message may be lost due to a hardware failure. To preventsuch unfair situations ford2 , we provide
a recovery mechanism to obtain the lost content.

4.3.2. Recovery sub-protocol

The goal of the recovery sub-protocol is to bring compliant deviced2 back to a fair state in case of a
failure in delivering message 5 in the C2C protocol. Deviced2 can start a recovery session (instead of
receiving the content at step 5,d2 takes actionresolves(d2 )) with the content providerP at any time
after sending message 4 in the C2C protocol. If a connection with the provider is not available,d2
saves the current state and simply waits until it becomes available. Once the recovery protocol has been
initiated,d2 ignores any further messages from the optimistic run of C2C.The purpose of the recovery
is to ensure thatd2 receives the content and rights thatowner(d2 ) wanted (and ostensibly paid for).

5r. d2 : resolves(d2 )

6r. d2 → P : d2 , n′

d2

7r. P → d2 : {n′

P , n
′

d2 , d2 }sk(P )

8r. d2 → P : {n′

d2 , n
′

P , 〈nd2 , n
′

d1 , h(c), r
′, d1 〉, r′′, P}sk(d2)

9r. P → d2 : {c}K′′, {K ′′}pk(d2 ), {r
′′, n′

d2}SK(P )

4Fair exchange is attained by ensuring either successful termination (recovery) or failure (abortion) for both parties. In Nuovo
DRM, if neither party terminates successfully, nothing is exchanged and failure is already attained. Hence, no particular “abort”
protocol is necessary.
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In this protocold2 andP behave as ifd2 is purchasing thec-r′′ content-right bundle fromP using the
P2C protocol, except that, in message8r, d2 reports the failed C2C exchange it had withd1 .

The wayP resolves payments of failed exchanges is discussed in more detail in Section 4.4.1. Note
that while payment details fall beyond the scope of our formal analysis, the recovery protocol does not.

One can argue that the recovery sub-protocol may also fail due to lossy communication channels.
As a way to mitigate this, persistent communication channels for content providers can be built, e.g.,
using an FTP server as an intermediary. The provider would upload the content, and the device would
download it from the server. In order to guarantee fairness,such resilient communication channels are
generally unavoidable [3] (c.f. assumption A2).

As a final note, we emphasise that only tamper-proof compliant devices are considered here (assump-
tion A1). These protocols can be trivially attacked if the devices are tampered with (e.g. a corruptedd2

would be able to initiate a recovery protocol even after a successful exchange). Methods for revoking
circumvented devices and resisting systematic content pirating are described in the following sections.

4.4. Nuovo DRM procedures

Nuovo DRM introduces several procedures to support the generic objective of Nuovo DRM to enable
content redistribution whilst resisting systematic content pirating. In this section, these procedures are
discussed. First, resolving of failed C2C exchanges by the provider is detailed. Next, a method is
described to detect systematic content pirating. And finally, an approach to prevent interaction with
compromised devices is discussed. Note that the proceduresbelow fall beyond the scope of our formal
analysis.

4.4.1. Resolving C2C disputes at the TTP

We defineprice : Rgts → N. Given ar ∈ Rgts , price(r) denotes the price that has been assigned tor (see
assumption A4). In the recovery protocol, the provider willagree to resolve a C2C exchange for right
r′′ (steps8r, 9r) iff price(r′′) ≥ price(r′) (from step8r); below we see why this condition is necessary.
In line with assumption A1, we only consider compliant devices that need to resolve – the device cannot
lie aboutprice(r′) andprice(r′′). In practice, resellers will usually propose prices which are lower than
the main vendor’s price for buying that single item, hence automatically satisfying this requirement.

We requireP to maintain a persistent log of the resolved disputes. Assume thatd2 tries to resolve
an unsuccessful exchange withd1 . As a result of the atomicity ofd1 ’s actions in the optimistic sub-
protocol, only the following situations are possible: Either d1 has updatedRd1 (c) and has the payment
order of message 4 of C2C (which it is thus entitled to have), or d1 does not have the payment order
and has not updatedRd1 (c). In the latter case, the combination of the failed optimistic protocol and its
subsequent resolution simply boils down to a P2C exchange. If d1 owns the payment order fromd2 ,
two different cases are possible:

1. If d1 tries to encash the payment order afterd2 has resolved,P is the one who pays the money
to d1 , asd2 has already paidP . Sinceprice(r′′) > price(r′), P can always payd1 its share
of the transaction. Therefore, the actual payment toP in this particular exchange sums up to
price(r′′) − price(r′). Note that althoughP is not finally paid (enough) for sendingc to d2 in this
particular exchange, it is indeed fair becauseP has already been paid byd1 whend1 bought the
right to resellc.
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2. If d2 resolves afterd1 has encashed the payment order,P will not charged2 , becaused2 has
already paid the price tod1 andd1 has updated the rightRd1 (c), for which it has already (directly
or indirectly) paidP .

Note thatd1 andd2 cannot collude to cheatP by d1 offering itemc to d2 for an extremely low
price and then resolving the request toP . To make this clear, consider the following use case:

• Cost of buying songc for playing only, directly fromP = $1.00.

• Cost of buying songc for 50 resell rights fromP = $0.80× 50 = $40.

• Cost of buying songc for playing only, from resellerd1 = $0.90.

First, this scenario describes a viable business model:d2 would rather buyc from d1 than directly from
P because of the $0.10 difference.d1 has incentive to act as reseller since it can make a profit of $(0.9-
0.8)× 50 if all the songs are sold.P would rather make one sale of 50 rights tod1 than sell to 50d2s
directly, to avoid all sorts of administration, processingand other per-transaction costs (it is common for
services such as MasterCard or PayPal to have per-transaction charges consisting of a fixed part and a
part dependent to the transaction).

If d1 offersc to d2 for $0.01 and they resolve it toP , P would transfer the money fromd2 ’s account
to d1 ’s without being paid in this exchange (P would accept resolving such unnecessary disputes to
assure its customers that in case of real problems, they can resort toP ). However,d1 is the one who
actually loses money.P ’s profit was already made when the resell rights were sold tod1 , andd2 has
exploited a very good offer onc. If this scenario is repeated enough,d1 will sell contents for $0.01×
50 = $0.50. At the end of the day,d1 paid$40 − $1.00 − 0.50 = $38.50 more than the market price
for c.

Seeing that the TTP cannot be cheated by compliant devices, even if their owners are colluding, the
provider can safely be considered a TTP. The provider’s interests are not harmed, and the role of TTP
allows it to offer an extra service to its customers.

4.4.2. Detection of compromised devices

The security of Nuovo DRM hinges on the compliance of the certified user devices. However, it is
reasonable to assume that over time, some of these devices will be compromised. In this section, we
examine how to detect compromised devices. As in [30], the proposed mechanism aims at detecting
powerful attackers and systematic content pirating, rather than occasionally misbehaving users. Hence,
we consider a device to be compromised if it misbehaves frequently. So instead of compliance checks,
the aim is to detect devices exhibiting deviant behaviour.

Nuovo DRM enables content redistribution in a controlled manner. In addition to regular attacks5

on DRM systems, Nuovo DRM has to consider attacks on content redistribution as well. As compliant
devices will not misbehave, only compromised devices can perform these attacks. A compromised de-
vice can attack content redistribution phase in two ways. First, it can overuse a right to resell content;
secondly, it can try to avoid paying for content it receives (by not having sufficient funds). These are
discussed in order.
5Content extraction attacks, related discussions and countermeasures on this are available from [30], and thus not further
detailed here.
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Fund exchange during content redistribution is clearly a crucial point of attack. Successful attacks
would undermine users’ confidence in the system and the benefit to the attacker is clear: acquire more
funds and spend less funds, respectively. In order to address this, we introduce the following assumptions
(for compliant devices) on funds, which so far have not been considered.

A5 (device funds). When a compliant device signs a payment order, the payment order is cash-able.
This can be accomplished, for instance, by providing each compliant device with some credit,
which can be spent and recharged.

A6 (traceability of funds). The banking system (responsible for encashing payment orders) cooperates
with content providers6 to catch malevolent users. Here, for the sake of simplicity,the content
provider and the bank are considered as one and the same entity.

First, consider an overuse of reselling rights. To detect large scale overselling, the provider recon-
structs the chain of sold rights. This is possible because ofassumption A6 – to acquire payment for sold
rights, devices need to contact the provider.

To this end, the provider maintains a directed weighted graphG = (V,E) for each sold content-right
combination, that may be resold. Each nodev ∈ V represents a device and the weighted edges of the
graph (E : V × V → N) represents right transfers between two compliant devices. For eachv ∈ V ,
weight differenceis the difference between outgoing weight and incoming weight. Formally:

∆(v) =
∑

v′∈V

E(v, v′) −
∑

v′∈V

E(v′, v) (1)

LetU ⊆ V be the set of nodes that have sold a content-rights bundle, but have not yet encashed the
payment order. Ifvc is a compromised device which engages in large scale overselling, after a reasonable
amount of time, the provider will detectvc’s behaviour by noting that the weight difference ofvc plus
the number of yet-to-cash rights are positive, i.e.

∆(vc) +
∑

u∈U

∆(u) > 0 (2)

By putting time limits on encashing payment orders, a provider can control the time bound on de-
tecting compromised devices. Such an approach requires thepayment orders to be timestamped by the
device issuing the order. Timestamps of compliant devices can be trusted, and the overhead to check
the timestamp against the time limit is very small. Hence this solution scales well with the size of the
system.

Secondly, a compromised device can refuse to pay for the content it receives. According to assumption
A5, user devices are provided with (and thus aware of) credits. Therefore, the second attack could easily
be detected by the banking entity (collaborating with the providers) when a device signs a payment order
without having enough credit for that, as a compliant devicewould not cause this error.

6Though this assumption may not be universally acceptable, e.g. due to geographical diversity of content providers and banking
systems used by customers, the required degree of collaboration makes the assumption practically tenable.
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4.4.3. Isolating compromised devices

Given that cheating – and thus compromised – devices are detected, countermeasures can be taken.
Confiscation of the compromised device is of course preferred. However, in practice this will not always
be possible. Instead, a Device Revocation List (DRL), containing public keys of detected compromised
devices, can be used to limit interactions of compliant devices with them. To ensure correct working of
device revocation, soundness of this DRL is required – no compliant device is ever listed on the DRL.

Completeness of the DRL also seems desirable: all compromised devices are listed on the DRL.
However, as more and more compromised devices are detected,such a list could grow quite large over
time. Given that not all devices are equally likely to interact, there is a trade-off between effectiveness
and size of the DRL stored on a compliant device.

Considering these two properties immediately gives rise totwo alternative ways of distributing the
DRL: optimising effectiveness and optimising size, respectively. Optimising effectiveness of the DRL is
done by keeping the complete DRL and updating it at all possible opportunities. In this case, each devices
has acomplete copyof the DRL. Optimising size of the DRL is done by adding only those compromised
devices with which a device has had contact with earlier – only check friends.

Below we examine these two distribution schemes, and propose and refine variants that aim to bal-
ance these two consideration. Furthermore, estimates for the effectiveness and size of the per-device
stored DRL are established.The following notation is used below:

drl The main DRL, as kept byP

drld1 the DRL as kept by deviced1

friendsd1 the list of devices with which deviced1 has had contact. To keep the size of this list within
reasonable bounds, it is reset after each contact with the provider that updates the DRL.

Updates of variables are denoted asnew a,new b,new c := a, b, c, where the left-hand side denotes
the variables after the update and the right-hand side expresses the values that are assigned.

complete copy: Each device keeps a copy of the entire DRL.
Update ond1 ↔ P : drld1 := drl .
Update ond1 ↔ d2 : drld1 , friendsd1 := drld1 ∪ drld2 , friendsd1 ∪ {d2}.

friend-check: A device only lists those revoked devices, with which it has had contact.
Update ond1 ↔ P : drld1 := friendsd1 ∩ drl .
Update ond1 ↔ d2 : friendsd1 := friendsd1 ∪ {d2}.

The next scheme strikes a balance between the two approachesabove. On contacting the provider, it
updates asfriend-check(remembering the old list, however). On contact with another device, it updates
ascomplete copy.

propagated list: Each device includes the DRL of all devices it has contacted.
Update ond1 ↔ P : drld1 := (drld1 ∪ friendsd1 ) ∩ drl .
Update ond1 ↔ d2 : drld1 , friendsd1 := drld1 ∪ drld2 , friendsd1 ∪ {d2}.
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Depending on the interconnectivity of devices, the entire DRL could quickly reside on each device
(equivalent to the “six degrees of separation” idea, which roughly states that everyone is at most six
handshakes away from every other person on the planet). In this case,propagated listwould be a complex
version ofcomplete copy. A size-limiting refinement ofpropagated listis to not simply forward all
incoming DRLs, but only forward those devices on the DRL withwhich a device has had contact itself.
To this end, the per-device DRL is partitioned in two:self d1 lists those revoked devices, with which
d1has had contact.restd1 accumulates the DRLs learned from other devices. Sodrld1 = self d1 ∪
restd1 .

With this in mind,propagated listis refined as follows.

restricted propagation: each device includes the DRL of all devices it has contacted,but does not
propagate this further.
Update ond1 ↔ P : self d1 := friendsd1 ∩ drl .
Update ond1 ↔ d2 : restd1 , friendsd1 := restd1 ∪ self d2 , friendsd1 ∪ {d2}.

Note that, given the partitioning of the DRL into two, another approach is to validate the received
DRLs before further propagation.

validated propagation: propagated lists are only included after validation by the provider.
Update ond1 ↔ P : drld1 := (self d1 ∪ restd1 ∪ friendsd1 ) ∩ drl .
Update ond1 ↔ d2 : restd1 , friendsd1 := restd1 ∪ self d, friendsd1 ∪ {d2}.

Remark that this is a sanitised version ofpropagated list, asdrld1 = self d1 ∪ restd1 . Hence, this
distribution model is not considered further.

Of the above schemes, restricted propagation seems to offerthe best trade-off of list length versus
usefulness of the DRL. On a further note, the impact of a corrupted DRL can be limited if each device
cleans its DRL every time it contacts the provider (drld1 := drld1 ∩ L). This would also allow the
provider to “un-revoke” devices.

To get a feeling for the inherent effectiveness and list sizeof a given distribution scheme, the distrib-
ution schemes are examined in the following setting.

Use case. Given the number of devicesn = 107 and the fraction of compromised devicese = 10−3

(i.e. the number of compromised devices is in the order of104). Assume that the devices interact via a
network structure, each device interacting withk other devices, that no three devices interact (i.e. the
number of unique neighbours of second degree isk · (k − 1)), and that secure memory can only hold a
list of at most 10 id’s (due to memory limitations). Assume additionally that any compromised device is
aware of the distribution of the list, and so knows which devices list it and which do not. Furthermore, we
assume a compromised device can contact any other device (i.e. they do not follow the network structure,
but choose with whom to interact without restrictions).

The restricted propagation scheme will only revoke compromised devices that interact with a device
or with a neighbour of the device.

To calculate with how many different devices a device can have interacted, while limiting the inter-
actions with compromised devices, consider the following.

complete copy: Each device needs to store the complete DRL, which consists of e · n = 104 entries.
This list cannot be stored in secure memory.
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friends-check: Each device needs to store only those compromised devices itencountered, i.e. the list
size ise · k. For a maximum list size of 10, this distribution scheme can accommodate networks
of up tok = 104.

propagated list: After every interaction, the DRL can only grow. Given the extremely regular, total
connected network, this means that eventually, every revoked device will be listed. The time it
takes for this to happen depends on the degree of separation.Within the setting sketched above,
the degree of separation is approximatelylog N

log k−1 .

restricted propagation: The number of entries in the per-device DRL depends on the number of inter-
actions as follows:e · neighbours 1stdegree · neighbours 2nddegree . For a maximum list size of
10 this means0.001 · (k2 − k) ≤ 10, which is approximatelyk2 ≤ 104. Hence this suffices for
interacting with up to 100 different, unique devices.

In order to measure the effectiveness of a distribution method, we consider how limiting a scheme is
for a compromised device. This is equal to the number of compliant devices which lists a compromised
device – i.e., the number of devices that will not interact with a compromised device. Note that due to our
assumption that a compromised device (or its owner) is awareof which devices list it and may contact
any other device, compromised devices may be considered to be uniformly distributed throughout the set
of devices. Hence, the number of devices not interacting with a specific compromised device is equal to
the average size of the per-device DRL. So given the uniformity assumption, this metric is equal to the
size of the list, which was discussed above.

5. Formal analysis

In this section we describe the steps followed to formally verify that Nuovo DRM achieves its design
goals. Our approach is based on finite-state model checking [12], which (usually) requires negligible
human intervention and, moreover, produces concrete counterexamples, i.e. attack traces, if the design
fails to satisfy a desired property. It can therefore be effectively integrated into the design phase. How-
ever, a complete security proof of the system cannot, in general, be established by model checking. For
an overview on formal methods for verifying security protocols see [29]. As we base our approach on
finite-state model-checking, our formal verification must have a finite number of states and thus neces-
sarily concerns a limited instance of the system. Our formalverification can be seen as a sequence of
steps: first, we specify the protocol and the intruder model in theµCRL process algebraic language and
generate the corresponding model using theµCRL tool set (version 2.17.12). Second, we state the desired
properties in the regular (alternation-free)µ-calculus, and, finally, check the protocol model with regard
to the properties in theCADP tool set. These steps are described in detail below.

To highlight important processing steps in the protocols, we now introduce severalabstractactions.
These are used in the formalisation process to define desiredbehaviours of the protocol.

request(d1 , h(c), r, P ) Executed at step 4 in both the P2C and (with appropriate parameters) the C2C
protocols by the receiving device, this action indicates the start of the exchange from the receiving
device’s point of view.

paid(P, h(c), r, d1 ) Executed at step 5 of the P2C protocol byP , this action indicates reception of the
payment order and sending of content tod1 .
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update(d1 , h(c), r, P ) Executed after accepting the message of step 5 of the P2C protocol byd1 , this
action indicates the successful termination of the exchange fromd1 ’s point of view.

request(d2 , h(c), r′, P ) Executed at step8r of the C2C recovery protocol byd2 .

paid(P, h(c), r′, d2 ) Executed at step9r of the C2C recovery protocol byP .

update(d2 , h(c), r′, P ) Executed after acceptance of the message of step9r of the C2C recovery proto-
col byd2 .

5.1. Formal specification of Nuovo DRM

The complex structure of Nuovo DRM calls for an expressive specification language. We have forma-
lized7 the Nuovo DRM scheme inµCRL, a language for specifying and verifying distributed systems and
protocols in an algebraic style [20]. AµCRL specification describes a labelled transition system (LTS),
in which states represent process terms and edges are labelled with actions. TheµCRL tool set [8, 7], to-
gether withCADP [17] which acts as its back-end, features visualisation, simulation, symbolic reduction,
(distributed) state space generation and reduction, modelchecking and theorem proving capabilities.

We model a security protocol as an asynchronous compositionof a finite number of non-deterministic
named processes. These processes model roles of honest participants in the protocol. Processes com-
municate by sending and receiving messages. A message is a pair m = (q, c), whereq is the identity
of the intended receiver process (so that the network can route the message to its destination) andc
is the content of the message. To send or receive a messagem, a participantp performs the actions
send(p,m) or recv(p,m), respectively. Apart fromsend andrecv, all other actions of processes are
assumed internal, i.e. not communicating with other participants. These are symbolic actions that typi-
cally denote security claims of protocol participants (e.g. update in Section 4.3). Here, we only present
aµCRL specification of the honest customer role in the P2C protocoland aµCRL model of the intruder.
For a complete specification of Nuovo DRM see [24]. We start with a brief introduction toµCRL, which
suffices to understand the formal protocols.

5.1.1. TheµCRL specification language

In aµCRL specification, processes are represented by process terms,which describe the order in which
the actions may happen in a process. A process term consists of action names and recursion variables
combined by process algebraic operators. The operators ‘·’ and ‘+’ are used for the sequential and
alternative composition (“choice”) of processes, respectively. The process expressionp� b� q, whereb
is a term of typeBool andp andq are processes, behaves likep if b is true, and likeq if b is false. The
predefined actionδ represents a deadlock, i.e. from then on, no action can be performed. The process∑

d∈∆

P (d), where∆ is a (possibly infinite) data domain, behaves asP (d1) + P (d2) + · · · .

5.1.2. The customer process

In µCRL specification 1 we specify the customer’s compliant device role in the P2C protocol of the Nuovo
DRM scheme. In this specification,Nonce andKey represent the finite set of nonces and keys available

7Available fromhttp://www.cs.vu.nl/paradiso/formal.php
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in the protocol, respectively. The setΩ is d1 ’s local collection of content-right bundles,nd1 denotes the
nonce that is available tod1 in the current protocol round, and the functionnxt : Nonce → Nonce,
generates a fresh random nonce, given a seed. To simplify thepresentation we remove the identities
of senders and intended receivers from messages. Note that any discrepancy in the received content is
automatically detected in this code: in the last message, ifthe first part does not agree with the initial
h(c), the message will not be accepted.

µCRL specification 1Customer device in the P2C protocol

d1 (Ω, nd1 ) =
∑

r∈Rgts
c∈Cont

recv(P, h(c), r).send(d1 , nd1 ).

∑

n∈Nonce

recv({n, nd1 , d1}sk(P )).

send({nd1 , n, h(c), r, P}sk(d1 )).request(d1 , h(c), r, d1 ).∑

K∈Key

recv({c}K , {K}pk(d1 ), {r, nd1}sk(P )).update(d1 , h(c), r, P ).

d1 (Ω ∪ {〈c, r〉},nxt(nd1 ))

5.1.3. Communication models

We consider two different communication models. The first isa synchronous communication model
that is used to verify the effectiveness property (goal G1).No intruder is present in this model and all
participants are honest. A processp can send a messagem to q only if q can at the same time receive it
from p. The synchronisation between these is denotedcom(p,m, q), which formalizes the “p → q : m”
notation of Sections 3 and 4. In order to verify the properties G2–G4, an asynchronous communication
model is used where the intruder has complete control over the communication media. When a processp

sends a messagem with the intention that it should be received byq, it is in fact the intruder that receives
it, and it is only from the intruder thatq may receivem. The communications between participants of
a protocol, via the intruder, are thus asynchronous and, moreover, a participant has no guarantees about
the origins of the messages it receives.

5.1.4. Intruder model

We follow the approach of Dolev and Yao to model the intruder [14], with some deviations as described
below. The Dolev-Yao (DY) intruder has complete control over the network: it intercepts and remembers
all transmitted messages, it can encrypt, decrypt and sign messages if it knows the corresponding keys, it
can compose and send new messages using its knowledge and canremove or delay messages in favour of
others being communicated. As it has complete control over communication media, we assume it plays
the role of the communication media. All messages are thus channelled through the intruder. Under
the perfect cryptography assumption, this intruder has been shown to be the most powerful attacker
model [11]. In our formalisation, this intruder is a non-deterministic process that exhausts all possible
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sequences of actions, resulting in an LTS which can subsequently be formally checked. Note that the
intruder is not necessarily an outside party: it may be a legitimate, though malicious, player in the
protocol.

The intruder model used here is different from the DY intruder in two main aspects. These differences
stem from the characteristics of the DRM scheme and its requirements:

I1 Trusted devices, that play a crucial role in these protocols, significantly limit the power of the
intruder8. However, the intruder has the ability to deliberately turnoff its (otherwise trusted)
devices. This has been reflected in our model by allowing the devices controlled by the intruder
to non-deterministically choose between continuing or quitting the protocol at each step, except
when performing atomic actions. Therefore, in the model, all non-atomic actionsa of the devices
operated by the intruder are rewritten witha + off . Note that the intruder cannot violate the
atomicity of actions for compliant devices. We verify the protocols in the presence of this enriched
intruder model to capture possible security threats posed by these behaviours.

I2 Liveness properties of protocols cannot in general be proven in the DY model since the intruder can
block all communications. To achieve fairness, essentially a liveness property (see Section 4.1),
optimistic fair exchange protocols often rely on a “resilient communication channel” (RCC ) as-
sumption, see for example [26].RCC guarantees that all transmitted messages willeventually
reach their destination, provided a recipient for them exists [3]. The behaviour of our intruder
model is limited byRCC , in that it may not indefinitely block the network. Since the intruder
is a non-deterministic process in our model, in order to exclude executions that violateRCC , we
impose a fairness constraint9 on the resulting LTS. To denote communications not requiredby
the RCC, we use the action modifier� on regular communication actions (in actionssend

� and
com

�). A protocol has to achieve its goals even when executions containingcom
� actions are

avoided. A formal treatment of these issues is beyond the scope of this paper and can be found
in [10].

As a minor deviation from DY, the intruder process performs the abstract actionrevealed when it
gets access to a non-encrypted version of any DRM-protectedcontent, to indicate violation of the secrecy
requirement (G2). This action is of course not triggered when the intruder merely renders an item using
its trusted device, which is a normal behaviour in the system.

In µCRL specification 2,Agent represents the set of all honest participants of the protocol andMsg

represents the set of all messages.X is the intruder’s knowledge set.Y contains messages buffered for
delivery. The set operators∪ and\ have their usual meanings. The setsynth(X) represents the (infinite)
set of messages that the intruder is able to synthesise from the messages in setX, e.g. by applying
pairing, signing and so on. For a complete description of this model please refer to [9].

5.2. Regularµ-calculus

The design goals of Nuovo DRM (G1-G4) are encoded in the regularµ-calculus [28]. This logic covers
the Nuovo DRM’s design goals in its entirety, both safety andliveness, and naturally incorporates data

8In our formalisation we ignore the possibility of tamperingtrusted devices. Countermeasures for such cases are discussed
in [24, 30].
9Two different notions of fairness are used in this paper: fairness in exchange (see G4) and fairness constraint of an LTS,which
informally states that each process of the system has to be given a fair chance to execute [12].
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µCRL specification 2Intruder model

I(X,Y ) =
∑

p∈Agent
m∈Msg

recv(p,m, I).I(X ∪ {m}, Y ∪ {m}) +

∑

p∈Agent
m∈Msg

send(I,m, p).I(X,Y \ {m}) �m ∈ Y � δ +

∑

p∈Agent
m∈Msg

send
�(I,m, p).I(X,Y ) �m ∈ synth(X) \ Y � δ +

∑

m∈Cont

revealed(m).δ �m ∈ synth(X) � δ

α ::= a ∈ A | ¬α | α1 ∧ α2 | α1 ∨ α2

β ::= α | β1.β2 | β∗

ϕ ::= F | T | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈β〉ϕ | [β]ϕ | µX.ϕ

Table 1. (Partial) syntax of regularµ-calculus, adapted from [28]

parameters that are exchanged in the protocols. The alternation-free fragment of the regularµ-calculus
can be efficiently model checked [28], and all the formulae that we have verified are in this fragment. A
short account of this logic is presented below.

Regularµ-calculus consists ofregular formulaeand state formulae. Regular formulae, describ-
ing sets of traces, are built uponaction formulaeand the standard regular expression operators. We
use ‘.’, ‘∨’, ‘¬’ and ‘∗’ for concatenation, choice, complement and transitive-reflexive closure, respec-
tively, of regular formulae. The syntax of regular formulaeas used in the next sections10 is ranged over
by β in Table 1. Variablea ranges over primitive actions from the setA, such assend andrecv. In
addition to this, the following notation is used:F denotes no action (F = a ∧ ¬a), T denotes any
action (T = ¬F ), and the wild-card action parameter− represents any parameter of an action (e.g.
com(−,−,−) represents any communication action).

State formulae, which express properties of states, are constructed from propositional variables, stan-
dard Boolean operators, the possibility modal operator〈· · · 〉 (used here in the form〈β〉T to express the
existence of an execution of the protocol for which the regular formulaβ holds), the necessity modal
operator[· · · ] (used here in the form[β]F to express that, for all executions of the protocol, the regular
formulaβ does not hold) and the minimal and maximal fixed point operators µ andν. A state satisfies
µX. G iff it belongs to the minimal solution of the fixed point equation X = G(X), G being a state
formula andX a set of states. The symbolsF andT are also used in state formulae. In state formulae
they denote the empty set and the entire state space, respectively. The syntax of state formulae as used in
the next sections is ranged over byϕ in Table 1.

10Table 1 restricts itself to the portion of the syntax used in this document. The formal syntax is fully described in [28].
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5.2.1. Formalisation of Nuovo’s goals

This section describes the requirements stated by Nuovo DRM’s goals G1-G3 in the regularµ-calculus.
Below, the intent of these goals is captured formally. This serves to familiarise the reader with the core
formal expressions used in Section 5.3, where the goals are fully formalised. Given the complex nature
of fairness (goal G4), a concise formalisation here is omitted in lieu of a full explanation in Section 5.3.

G1 (effectiveness).Effectiveness means that each purchase request is inevitably responded to, and each
received item is preceded by its payment. The first requirement is encoded by stating that after
a request occurs in a trace, a matchingupdate action must eventually follow. For a deviced1
requesting contentm from providerP with rightsr, this is formalised as follows:

[T∗.request(d1 ,m, r, P )] µX.(〈T〉T ∧ [¬update(d1 ,m, r, P )]X)

The second requirement is encoded by stating that noupdate action occurs without a prece-
ding, matchingpaid action. For a deviced1 updating with contentm and rightsr received from
providerP , this is formalised as

[(¬paid (P,m, r, d1 ))∗.update(d1 ,m, r, P )]F

G2 (secrecy).G2, and the following goals, are checked in presence of an intruder. Secrecy is achieved
when the intruder never acquires unprotected content. As mentioned in Section 5, the abstract
actionrevealed(m) denotes the intruder learning unprotected contentm. Hence, this action should
never occur. This is formalised as

[T∗.revealed(m)]F

G3 (resisting content masquerading).Content masquerading occurs when a device accepts a bundle
of content and rights it did not request. Non-occurrence of this situation is formalised for deviced1
and contentm, rightsr from P as

[(¬request(d1 ,m, r, P ))∗.update(d1 ,m, r, P )]F

5.3. Analysis results

In this section we describe the results obtained from the formal analysis of the Nuovo DRM scheme. Our
analysis has the following properties: the intruder is allowed to have access to unbounded resources of
data (like fresh nonces), should it need them to exploit the protocol. We consider only a finite number
of concurrent sessions of the protocol, i.e. each participant is provided a finite number of fresh nonces
to start new exchange sessions. Although this does not, in general, constitute a proof of security for a
protocol, in many practical situations it suffices. As security of cryptographic protocols is not decidable
(e.g. see [13]), a trade-off has to be made between completeness of the proofs and their automation. Our
analysis method is fully automatic, evaluating specific usecases in specific settings (as detailed below).
Following [14], we assume perfect cryptography and do not consider attacks resulting from weaknesses
of the cryptographic primitives used in protocols. Type-flaw attacks11 are also omitted from our analysis.
These can, in any case, be easily prevented [23].

11A type-flaw attack happens when a field in a message that was originally intended to have one type is interpreted as having
another type.
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Our formal analysis consists of two scenarios. A scenario explicitly describes one specific execution
of the protocol, with specific actors, specific assumptions and a specific intruder model. The first scenario
verifies effectiveness (G1) while using the synchronous communication model of Section 5.1, in absence
of an intruder. The second scenario uses the asynchronous communication model of Section 5.1 and the
modified DY intruder model of Section 5.1.4 to verify the remaining properties (G2-G4). Both scenarios
operate under the assumptions of Section 4.2. Both scenarios describe a setting with two compliant
devicesd1 andd2 , three different pieces of content and two different rights, the first right allowing
to resell the second. In the second scenario, these are controlled (but not tampered) by the intruder of
Section 5.1. Below,P , as before, represents the trusted content provider. The formulae in the following
results use abstract actions to improve the readability of the proved theorems. These actions are explained
in Sections 4.3 and 5.1. A complete formalisation of these actions can be found in [24].

5.3.1. Honest scenarioS0

ScenarioS0 describes the interaction between 1 provider and 2 devices (d1 andd2 ). The communica-
tion network is assumed operational and no malicious agent is present. The scenario runs as follows:
deviced1 is ordered to buy an item and reselling rights fromP . Then,d1 resells the purchased item
to d2 . As this scenario is only intended as a sanity check for the protocol, we believe correct behaviour
in this scenario with two devices running multiple instances of the protocol is strong supporting evidence
for that in general. For that reason, as well as the increasedcomputational load of having more devices,
we limited this scenario to only two devices. The scenario was checked using the EVALUATOR 3.0 model
checker from theCADP tool set, confirming that it is deadlock-free, and effectiveas specified below.

Result 1. Nuovo DRM is effective for scenarioS0, meaning that it satisfies the following properties:

1. Each purchase request is inevitably responded.

∀m ∈ Cont , r ∈ Rgts. [T∗.request(d1 ,m, r, P )] µX.(〈T〉T ∧ [¬update(d1 ,m, r, P )]X) ∧

[T∗.request(d2 ,m, r, d1 )] µX.(〈T〉T ∧ [¬update(d2 ,m, r, d1 )]X)

2. Each received item is preceded by its payment.

∀m ∈ Cont , r ∈ Rgts. [(¬paid(P,m, r, d1 ))∗.update(d1 ,m, r, P )]F ∧

[(¬paid(d1 ,m, r, d2 ))∗.update(d2 ,m, r, d1 )]F

5.3.2. Dishonest scenarioS1

ScenarioS1 describes the interaction of an intruderI, 2 compliant devicesd1 andd2 , and 3 providers.
The intruder controls the communication network and is the owner of devicesd1 andd2 . The intruder
can instruct the compliant devices to purchase items and rights from the providerP , exchange items
between themselves and resolve a pending transaction. Moreover, the compliant deviced1 can non-
deterministically choose between following or aborting the protocol at each step, which models the
ability of the intruder to turn the device off (see I1 in Section 5.1). We model three concurrent runs of
the content providerP , and three sequential runs of each ofd1 andd2 . Although this is again a limited
setting, the intruder capabilities are as strong as in a setting with more devices. Adding more devices
would increase the number of honest users, not increase the capabilities of the intruder. This reasoning
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coupled with the computational power necessary to handle the generation of the state space directed us
to limit the scenario thusly. The resulting model was checked using the EVALUATOR 3.0 model checker
from theCADP tool set and the following results were proven.

Result 2. Nuovo DRM provides secrecy in scenarioS1, i.e. no protected content is revealed to the in-
truder (see Section 5.1).

∀m ∈ Cont . [T∗.revealed(m)]F

Result 3. Nuovo DRM resists content masquerading attacks inS1, ensuring that a compliant device only
receives the content which it has requested.

∀a ∈ {d1 , d2}, m ∈ Cont , r ∈ Rgts. [(¬request(d1 ,m, r, d2 ))∗.update(d1 ,m, r, d2 )]F ∧

[(¬request(d2 ,m, r, d1 ))∗.update(d2 ,m, r, d1 )]F ∧

[(¬request(a,m, r, P ))∗.update(a,m, r, P )]F.

Besides, the intruder cannot feed the self-fabricated contentm0 to compliant devices:

∀a ∈ {d1 , d2}, r ∈ Rgts. [T∗.update(d1 ,m0, r, d2 )]F ∧

[T∗.update(d2 ,m0, r, d1 )]F ∧

[T∗.update(a,m0, r, P )]F.

Result 4. Nuovo DRM provides strong fairness inS1 for P , i.e. no compliant device receives a protected
content, unless the corresponding payment has been made toP .

∀a ∈ {d1 , d2 }, m ∈ Cont , r ∈ Rgts. [(¬paid (P,m, r, a))∗.update(a,m, r, P )]F

∧

[T∗.update(a,m, r, P ).(¬paid (P,m, r, a))∗.

update(a,m, r, P )]F

Result 5. Nuovo DRM provides strong fairness inS1 for d2 , as formalised below12:

1. As a customer: if a compliant device pays (a provider or reseller device) for a content, it will
eventually receive it13.

Note that there are only finitely many TTPs available in the model, so the intruder, in principle,
can keep all of them busy, preventing other participants from resolving their pending transactions.
This corresponds to a denial of service attack in practice, which can be mitigated, among other
ways, by putting time limits on transactions with TTPs. Since we abstract away timing aspects
here, instead, the actionlastttp is used to indicate that all TTPs in the model are exhausted bythe
intruder. In other words, as long as this action has not occurred yet, there is still at least one TTP
available to resort to.

12Strong fairness ford1 is not guaranteed here, as it can abort the protocol prematurely. A protocol guarantees security only
for the participants that follow the protocol.
13The fairness constraint used in the formulae corresponds tothe strong notion of fairness in [19]:∀θ. F∞

enabled(θ) ⇒

F∞
executed (θ).
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∀m ∈ Cont , r ∈ Rgts. [T∗.request(d2 ,m, r, P ).(¬(update(d2 ,m, r, P )))∗]

〈(¬com�(−,−,−))∗.(update(d2 ,m, r, P ))〉T

∧

∀m ∈ Cont , r ∈ Rgts. [T∗.request(d2 ,m, r, d1 ).(¬(resolves(d2 ) ∨ update(d2 ,m, r, d1 )))∗]

〈(¬com�(−,−,−))∗.(resolves(d2 ) ∨ update(d2 ,m, r, d1 ))〉T

∧

[(¬lastttp)∗.request(d2 ,m, r, d1 ).(¬lastttp)∗.resolves(d2 ).

(¬(update(d2 ,m, r, P ) ∨ lastttp))∗]

〈(¬com�(−,−,−))∗.update(d2 ,m, r, P )〉T

2. As a reseller: no compliant device receives a content froma reseller device, unless the correspond-
ing payment has already been made to the reseller.

∀m ∈ Cont , r ∈ Rgts. [(¬paid (d2 ,m, r, d1 ))∗.update(d1 ,m, r, d2 )]F

∧

[T∗.update(d1 ,m, r, d2 ).(¬paid (d2 ,m, r, d1 ))∗.update(d1 ,m, r, d2 )]F

Note that the strong fairness notion that is formalised and checked here subsumes the timeliness property
of goal G4, simply because whend2 starts the resolve protocol, which it can autonomously do, it always
recovers to a fair state without any help fromd1 .

Lemma 5.1. Nuovo DRM achieves its design goals G1-G4 in scenariosS0 andS1.

Proof:
• G1 is achieved based on Result 1;
• Result 2 implies G2;
• Result 3 guarantees achieving G3;
• Results 4 and 5 guarantee G4.

ut

Note that Lemma 5.1 does not prove that Nuovo DRM achieves itsdesign goals inall possible
scenarios. It does support and provide credence for this statement.

6. Conclusions & future work

We have formally analysed the NPGCT DRM scheme and found two vulnerabilities in its protocols. The
scheme was subsequently extended to address these vulnerabilities, and provide procedures for detection
and revocation of compromised devices.

The extended scheme, Nuovo DRM, is inherently complicated (as many other DRM schemes are)
and, thus, error prone. This calls for expressive and powerful formal verification tools to provide a certain
degree of confidence in the security and fairness of the system. We have analysed and validated our
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design goals on a finite model of Nuovo DRM. This is of course nosilver bullet: our formal verification
is not complete as it abstracts away many details of the system.

To support a practical implementation of Nuovo DRM, the possibility of compromised devices has to
be taken into account. To this end, procedures for both detection and revocation of compromised devices
are introduced by Nuovo DRM. The distribution of revocationlists was discussed, and several alternative
distribution models were compared.

As future work, we are considering several extensions to theformal analysis. For example, the ac-
countability of the provider, which is taken as non-disputable in this study, can be verified. Additionally,
possible privacy concerns of customers and the payment phase can be incorporated into the formal model.

The comparison of the various distribution models for revocation lists (especially the effectiveness
of said models) is strongly influenced by the assumed uniformity of the network of connected devices.
As future work, we intend to investigate the notion of effectiveness in a less uniform setting.
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[4] Avoine, G., Gärtner, F., Guerraoui, R., Vukolic, M.: Gracefully Degrading Fair Exchange with Security
Modules.,EDCC ’05, 3463, Springer, 2005.

[5] Basu, A., Charron-Bost, B., Toueg, S.: Simulating Reliable Links with Unreliable Links in the Presence of
Process Crashes,ACM WDAG ’96, 1151, Springer, 1996, ISBN 3-540-61769-8.

[6] Bella, G., Paulson, L. C.: Mechanical Proofs about a Non-repudiation Protocol,TPHOL’01, 2152, Springer,
2001.
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