
Automatic Interoperability Test Case

Generation based on Formal Definitions

Alexandra Desmoulin and César Viho

IRISA/Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
{alexandra.desmoulin,viho}@irisa.fr

Abstract. The objective of this study is to provide methods for deriv-
ing automatically interoperability tests based on formal definitions. First,
we give interoperability formal definitions taking into account both ob-
jectives of interoperability: the implementations must interact correctly
and the expected service must be provided. Based on these definitions,
a method for generating interoperability test cases is described. This
method is equivalent to classical methods in terms of non-interoperability
detection and avoids state-space explosion problem. Classical and pro-
posed methods were implemented using the CADP Toolbox and applied
on a connection protocol to illustrate this contribution.

1 Introduction

In the domain of network protocols, implementations are tested to ensure that
they will correctly work in an operational environment. These implementations
are developed based on specifications, generally standards. Different kinds of
tests exist. Among these tests, conformance and interoperability testing considers
the behaviour of these implementations at their interfaces to verify that they will
work correctly in a real network. The aim of conformance tests [1] is to verify that
a single implementation behaves as described in its specification. Interoperability
testing objectives are to check both if different implementations communicate (or
interact) correctly and if they provide the services described in their respective
specification during this interaction.

Conformance testing has been formalized [1, 2]. A formal framework exist
together with testing architectures, formal definitions and methods for writting
conformance tests. Moreover, this formalization leads to automatic test genera-
tion methods and tools like TGV [3] or TorX [4].

In the interoperability testing situation, there is no precise characterization
of interoperability for the moment. However, some attemps to give formal defini-
tions of interoperability exists [5, 6]. Some studies also give methods for automat-
ically deriving interoperability tests [7, 8]. These methods are generally based
on fault models or on the search of some particular kinds of error. But there is
still no method for the moment describing how to generate interoperability test
cases based on formal definitions.

In a previous study [5], we give some formal definitions of the notion of in-
teroperability together with some clues for test generation. In this study, we

complete these formal definitions to take into account all the objectives of in-
teroperability testing. Thus, the so-called ”interoperability criteria” describe the
conditions that two implementations must satisfy to be considered interoperable
and follow the main objectives of interoperability: providing the expected service
while interacting correctly. Based on these definitions and using the clues given
in [5], we develop a complete interoperability test derivation method. Moreover,
we implement this method using the CADP Toolbox. Its application on a con-
nection protocol allows us to verify both that it can generate interoperability
test case equivalent to test cases that would have been obtained manually or
with classical methods, and that it avoids state-space explosion problem that
generally occurs with classical methods [6].

This paper is decomposed as follows. First, Section 2 describes notions used
in the paper including interoperability testing architectures and formal mod-
els. Then, Section 3 is aimed at providing formal definitions of interoperability.
Section 4 describes a method for deriving automatically interoperability tests
based on these definitions. Section 5 describes the results of the application of
the proposed interoperability test generation method on a connection protocol.
Finally, conclusion and future work are in Section 6.

2 Preliminaries

In this Section, we present the different notions that are used in this study.
First, we define interoperability testing and interoperability testing architecture
in Section 2.1. Then, we describe the model of IOLTS used for interoperability
formal definitions in Section 2.2. The proposed method for interoperability test
generation reuses some aspects of conformance testing. Few words are said in
Section 2.3 on the state of the art in automatic test generation.

2.1 Interoperability testing

We consider here the context of protocol testing. Protocol implementations are
developped based on specifications, generally protocol standards. They must be
tested to ensure that thay will work correctly in an operational environment. We
consider here the context of black-box testing: the implementations are known
by the events executed on their interfaces, generally sending and receiving mes-
sages. Among the different kinds of protocol testing contexts, we consider here
interoperability testing that puts in relation different implementations (generally
from different manufacturers) to verify that they are able to work together.
Interoperability testing has two goals. It verifies that different protocol imple-
mentations can communicate correctly, and that they provide the services de-
scribed in their respective specification while communicating. In this study, we
consider a context with two implementations under test (IUT for short): this
is the one-to-one context (see Figure 1). In an interoperability testing architec-
ture [9, 10], we can differentiate two kinds of interfaces: Lower Interfaces (used

2

for the interaction) and Upper Interfaces (used for the communication with up-
per layer). Testers are connected to these interfaces but they can control (send
message) only the upper interfaces. The lower interfaces are only observable.

Tester 2

I1 I2

(a)

I1 I2

(b)

Tester 1Tester

Fig. 1. Interoperability testing architectures

Depending on the access to the interfaces, different architectures can be distin-
guished. For example, the interoperability testing architecture is called unilateral
if only the interfaces of one IUT are accessible during the interaction, bilateral if
the interfaces of both IUTs are accessible but separately (Figure 1(b)), or global
if the interfaces of both IUTs are accessible with a global view (Figure 1(a)).

2.2 IOLTS model

We use IOLTS (Input-Output Labeled Transition System) to model specifica-
tions. As usual in the black-box testing context, we also need to model IUTs,
even though their behaviors are unknown. They are also modeled by an IOLTS.

Definition 1. An IOLTS is a tuple M=(QM ,ΣM ,∆M , qM
0

). QM is the set of
states and qM

0
∈ QM the initial state. ΣM denotes the set of observable events on

the interfaces: p?m ∈ ΣM (resp. p!m ∈ ΣM) stands for an input (resp. output)
where p is the interface and m the message. ∆M is the transition relation.

Other Notations. ΣM can be decomposed: ΣM = ΣM

U ∪ΣM

L , where ΣM

U (resp.
ΣM

L) is the set of messages exchanged on the upper (resp. lower) interfaces. ΣM

can also be decomposed to distinguish input (ΣM

I) and output messages (ΣM

O).
Based on this model, Traces(q) is the set of executable traces (successions of
events) from the state q. Γ (q) is the set of executable events (on the interfaces
of M) from the state q and Γ (M, σ) the set of executable events for the system
M after the trace σ. In the same way, Out(M, σ) (resp. In(M, σ)) is the set
of possible outputs (resp. inputs) for M after the trace σ. Considering a link
between lower interfaces li of Mi and lj of Mj , we also define µ̄ as µ̄=li!a if µ =
lj?a and µ̄ = li?a if µ = lj !a.

Quiescence. An implementation can be quiescent in three different situations:
either the IUT can be waiting on an input, either it can be executing a loop of

3

internal (non-observable) events, or it can be in a state where no event is exe-
cutable. For an IOLTS Mi, a quiescent state q is modeled by (q, δ(i), q) where δ(i)
is treated as an observable output event (practically with timers). The IOLTS
M with quiescence modeled is called suspensive IOLTS and is noted ∆(M).

Interaction and projection. To give a formal definition of interoperability,
two operations need to be modeled: asynchronous interaction and projection.

The asynchronous interaction is used to calculate the behavior - modeled by
an IOLTS - of a system composed by two communicating entities. For two IOLTS
M1 and M2, this interaction is noted M1‖AM2. The way to obtain M1‖AM2 is
described in [5]. First, M1 and M2 are transformed into IOLTS representing their
behavior in an asynchronous environment (as in [11, 12]). Then, these two IOLTS
are composed to obtain M1‖AM2 via the rules usually used for synchronous
interaction. These rules (see for example [6, 13]) are ”mapping” events on lower
interfaces and propagating quiescence and events on upper interfaces.

The projection of an IOLTS on a set of events is used to represent the behav-
ior of the system reduced to some events (such as events observable on specific
interfaces). For example, the projection of M on the set of events executable on
its lower interfaces ΣM

L is noted M/ΣM
L . It is obtained by hiding events (replac-

ing by τ -transitions) that do not belong to ΣM
L , followed by determinization.

In the same way, OutX(M, σ) corresponds to a projection of the set of outputs
Out(M, σ) on the set of events X .

2.3 State of the art in automatic test generation

Some methods for generating automatically interoperability tests exists in [7,
14, 15, 16, 17]. However, these methods are not based on formal definitions. On
the contrary, conformance testing is a kind of test for which a formal framework
was developed. It determines to what extent a single implementation of a stan-
dard conforms to its requirements. Conformance testing architectures and formal
definitions [1, 2] were described. Among these formal definitions, the ioco confor-
mance relation [2] says that an implementation I is ioco-conformant to a speci-
fication S if I can never produce an output which could not be produced by its
specification S after the same trace. Moreover, I may be quiescent only if S can
do so. Formally : I ioco S = ∀σ ∈ Traces(∆(S)), Out(∆(I), σ) ⊆ Out(∆(S), σ).
This relation is the most used in practice for conformance tests. Defining for-
mally conformance also allows automatic conformance test generation: confor-
mance test generation tools like TGV [3] or TorX [4] are based on ioco-theory.
Even though conformance and interoperability are two different kinds of test,
they have in common to be based on traces of the specifications. Thus, part of
the existing concepts of conformance testing can be reused for interoperability
testing. However, the ioco-theory does not fit all objectives of interoperability
testing (verification that the implementations communicate correctly and that
they provide the expected services while interacting: see Section 3.2).

4

3 Formalizing interoperability

3.1 Specification model

As we are concerned with interoperability testing, the considered specifications
must allow interaction. We call this property the interoperability specification
compatibility property (iop-compatibility for short). Two specifications are iop-
compatible iff, for each possible output on the interfaces used for the interac-
tion after any trace of the interaction, the corresponding input is foreseen in the
other specification. Formally, ∀σ ∈ Traces(S1‖AS2), ∀σ.a.σ′ ∈ Traces(S1‖AS2),
a ∈ OutΣL

(S1‖AS2, σ), σ′ = β1...βl, ⇒ ∃βi such that βi = ā. Practically, this
property can be verified by a parallel search of both specifications -without con-
structing the specification interaction. This means that the traces of one spec-
ification must be compatible with possible execution of the other specification.
Notice that this notion of iop-compatibility is different from the one described
in [18] where authors consider that ”two components are compatible if there
is some environment that make them work together, simultaneously satisfying
both of their environment assumption”.
In some situations (underspecification of input actions particularly), the two
specifications need to be completed to verify this property. It is done by adding
transitions leading to an error trap state and labeled with the inputs correspond-
ing to messages that can be sent by the interacting entity (input m added in
In(Sj , σ/Σj) if m̄ ∈ OutΣL

(Si, σ/Σi)). Indeed, this method considers the recep-
tion of an unspecified input as an error. This is the most common definition of
unspecified inputs in network protocols. In the following, we will consider that
specifications are iop-compatible.

3.2 Formalization of interoperability principles

The purpose of interoperability testing is to verify that the two interconnected
implementations communicate successfully and that they provide the expected
services during their interaction. Interaction verification corresponds to the ver-
ification that outputs sent by an IUT on its lower interfaces are foreseen in the
specification and that the interacting IUT is able to receive these messages. Ser-
vice verification corresponds to the verification that outputs (and quiescence)
observed on the upper interfaces of the IUTs are described in their respective
specification. Thus, outputs must be verified on both upper and lower interfaces,
while inputs are managed on lower interfaces.

Output verification is done by comparing output observed, after a particular
trace, on the interfaces of the IUTs with the outputs foreseen in the specifications
after the same trace. This part of interoperability testing can reuse ioco-theory.
However, during test execution, there is an important difference between inter-
operability and conformance testing context also for output verification. Indeed,
the lower interfaces are controllable in conformance context but during interop-
erability tests, these interfaces are only observable.

5

One of interoperability testing purposes is to verify that the two implemen-
tations communicate correctly, that is to say that messages sent by one imple-
mentation must be correct (this is done by the output verification) and actually
received by the other implementation. The verification of this reception corre-
sponds to input management. However only outputs can be observed by testers.
Thus, verifying that an input µ is actually received implies to determine the set
of outputs that can happen only if this reception is actually executed. This set of
outputs is calculated based on causal dependencies. The set of outputs (without
quiescence) on S that causally depend on the input µ after the trace σ is noted

CDep(S, σ, µ) and defined by CDep(S, σ, µ)= {αi ∈ ΣS
O|∀(q, q′), qS

0

σ
⇒ q

µ
→

q′, ∃qi, q
′ σi.αi=⇒ qi, σi ∈ (ΣS \ ΣS

O)∗ ∪ {ǫ}}, where σi ∈ (ΣS \ ΣS
O)∗ ∪ {ǫ} is the

path associated to the output αi ∈ CDep(S, σ, µ).
Based on causal dependency events, a condition for input verification can be
defined. We give here the condition for the verification of the execution of an in-
put µ̄ by I2 (the corresponding output is µ sent by I1). This condition considers
each output µ executed by I1 after a trace σ of the interaction. This trace can be
decomposed into σ1 (events of I1) and σ2 (events of I2). The input management
condition says that the reception of µ̄ by I2 implies the observation of an output
that causally depends on µ̄. Some events may be executed between µ and µ̄
(noted by trace σ′ ∈ ((ΣS1 ∪ ΣS2) \ µ̄)∗ ∪ {ǫ}) and between µ̄ and the output
that causally depends on µ̄ (trace σi ∈ (ΣS2

I)∗ ∪ {ǫ}). Formally, the condition is
described by:
∀σ ∈ Traces(S1‖AS2), σ1 = σ/ΣS1 ∈ Traces(∆(S1)), σ2 = σ/ΣS2 ∈ Traces(
∆(S2)), ∀µ ∈ Out

Σ
I1
L

(∆(I1), σ1),

∀σ′ ∈ ((ΣS1 ∪ ΣS2) \ µ̄)∗ ∪ {ǫ}, σ.µ.σ′.µ̄ ∈ Traces(S1‖AS2),
µ̄ ∈ In(I2, σ2.(σ

′/ΣI2)) ⇒
Out(I2, σ2.(σ

′/ΣI2).µ̄.σi) ⊆ CDep(S2, σ2.(σ
′/ΣI2), µ̄) with σi ∈ (ΣS2

I)∗ ∪ {ǫ}.

3.3 Interoperability formal definitions

Even though some formal definitions exist in [5, 8], there is no precise charac-
terization for interoperability (iop for short in the following). Here, we present
some formal definitions, called iop criteria. They consider different possible ar-
chitectures (see Section 2.1) for testing the interoperability of two IUTs.
The unilateral iop criterion iopU (point of view of I1) considers interfaces of
IUT I1 while interacting with I2. It says that, after a trace of S1 observed during
the interaction, all outputs (and quiescence) observed in I1 must be foreseen in
S1, and that I1 must be able to receive outputs sent by I2 via its lower interfaces.

Definition 2 (Unilateral iop criterion iopU). I1iopUI2 =
∀σ1 ∈ Traces(∆(S1)), ∀σ ∈ Traces(S1‖AS2),
σ/ΣS1 = σ1 ⇒ Out((I1‖AI2)/ΣS1, σ1) ⊆ Out(∆(S1),σ1)
and ∀σ1 = σ/ΣS1 ∈ Traces(∆(S1)) such that σ ∈ Traces(S1‖AS2), ∀µ ∈
Out(I2, σ/ΣI2), ∀σ′ ∈ [(ΣS1 ∪ΣS2)\ µ̄]∗∪{ǫ}, σ.µ.σ′.µ̄ ∈ Traces(S1‖AS2), µ̄ ∈
In(I1, σ1.(σ

′/ΣI1)) ⇒ Out(I1, σ1.(σ
′/ΣI1).µ̄.σi) ⊆ CDep(S1, σ1.(σ

′/ΣI1), µ̄),
σi ∈ (ΣS1

I)∗ ∪ {ǫ}

6

The bilateral total iop criterion iopB is verified iff both (on I1 point
of view and I2 point of view) unilateral criteria are verified: I1 iopB I2 (=
I2 iopB I1) = I1 iopU I2 ∧ I2 iopU I1.

The global iop criterion considers both kinds of interfaces and both IUTs
globally. It says that, after a trace of the specification interaction, all outputs
(and quiescence) observed during the interaction of the implementations must be
foreseen in the specifications, and that outputs sent by one IUT via its lower in-
terfaces must be effectively received by the interacted IUT. Contrary to iopU and
iopB that are used in specific contexts where some interfaces are not accessible,
this iop criterion iopG corresponds to the most used testing architecture.

Definition 3 (Global iop criterion iopG). I1iopGI2 =
∀σ ∈ Traces(S1‖AS2), Out(I1‖AI2, σ) ⊆ Out(S1‖AS2, σ)
and ∀{i, j} = {1, 2}, i 6= j,
∀σ ∈ Traces(Si‖ASj), σi = σ/ΣSi ∈ Traces(Si), σj = σ/ΣSj ∈ Traces(Sj),
∀µ ∈ Out(Ii, σ/ΣSi), ∀σ′ ∈ [(ΣSi ∪ ΣSj ∪ {δ(i), δ(j)}) \ µ̄]∗ ∪ {ǫ}, σ.µ.σ′.µ̄ ∈
Traces(Si‖ASj), µ̄ ∈ In(Ij , σj .(σ

′/ΣIj)) ⇒ Out(Ij , σj .(σ
′/ΣIj).µ̄.σk) ⊆ CDep(

Sj , σj .(σ
′/ΣIj), µ̄), σk ∈ (Σ

Sj

I)∗ ∪ {ǫ}

In [5], we prove the equivalence of the global criterion with the so-called bi-
lateral iop criterion iopB in terms of non-interoperability detection. However,
the iop criteria defined in [5] only consider the output verification, that is the
first part of the definition of iopB and iopG of this study. These latter crite-
ria are still equivalent in terms of non-interoperability detection. Indeed, the
causal-dependency based condition is defined with a bilateral point of view in
both criteria. In next Section, we focus in the way to use this equivalence for
developing methods to derive automatically iop test cases.

4 Interoperability test generation methods

In this section, we investigate the way to generate interoperability (iop for short
in the following) tests based on the defined iop criteria. Applications of these
methods are described in Section 5.

4.1 Test purposes, test cases and verdicts

Iop test purpose In practice, interoperability test case derivation is done based
on test purposes. These test purposes are used by testers to describe the proper-
ties they want to test. An iop test purpose is an informal description of behaviors
to be tested, in general an incomplete sequence of actions. Formally, a test pur-
pose TP can be represented by a deterministic and complete IOLTS equipped
with trap states used to select targeted behaviors. Complete means that each
state allows all actions. In this study, we consider simplified iop test purposes
with only one possible action after each state (∀ σ, |Γ (TP, σ)| ≤ 1) and one

7

AcceptTP trap state used to select the targeted behavior.
Iop test cases During interoperability tests, three kinds of events are pos-
sible: sending of stimuli to the upper interfaces of the IUTs, reception of in-
puts from these interfaces, and observation of events (input and output) on
the lower interfaces. Thus, an iop test case TC can be represented by TC
= (QTC , ΣTC , ∆TC , qTC

0
), an extended version of IOLTS. {PASS, FAIL, INC}

⊆ QTC are trap states representing interoperability verdicts. qTC
0

is the initial
state. ΣTC ⊆ {µ|µ̄ ∈ ΣS1

U ∪ ΣS2

U } ∪ {?(µ)|µ ∈ ΣS1

L ∪ ΣS2

L }. ?(µ) denotes the
observation of the message µ on a lower interface. Notice that in interoperability
testing µ can be either an input or an output. ∆TC is the transition function.
Iop verdicts The execution of the iop test case TC on the system composed
of the two IUTs gives an iop verdict: PASS, FAIL or INC. The meanings of the
possible iop verdicts are PASS: no interoperability error was detected during
the tests, FAIL: the iop criterion is not verified and INC (for Inconclusive): the
behavior of the SUT seems valid but it is not the purpose of the test case.

4.2 Global interoperability test generation method

The global interoperability test generation method is based on the first part
of the global iop criterion iopG. This part focuses on the comparison between
outputs (and quiescence) observed during the interaction of the implementations
and outputs (and quiescence) foreseen in the specifications in the same situation.
This method corresponds to what is done practically when writing iop test cases
”by hand”. It also corresponds to most approaches for automatic interoperability
test generation (as in [7, 8, 14, 15, 16, 17]) even if these methods generally do
not compute the complete specification interaction graph. This is why we also
call it classical interoperability test generation method.
The global interoperability test generation method (see Figure 2(a)) begins with
the construction of the asynchronous interaction S1‖AS2 to have a model of the
global system specification. Then S1‖AS2 is composed with the test purpose TP .
During this operation, two main results are calculated. First TP is validated. If
the events composing TP are not found in the specifications (or not in the order
described in TP), TP is not a valid Test Purpose. The composition is also used
to keep only the events concerned by the Test Purpose (in the interaction of the
two specifications). It calculates the different ways to observe/execute TP on
the System Under Test (SUT) composed of the two IUTs.
A conformance test tool takes as entries a test purpose and a specification and
computes the paths of the specification executing the test purpose. Thus, such
a tool can be used for computing the paths executing TP in the specification
interaction. In this case, the tool entries are TP and S1 ‖A S2. However, some
modifications needs to be applied to the test case obtained with this tool to
derive interoperability test cases. Events on lower interfaces are not controllable
in the interoperability context, contrary to the case of conformance testing.

One problem with this method (classical method) is that we can have state
space explosion when calculating the interaction of the specifications [6]. Indeed,

8

S1 ||A S 2 TP

conformance test tool +modifications for iop

global iop test case

Execution on SUT(I1, I2)

verdict

S S TP1 2

conformance test
tool + modifications
for iop

conformance test
tool + modifications

for iop

Unilateral Test Case Unilateral Test Case

Execution on SUT(I1, I2) Execution on SUT(I1, I2)

verdict V1

Unilateral test purpose derivation
Test derivation with

final iop verdict = V1 ^ V2

Test derivation with Test derivation with

S 1 2TP1 STP2

(a) (b)

verdict V2

Fig. 2. Interoperability test generation: global and bilateral approaches

the state number of the specification asynchronous interaction is in the order of
O((n.mf)2) where n is the state number of the specifications, f the size of the
input FIFO queue on lower interfaces and m the number of messages in the
alphabet of possible inputs on lower interfaces. This result can be infinite if
the size of the input FIFO queues is not bound. However, the equivalence -in
terms of non-interoperability detection- between global and bilateral iop criteria
(cf. theorem 1 in [5]) suggests that iop tests derived based on the bilateral iop
criterion will detect the same non-interoperability situations as tests generated
using the global interoperability test generation method.

4.3 Bilateral interoperability test generation method

The bilateral interoperability test generation method (see Figure 2(b)) is based
on the first part of the iopB criterion. This part focuses on the comparison
between outputs (and quiescence) observed on the interfaces of the interacting
implementations -each test case considering one IUT during the interaction- and
outputs (and quiescence) foreseen in the corresponding specification.

Unilateral iop test purpose derivation The first step of the bilateral inter-
operability test generation method derives automatically two unilateral iop test
purposes TPSi

from the global iop test purpose TP . The algorithm of figure 3
shows how to derive these two unilateral iop test purposes. Let us consider an
event µ of the iop test purpose TP and the construction of TPSi

. If µ is an
event of the specification Si, µ is added to the unilateral iop test purpose TPSi

.
If µ is an event from the specification Sj , there are two possibilities. Either the

9

event is to be executed on lower interfaces: in this case, the mirror event µ̄ is
added to TPSi

; or, the event is to be executed on the upper interfaces: in this
case, the algorithm searches a predecessor of µ, such that this predecessor is an
event to be executed on lower interfaces. The algorithm adds the mirror of this
predecessor to the unilateral iop test purpose TPSi

.

Input: S1, S2: specification, TP : iop test purpose
Output: {TPSi

}i=1,2;
Invariant: Sk = S3−i (* Sk is the other specification *); TP = µ1...µn

Initialization: TPSi
:= ǫ ∀i ∈ {1, 2};

for (j = 0;j ≤ n;j++) do
if (µj ∈ ΣSi

L) then TPSi
:= TPSi

.µj ; TPSk
:= TPSk

.µ̄j end(if)

if (µj ∈ ΣSk
L) then TPSi

:= TPSi
.µ̄j ; TPSk

:= TPSk
.µj end(if)

if (µj ∈ ΣSi
U) then TPSi

:= TPSi
.µj ; TPSk

:=add precursor(µj , Si, TPSk
) end(if)

if (µj ∈ ΣSk
U) then TPSk

:= TPSk
.µj ; TPSi

:=add precursor(µj , Sk, TPSi
) end(if)

if (µj /∈ ΣSk ∪ ΣSi) then error(TP not valid: µj /∈ ΣS1 ∪ ΣS2) end(if)
end(for)

function add precursor(µ, S, TP): return TP
σ1 := TP ; aj =last event(σ1)
while aj ∈ ΣS

U do σ1=remove last(σ1); aj =last event(σ1) end(while)
M = {q ∈ QS; ∃ q’|(q, āj , q

′) ∧ σ = āj .ω.µ ∈ Traces(q)}
if (∀q ∈ M , σ /∈ Traces(q)) then error(no path to µ) end(if)
while (e=last event(ω) /∈ ΣS

L ∪ {ǫ}) do ω=remove last(ω) end(while)
if (e ∈ ΣS

L) then TPS = TPSi
.ē end(if)

Fig. 3. Algorithm to derive TPSi
from TP

Some additional functions are used in the algorithm of figure 3. Let us con-
sider a trace σ and an event a. The function remove last is defined by : re-
move last(σ.a) = σ. The function last event is defined by : last event(σ)= ǫ if
σ= ǫ and last event(σ)= a if σ= σ1.a. The error function returns the cause of
the error and exits the algorithm.

Unilateral iop test case generation The second step of the bilateral inter-
operability test generation method is the generation of two unilateral test cases
from the unilateral test purposes and the specifications. The same test generation
algorithm is executed for TPS1

with S1 and for TPS2
with S2. This algorithm

calculates on-the-fly the interaction between the unilateral iop test purpose and
the corresponding specification to find in the specification the paths executing
the test purpose. This step can be done by using a conformance test generation
tool (for example TGV).
However, as lower interfaces are not controllable in interoperability testing (con-
trary to conformance testing), controllable conformance test cases can not always
be reused for interoperability. Indeed, a test case is controllable if the tester does
not need to choose arbitrarily between different events. In conformance, inputs
on lower interfaces correspond to outputs of the tester: a controllable confor-
mance test case only considers one of the possible inputs on lower interfaces.

10

In interoperability testing, inputs on lower interfaces are sent by the other im-
plementation. An interoperability test case must take into account all possible
inputs on lower interfaces. The complete test graph is an IOLTS which contains
all sequences corresponding to a test purpose: all the inputs of the implemen-
tation that correspond to the test purpose are considered. Thus, to have test
cases usable in interoperability context, the conformance tool used in this step
for interoperability test generation must compute the complete test graph.
Moreover, some modifications are needed on the test cases TC′

1
and TC′

2
gen-

erated by the conformance test tool to obtain the unilateral iop test cases TC1

and TC2 that will be executed unilaterally on the corresponding IUT in the
SUT. These modifications are needed because lower interfaces are only observed
(not controlled) in interoperability context. For example, if an event l!m exists
in the test case obtained from TGV (which means that the tester connected to
interface l must send the message m to the lower interface of the IUT), this
will correspond to ?(l?m) in the interoperability test case. This means that the
interoperability tester observes that a message m is received on the interface l.
No changes are made on the test cases for events on the upper interfaces as these
interfaces are observable and controllable: a message can be sent (and received)
by the tester to the IUT on these interfaces.
The execution of both interoperability test cases return two verdicts. The ”bi-
lateral” verdict is obtained by combining these local verdicts with the following
obvious rules: PASS ∧PASS = PASS, PASS ∧ INC = INC, INC ∧ INC =
INC, and FAIL ∧ (FAIL ∨ INC ∨ PASS) = FAIL.

Complexity The first step of the bilateral interoperability test generation
method is linear in the maximum size of specifications. Indeed, it is a simple
path search algorithm. The second step is also linear in complexity, at least
when using TGV [19]. Thus, it costs less than the calculation of S1‖AS2 needed
in the global interoperability test generation method. Moreover the bilateral in-
teroperability test generation method can be used to generate iop test cases
in situations where generating test cases with the global interoperability test
generation method is impossible due to state-space explosion problem.

4.4 Causal dependency based algorithm completing both methods

One objective of interoperability is to verify the communication between the
IUTs. Moreover, iop test purposes may end with an input. This latter situation
occurs, for example, in the unilateral test purposes derived by bilateral method.
For example, if the iop test purpose ends with an output on the lower interface,
its mirror event (an input) is added -as last event- to one of the derived test
purpose. In this case, the conformance test tool (TGV) generates a test case
without postamble: the last event of the test case is the input given as objective
by the test purpose. However, this input is not observable. An algorithm based
on input-output causal dependencies is used to know if this input was actually
executed. It completes iop test cases obtained by bilateral method (or test cases
generated by classical method based on an iop test purpose ending with an input)

11

by producing outputs that help in verifying that the input is actually executed.
Thus, the algorithm based on causal dependencies completes and refines iop test
cases generated by bilateral (or global) method. It takes as entry the iop test case
to complete: the last event of this test case is the input µ. It returns the outputs
that are causally dependent of this input µ. For computing the set of causal
dependency events (associated with the paths to these events), this algorithm,
see Figure 4, considers each event of the set Γ (S1, σ.µ) to find an output in each
trace following the considered input. The obtained outputs are used to verify
the actual reception of the input µ and thus, to complete test cases based on the
iop test purpose containing this input.

Input: S1: Specification, σ: Trace of event (after projection on S1), µ: input of S1

Output: CDep(S1, σ, µ), {σ′}: set of traces between µ and an output, m: number of
events in CDep
Initialization: Γ := Γ (S1, σ.µ); m :=nb event(Γ)
for (i := 0; i ≤ m; i + +) do

create(find[i]); find[i]=false; create(σ′[i]); σ′[i] := ǫ end(for)
BEGIN
while ∃x(x < n), find[x]:=false do

for (i := 0; i < m; i + +) do
if (find[i]=false) do Evt := Γ (S1, σ.µ.σ′[i])

if (Evt(0) ∈ ΣS1

O) do find[i]:=true; Add(Evt(0), CDep(S1, σ, µ))
else σ′[i] := σ′[i].Evt(0) end(if)
if (nb event(Evt)> 1) do

for(j := 1; j ≤ nb event(Evt); j + +) do
m++; create(σ′[m]); σ′[m] := σ′[i]
create(find[m]); find[m]:=false
if (Evt(j) ∈ ΣS1

O) do find[m]:=true; Add(Evt(j), CDep(S1, σ, µ))
else σ′[m] := σ′[m].Evt(j) end(if)

end(for)
end(if)

end(if)
end(for)

end(while)
END

Fig. 4. Exploration of S1 to find causally dependent outputs of input µ

4.5 Implementation of iop test generation methods

In [5], we show the equivalence that allows the definition of the bilateral al-
gorithm. However, the definitions and methods were not complete as inputs
were not verified (there was no condition and no algorithm based on causal-
dependencies) and the algorithms presented were not tested practically.
The methods presented in this Section were implemented using the CADP tool-
box [20]. The conformance test generation tool TGV (Test Generation using
Verification techniques) [3] is integrated in this toolbox which also contains an
API for manipulating IOLTS. These methods were applied to the generation of
iop test cases for a connection protocol. It is described in next Section.

12

5 Application on a connection protocol

Figure 5 describes three specifications for a connection protocol. S1 and S2 are
respectively the specifications of the client and server. U1?CNR is a connection
request from the upper layer, l1!cnr (resp. l2?cnr) the request sent (resp. re-
ceived) to the peer entity, l2!ack/l2!nack the positive or negative response, and
U1!ACK/U1!NACK the response forwarded to the upper layer. The specifica-
tion S represents both client and server parts.

0 0

1

0

5

U1?CNR

l1!cnr

l2!ack

l2?cnr

l2!nack

U1?CNR

l1!cnr

l2?cnr

l2!ack

3 43 4

1

2

U1!ACK U1!NACK

l1?nack

l1?ack

1

2

U1!ACK

U1!NACK

l1?nackl1?ack

l2!nack

SS 2S 1

Fig. 5. Examples of specifications: S1, S2 and S

5.1 A client/server example

Let us consider the three iop test purposes of figure 6(a). These iop test pur-
poses are applicable for the System Under Test (SUT) composed of two IUTs
implementing respectively S1 and S2. For example, TP1 means that, after the
reception by I1 (implementing S1) of a connection demand on its upper interface
U1, this IUT must send a connection acknowledgment on its upper interface U1.

0 0 0 00 0

U1?CNR

1

U1!ACK

2

ACCEPT

l2!nack

1

l2!ack

2

ACCEPT

U1?CNR

1

l1?ack

ACCEPT

l2!nack

1

l2!ack

2

ACCEPT

1

l1!cnr

U1!ACK

2

ACCEPT

l2?cnr

1

l2!ack

2

ACCEPT

Unilateral Iop Test Purposes derived
from TP1 from TP2 from TP3

2

TP1
1 TP1

2 TP2
1 TP2

2 TP3
1 TP2

3

(b1) (b2) (b3)

Iop Test Purposes

(a)

1TP 2TP 3TP

0

1

2

0

1

2

0

1

2

U1?CNR

U1!ACK

ACCEPT ACCEPT

l2?cnr

ACCEPT

U1?CNR

l2!ack U1!ACK

Fig. 6. Iop test purpose TP1, TP2 and TP3, and derived Unilateral Test Purposes

In figure 6 (b1), TP 1

1
and TP 2

1
are the unilateral test purposes derived using

the algorithm of figure 3 for TP1 and respectively specifications S1 and S2. In the

13

same way, TP 1

2
and TP 2

2
of figure 6 (b2) (resp. TP 1

3
and TP 2

3
of figure 6 (b3))

are derived from TP2 (resp. TP3). The same notation will be used for test cases
in the following.
When deriving the unilateral iop test purposes, for events on lower interfaces,
the returned event is either the event itself, or its mirror. For event U1!ACK, as
its predecessor is µ = l1?ack, the returned event is µ̄ = l2!ack (TP 2

1
and TP 2

3
) or

U1!ACK (TP 1

1
and TP 1

3
). The difficulty is for deriving an event from U1?CNR

for TP 2

1
and TP 2

2
. In S1, this event is the first possible event after the initial

state. Its predecessor must be found in the paths that bring back the entity in its
initial state after some execution. The first predecessor found is U1!NACK. As
this event is not an event of the interaction, the algorithm continues one more
step to find l1?nack as predecessor, and then returns its mirror l2!nack.

TC1
3TC1

1

1

2

4

0

3

TC1
2 TC1

2 TC2
2

0

1

2

4

3

5

6

0

3

1

2

4

0

1

2

4

3

5

6

0

1

2

3

UT1!CNR

UT1!CNR

(PASS)
UT1?ACK

?(l1?ack)

?(l1!cnr)

?(l2!ack)
(PASS)

?(l2?cnr)

?(l2!nack)

?(l2?cnr)

UT1?NACK
?(l1?nack)

?(l2!nack)

?(l2!ack)

?(l2?cnr)

0

1

3

2

(PASS)
?(l1?ack)

UT1!CNR

4

?(l1?nack)

5

UT1?NACK
?(l1!cnr)

UT1!CNR

?(l2!ack)
(PASS)

?(l2!nack)

?(l2?cnr) UT1!CNR

UT1?ACK
(PASS)

?(l1?ack)

?(l2!nack)

?(l2!ack)

?(l1!cnr)

UT1!CNR

UT1?NACK

?(l1?nack)
?(l2!ack)
(PASS)

?(l2?cnr)

?(l2!nack)

TC3
2

?(l2?cnr)

Fig. 7. Test Cases by bilateral method for specifications S1 and S2

The second step of the bilateral iop test generation method corresponds to
the use of TGV conformance test tool on a unilateral test purpose and the
corresponding specification. Figure 7 gives the test cases obtained for the test
purposes of figure 6. The results on Figure 7 gives the test cases modified for
interoperability. UT 1 is the tester connected to upper interface U1.

Now, let us see what happens when using the classical approach for iop test
generation to compare test cases generated by both methods. The first step of
the classical method is the calculation of the specification interaction. Then, we
can use TGV to generate test cases for test purposes of Figure 6. The obtained
global iop test cases are in Figure 8. We can remark that, for the three situations
(comparing traces in Figures 7 and 8), the same execution paths lead to the same
verdicts. Thus, the iop test cases generated with both methods are equivalent in
terms of verdicts.

For TP2, we can remark that TC1

2
‖ATC2

2
ends with an input (l1?ack) that is

not in TC2 (excluding this event, TC2 and TC1

2
‖ATC2

2
contain the same traces).

This is due to the test purpose derivation (cf. Section 4.4): the unilateral test pur-

14

4

7

9

10

?(l1!cnr)

UT1!CNR

UT1?NACK

?(l1?nack)

TC3
UT1!CNR

?(l2?cnr)

?(l2!nack)

?(l1!cnr)

?(l2?cnr)

?(l2!ack)

?(l1?ack)

UT1?ACK (PASS)

0

1

2

3

5

6

8

11

5

6

7

0

1

2

3

4

5

9

7

4

1

0

8

6

2

3

UT1!CNR

UT1!CNR

TC1 2TC

UT1!CNR

UT1?NACK

?(l1?nack)

?(l1!cnr)

?(l2?cnr)

?(l2!ack)
(PASS)

?(l2!nack)

UT1!CNR

UT1?NACK

?(l1!cnr)

?(l2?cnr)

?(l2!ack)

?(l1?ack)

UT1?ACK (PASS)

?(l2!nack)
?(l1?nack)

Fig. 8. Test Cases from TGV for the interaction of S1 and S2

pose generated for S1 ends with an input. To complete this iop test case (TC1

2
),

we can either add a postamble returning to the initial state, either use the causal
dependency based algorithm. In this simple example (specification S1), only the
event U1!ACK will be added with causal dependency event method.
To summarize, the application of both method on this connection protocol con-
firms the equivalence in terms of verdicts. Even though the generated iop test
cases are not the same, the execution of the same traces leads to the same ver-
dicts. Thus, the same non-interoperability situation are detected with both our
method and the classical method.

5.2 Specification describing both entities as client and server

Both methods were also applied on the specification S (Figure 5) describing both
client and server parts (same test purposes). The interaction S‖AS, calculated
for classical approach, is composed of 454 states and 1026 transitions with input
queues of each system bounded to one message. The following table gives the
number of states s and transitions t (noted s/t in the table) of results derived
considering a queue size of 3. Line 1 and 2 give the state and transition numbers
for unilateral test cases derived by bilateral method considering S as specifica-
tion for both systems (lines 1 and 2: S as specification respectively for systems
1 and 2). The third line gives numbers for the interaction of these unilateral test
cases TC1 and TC2. Finally line 4 gives results for global methods. With a queue
size of 3,the specification interaction has 47546 states and 114158 transitions.

TP1 TP2 TP3

Unilateral iop test case TC1 9/17 8/16 9/17
Unilateral iop test case TC2 13/24 13/24 12/22

TC1‖ATC2 19546/57746 19468/57614 19405/57386
Global test case TC 54435/120400 18014/40793 54456/120443

15

We observe that we can derive iop test cases considering a queue size of 3
via both classical and bilateral methods. However, due to the difference in state
and transition number between both methods, unilateral test cases obtained
by bilateral method are more usable, for example for controlling the execution
of the interoperability test cases. Moreover, state space explosion problem can
occur when using the global method: results in the previous table are finite only
because we consider bounded FIFO queues. We were not able to compute S‖AS
for a queue size limited to 4 places. But the bilateral method gives iop test
cases with the same state and transition numbers as in the previous table. This
shows that the bilateral method can be used to generate iop test cases even for
specifications that produce state space explosion problem. Moreover, these test
cases are not dependent of the queue size.

6 Conclusion

In this paper, we present interoperability formal definitions that deal with both
purposes of interoperability: implementations must interact correctly and the ex-
pected service must be provided. A new interoperability test generation method
is proposed based on these formal definitions. This method has been imple-
mented using the CADP toolbox. It avoids the well-known state-space explosion
problem that occurs when using classical methods. This is the important result
of our study and it is confirmed by the application on a connection protocol.
Moreover, we show that the so-called bilateral interoperability test derivation
method allows us to generate interoperability test cases in situations where it
would have been impossible with the traditional method because of state space
explosion problem.
As future work, we will study the generalization of the formal interoperability
definitions and test generation methods to the much more complex context of
more than two implementations. We will also study how to apply the described
method to a distributed testing architecture.

References

[1] ISO. Information Technology - Open Systems Interconnection Conformance Test-
ing Methodology and Framework - Parts 1-7. International Standard ISO/IEC
9646/1-7, 1992.

[2] J. Tretmans. Testing concurrent systems: A formal approach. In J.C.M Baeten
and S. Mauw, editors, CONCUR’99 – 10th Int. Conference on Concurrency The-
ory, volume 1664 of LNCS, pages 46–65. Springer-Verlag, 1999.

[3] Claude Jard and Thierry Jéron. Tgv: theory, principles and algorithms. STTT,
7(4):297–315, 2005.

[4] J. Tretmans and E. Brinksma. Torx: Automated model based testing. In A. Hart-
man and K. Dussa-Zieger, editors, Proceedings of the First European Conference
on Model-Driven Software Engineering, Nurnberg, Germany, December 2003.

[5] A. Desmoulin and C. Viho. Formalizing interoperability for test case genera-
tion purpose. In IEEE ISoLA Workshop on Leveraging Applications of Formal
Methods, Verification, and Validation, Columbia, MD, USA, September 2005.

16

[6] R. Castanet and O. Koné. Deriving coordinated testers for interoperability. In
O. Rafiq, editor, Protocol Test Systems, volume VI C-19, pages 331–345, Pau-
France, 1994. IFIP, Elsevier Science B.V.

[7] Soonuk Seol, Myungchul Kim, Sungwon Kang, and Jiwon Ryu. Fully automated
interoperability test suite derivation for communication protocols. Comput. Net-
works, 43(6):735–759, 2003.

[8] R. Castanet and O. Kone. Test generation for interworking systems. Computer
Communications, 23:642–652, 2000.

[9] T. Walter, I. Schieferdecker, and J. Grabowski. Test architectures for distributed
systems : state of the art and beyond. In Petrenko and Yevtushenko, editors,
Testing of Communicating Systems, pages 149–174. IFIP, Kap, September 1998.

[10] Sébastien Barbin, Lénäıck Tanguy, and César Viho. Towards a formal framework
for interoperability testing. In M. Kim, B. Chin, S. Kang, and D. Lee, editors,
21st IFIP WG 6.1 International Conference on Formal Techniques for Networked
and Distributed Systems, pages 53–68, Cheju Island, Korea, Août 2001.

[11] C. Jard, T. Jéron, L. Tanguy, and C. Viho. Remote testing can be as powerful
as local testing. In J. Wu, S. Chanson, and Q. Gao, editors, Formal methods
for protocol engineering and distributed systems, FORTE XII/ PSTV XIX’ 99,
Beijing, China, pages 25–40. Kluwer Academic Publishers, October 1999.

[12] L. Verhaard, J. Tretmans, P. Kars, and E. Brinksma. On asynchronous testing.
In G.V. Bochman, R. Dssouli, and A. Das, editors, Fifth inteernational workshop
on protocol test systems, pages 55–66, North-Holland, 1993. IFIP Transactions.

[13] A. Desmoulin and C. Viho. Quiescence Management Improves Interoperability
Testing. In 17th IFIP International Conference on Testing of Communicating
Systems (Testcom), Montreal, Canada, May-June 2005.

[14] Khaled El-Fakih, Vadim Trenkaev, Natalia Spitsyna, and Nina Yevtushenko. Fsm
based interoperability testing methods for multi stimuli model. In Roland Groz
and Robert M. Hierons, editors, TestCom, volume 2978 of Lecture Notes in Com-
puter Science, pages 60–75. Springer, 2004.

[15] Nancy D. Griffeth, Ruibing Hao, David Lee, and Rakesh K. Sinha. Integrated
system interoperability testing with applications to voip. In FORTE/PSTV 2000:
Proceedings of the IFIP TC6 WG6.1 Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Protocols and
Protocol Specification, Testing and Verification. Kluwer, B.V., 2000.

[16] G. Bochmann, R. Dssouli, and J. Zhao. Trace analysis for conformance and
arbitration testing. IEEE transaction on software engeneering, 15(11):1347–1356,
November 1989.

[17] J. Gadre, C. Rohrer, C. Summers, and S. Symington. A COS study of OSI
interoperability. Computer standards and interfaces, 9(3):217–237, 1990.

[18] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC/FSE-
9: Proceedings of the 8th European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on Foundations of software
engineering, New York, NY, USA, 2001. ACM Press.

[19] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, and César Viho. Using on-
the-fly verification techniques for the generation of test suites. In CAV ’96: 8th
International Conference on Computer Aided Verification, London, UK, 1996.

[20] H. Garavel, F. Lang, and R. Mateescu. An overview of cadp 2001. Technical
Report 0254, INRIA, 2001.

17

