
A LOTOS NT Library for Modelisation, Analysis,
and Validation of Distributed Systems

Alexandre Dumont
alexandre.dumont@ensimag.imag.fr

Introduction to Laboratory Research 2012
INRIA - ENSIMAG

Tutor : Gwen Salaün (INRIA - Grenoble INP)

Abstract—Since software systems are designed more and more
distributed and concurrent, modeling, analysis and validation
of interactions among their components has become a capital
concern. In several application domains, the components inside a
distributed system interact with each other using message-based
communication. Choreographies consist in the specification of
these communication contracts among a set of services from
a global point of view. They are the basis for the further
development steps and their analysis may find out issues (e.g.
deadlocks or requirement violations) which can induce delays
or additional costs if detected lately. In this work, carried out
in the INRIA Convecs team, we propose a framework for mod-
elisation, analysis and validation of choreography specification.
Therefore, we present first the intermediate format describing
choreographies properly while accepting various choreography
specification languages as input. Second, we focus on the LOTOS
NT translation of the processes used in the choreography. Last,
we present the connectivity to the CADP toolbox and our
verification package to check properties (e.g. synchronizability,
realizability, conformance...) on choreographies.

I. INTRODUCTION

Software systems are nowadays becoming more and more
distributed. They are no longer built as stand-alone programs,
but rather as the parallel assembly of various collaborating
entities. Using such a composition, software systems bene-
fit more from the modern processors computing power and
thus run more efficiently. In several application domains,
the interaction mechanism among the components inside a
distributed system relies on message-based communications.
A choreography defines these interactions among a set of
services from a global point of view [2]. In the design process
of a distributed system, it is necessary to provide first a
choreography which specifies how the entities behave. The
analysis of this contract is capital for the further development
steps because it may reveal design errors which could induce
additional costs if discovered lately. To this day, only a few
tools have been developed for choreography checking, and
they mainly focus on realizability property [2,5]. The purpose
of our work is to provide a framework for choreography
analysis and verification.

Several formalisms are available to specify choreogra-
phies, such as collaboration diagrams, WS-CDL (Web Services
Choreography Description Language), BPEL (Business Pro-
cess Execution Language), Chor calculus [3] or BPMN 2.0
(Business Process Modeling Notation) [1,7]. In the following,

we focus on Chor calculus and BPMN 2.0 to represent
choreographies, and we provide a short description of these
modeling languages in the next section.

A first work has made the realizability validation possible
for BPMN 2.0 choreographies [1] and proposes an internal
model to directly encode BPMN 2.0 specification into LOTOS
NT processes. The developed tools also provide a verification
package - using SVL scripts - fully connected to the CADP
toolbox (Construction and Analysis of Distributed Processes
- http://cadp.inria.fr) and return readable feedbacks to the
designer. The framework we propose draws inspiration from
this previous work. Its motivations are to accept various
choreography description languages as input and to perform
any kind of formal analysis on these specifications. The
maintenance, development or integration operations performed
on the framework get consequently easier and simpler due to
its wide modularity and extensibility (see fig. 1).

Feedbacks

Intermediate
Form

Verification
Package using
CADP toolbox

Framework

BPMN 2.0

WS-CDL

Chor

BPEL

CPs

Choreography
specification

Fig. 1: Framework - simple overview

More precisely, the framework structure we have imple-
mented is divided into three parts (see fig. 2) :

• An XML based intermediate format for choreography
description accepting several languages as input. This
representation is a connection interface for choreography
description languages such as BPMN 2.0 or Chor calcu-
lus.

• A Python internal model which makes the transition
between the XML intermediate format and the LOTOS
NT processes. It includes primitives for LOTOS NT code

and SVL scripts generation.
• A verification library connected to the CADP toolbox,

automating some analysis and verification of interesting
properties such as realizability, synchronizability and
deadlock freeness...

The personal contributions to this framework result in the
intermediate format design and changes in the connection with
the internal model. The connection to the verification package
and its improvements have been achieved by Inria Convecs
team members.

Intermediate
Form

XML, State Machine
encoding

Python Model
Verification

Package using
CADP toolbox

Python Lotos NT

Model checking, realizability,
synchronizability, monitoring, …

Framework

Fig. 2: Framework - detailed overview

The organization of the rest of this paper is as follows.
Section II gives a short description of two choreography spec-
ification notations, respectively BPMN 2.0 and Chor calculus.
In section III, we present our intermediate format and the
way it is connected to the internal Python model, described in
section IV. Last, section V details the verification package we
implemented and section VII adds some concluding remarks
to the report.

II. CHOREOGRAPHY DESCRIPTION LANGUAGES

In this section, we present two formalisms available to
specify choreographies. First, we focus on BPMN 2.0 notation,
then we deal with the Chor calculus which is a more theoretical
specification language for choreographies. Semantically, a
choreography is specified as a state-machine, and the following
notations are similar to Labelled Transition Systems (LTS for
short) including states with particular properties depending on
their type.

BPMN 2.0: BPMN 2.0 [7] is a standard for business
process modeling that provides a graphical notation to specify
business processes in a Business Process Diagram. As a com-
parison, the obtained graphs are very similar to UML activity
diagrams. BPMN 2.0 offers a wide range of activity operators
and so expresses many processes out of the choreography
context. Therefore, only a few operators match choreography
specification. The basic building block of BPMN 2.0 (BPMN
for short) Choreography Diagrams is a one-way or two-way
interaction between peers (see fig. 3). The peer which initiates
the interaction is represented in a white band whereas the
other is in a gray filled band. With these interactions come
message flows described using a white envelope and a black

one, respectively for the initiating and return messages. One
can notice that the return message is optional. Sequence flow
operators allow to define an execution order for a set of several
interactions.

Concretely, among all the descriptors we consider, one can
find :

• initial and final states, respectively initiating and ending
the choreography.

• activity states, corresponding to the emission of a mes-
sage between two participants, namely the sender and the
receiver (graphically represented by an envelope).

• exclusive gateways, matching choice behavior between
two threads.

• inclusive gateways, meaning an inclusive choice between
one or several different execution threads.

• parallel gateways, selecting all the execution threads.
• sequence flows, linking two of the previous states in the

diagram.
The graphical notation for these operators is given in fig. 3.

start state end state

exclusive gatewayor

or event-based gateway

inclusive gateway parallel gateway

sequence flow

CT2

B

A

CT1

B

A

CT3

B

A

diverging pattern (diverging parallel gateway)

CT2

B

A

CT1

B

A

CT3

B

A

converging pattern (converging parallel gateway)

Fig. 3: BPMN 2.0 - Choreography operators [9]

Chor calculus: This notation provides choreography
specification in a more formal way through an abstract gram-
mar precised in fig 4. We find similar operators such as
choice or parallel composition structure, communication c[i,j]

between peers i and j ... One can notice that there is an
additional operator, named ai - activity in role Ri - which
refers to an internal action performed by the peer i. Our
work focuses on message transmission between peers, thus
this operator is not supported yet in our framework.

Fig. 4: Syntax of Chor [3]

2 / 8

To illustrate this formalism, let us take the example of the
following choreography specification using Chor notation :

Choreo =̂ (c[1,2] ; c[2,1]) || c[3,4]

where 1 .. 4 refer to the four participants. It expresses
three communications between four peers, and the parallel
composition operator || denotes that the threads (c[1,2] ; c[2,1])
and c[3,4] run concurrently. More precisely, the first thread is
equivalent to the emission of a message from peer 1 to peer
2, followed by a return message from peer 2 to peer 1. The
other thread produces a concurrent behavior consisting in the
communication from peer 3 to peer 4. In addition to this set of
operators, [3] introduces the notion of dominated choice. It has
the same semantics as the choice construct - i.e. it selects one
and only one execution thread between a set of several ones
- and precises a peer which makes this choice. This construct
solves some realizabilty problems when the choreography is
implemented in a distributed system (explained in section V).
One can notice that such a representation is similar to a LTS
and fully corresponds to choreography specification.

III. INTERMEDIATE FORMAT REPRESENTATION

The framework we have implemented for choreography
verification relies on a XML based intermediate format.
Such a model presents several advantages. First, it accepts a
large number of choreography description languages as input.
Therefore it serves as a modular connection interface for
choreography specification notations. Second, our format is
easily extensible with new choreography constructs - because
it is based on XML - and is expressive enough to fully
describe peer interactions inside a choreography. Last, it
allows to perform formal analysis on choreographies using the
CADP toolbox, and makes possible to use any other formal
verification tool on condition that a connection to those tools
is provided.

XML to encode choreographies: Semantically, the com-
munication contract among the components of the system
is specified as a state machine. The XML structure of our
intermediate format preserves this state machine pattern. We
first encode the list of all participants, i.e. the peers involved
in the choreography, then the set of messages transmitted
between peers, i.e. the alphabet, and last we express the
state machine as specified in the choreography. A state in the
machine encodes either an interaction, either a choreography
operator such as choice, parallel splits or merges... Within each
state are encoded zero, one, or several successors which refer
to the transitions in the corresponding LTS. So as to express
in a better way the structure of our state machine intermediate
format, we provide the class diagram given in figure 6 (see
next page).

More precisely, all the choreography operators are repre-
sented as states in the state machine. We introduce an abstract
class State which specifies the most common attributes for
each state in the choreography, e.g. its identifier and successors
list. From this basic state definition we declare the InitialState

and FinalState classes. We enforce that their successors list
are bounded, respectively of size 1 and 0 - it is clear that a
final state has no successors.

In addition, the Interaction class provides the identifier of
the message exchanged between two peers. Data about sending
and receiving peers, or about the message content are located
in the alphabet section of the XML encoding.

<choreography>
<choreoID>Running Example</choreoID>

<participants>
<peer>

<peerID>Client</peerID>
</peer>
<peer>

<peerID>Server</peerID>
</peer>

</participants>

<alphabet>
<message>

<msgID>m1</msgID>
<sender>Client</sender>
<receiver>Server</receiver>
<messageContent>...</messageContent>

</message>
</alphabet>

<stateMachine>
<initial>

<stateID>s0</stateID>
<successors>s1</successors>

</initial>

<interaction>
<stateID>s1</stateID>
<successors>s2</successors>
<msgID>m1</msgID>

</interaction>

<final>
<stateID>s2</stateID>

</final>
</stateMachine>

</choreography>

Fig. 5: Choreography encoding

We also provide two abstract class to describe splitting and
merging gateways. Let us focus on splits first. The abstract
class Selection is implemented by the following concrete
classes :

• Choice means an exclusive choice between two or more
successors.

• DominatedChoice has the same structure as ChoiceState,
and one must define the peer that effectively make the
choice.

• SubsetSelect specifies an inclusive choice within a set
of successors. When this class is instantiated, one must
precise a default path in the graph if no choice is made.

3 / 8

Fig. 6: XML Format Class Diagram for Choreographies [9]

• AllSelect corresponds to a parallel selection of all succes-
sors. It triggers concurrent executions in the distributed
system.

Last, the Join class represents merging gateways and is
concretely implemented by AllJoin, SimpleJoin and SubsetJoin
corresponding to the associated splitting gateways. Fig. 5
provides a short example of a choreography expressed in our
intermediate format.

XSD checking: In complement to the XML classes, we
provide a XSD document to specify the internal organization
of the intermediate format. XSD - XML Schema Definition
- defines a set of rules to which an XML document must
conform in order to be considered as valid according to that
schema. We introduce complex types to precise peer, message
and choreography operator structures. For instance, we enforce
that the choreography description contains, in the following
order : a choreography identifier, a list of peer descriptions, a
list of exchanged messages and the state machine encoding.

Using XSD document, we add constraints on the interme-
diate format, e.g. the participants list contains at least two
peers (and the maximum number of elements is declared as

unbounded) or the structure of a message element must contain
the sequence of an identifier, the sender and receiver tags, and
then the actual content of the message. We give a short excerpt
of the XSD specification in fig. 7 for illustration purposes.

<xs:simpleType name="id">
<xs:restriction base="xs:string" />

</xs:simpleType>

<xs:complexType name="peer">
<xs:sequence>
<xs:element name="peerID"

type="id" />
</xs:sequence>

</xs:complexType>

<xs:complexType name="peerList">
<xs:sequence minOccurs="2"

maxOccurs="unbounded">
<xs:element name="peer"

type="peer" />
</xs:sequence>

</xs:complexType>

Fig. 7: XSD specification - Participants

4 / 8

Basic types are represented using a xs:simpleType tag and
more complex types are described within a xs:complexType
tag which contains a sequence of elements, each associated
to a previously declared type. The framework we propose
takes first the XSD document to check whether or not a
choreography expressed in XML matches our intermediate
format.

IV. INTERNAL MODEL - FROM XML TO LOTOS NT
In this section, we present the second part of the framework

which interfaces the XML intermediate format representation
of choreographies with the verification package. This step of
modelisation consists in transposing the XML-based chore-
ography into LOTOS NT processes. To reach this goal, we
use an internal model written in Python language. This model
offers primitives for process generation, and its structure is
very similar to the class diagram presented in fig. 6. In order to
extract relevant information from the XML document, we use
the python library PyXB which provides a XML parsing tool.
Furthermore, this tool uses the XSD specification document
to first check the choreography encoding conformance to the
intermediate format, and second to generate classes matching
the XSD element tags. Let us illustrate the interaction operator,
considering the following basic XML block described via XSD
notation :

<xs:complexType name="interactionState">
<xs:complexContent>

<xs:extension base="oneSuccState">
<xs:sequence>

<xs:element name="msgID"
type="id" />

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Fig. 8: The excerpt of the interaction state

We assume that the complexType entity oneSuccState con-
tains two attributes, respectively its name (the stateID at-
tribute) and its successors list, bounded to size one. The
resulting class InteractionState in the Python model contains
the three following attributes : stateID and successors are
inherited from the super class ; the last one is named msgID
and contains the identifier of a message. The data structures
built by PyXB parser to manage XML documents make
easier the transposition of the intermediate format into Python
internal data models.

Encoding into LOTOS NT: Once we have an internal
data model for representing communication contracts among a
set of peers, we need to provide a connection to CADP tools in
order to enable the verification of choreographies. The CADP
toolbox contains powerful model and equivalence checking
techniques. These tools are particularly convenient to check
properties in distributed services such as synchronizability,
realizability, conformance or deadlock detection... (see section
V for further details).

As for making this connection effective, we chose LOTOS
NT which is one of the CADP input specification languages.
LNT is a process algebra, i.e. a theoretical approach for
formally modelling concurrent and/or distributed systems.
CADP toolbox offers LNT-related tools for the specification
of processes and the formulation of statements about them.
LNT is an expressive enough process algebra for accepting
all the constructs introduced in our intermediate format. The
formal analysis we perform in our framework consists in
the verification of these statements, therefore we implement
primitives in our internal data representation to generate LNT
code associated to each state in the automaton described in the
choreography. When encoding the state machine specification
into LNT, we preserve the state machine representation used in
our intermediate format. Each state is encoded in the machine
as an LNT process. This process corresponds to the behaviour
of the corresponding state, plus a call to the process encoding
the successor state. The possible messages exchanged during
the execution of the process are specified as parameters in
the LNT encoding (represented within [...] structure in the
examples below). In case of particular choreography constructs
like selection operators, it may exist several process calls if
there are several successors.

A

B

C
(a) Choice

+

A

B

C
(b) Parallel

O

A

B

Def
(c) Inclusive

Fig. 9: Selection Constructs

We provide in fig. 9 some examples about choice operators
and parallel gateways, both translated from graphical notation
to concrete LNT code. Example a) denotes the choice
construct whereas example b) refers to parallel selection
operator. The last gateway, presented in c) represents the
inclusive gateway state. One can notice that the SubsetSelect
construct includes a default path, in case of no choice is made.

process Example_a [...] is
select

proc_A[...]
[] proc_B[...]
[] proc_C[...]

end select
end process

Fig. 10: Choice - LNT code

5 / 8

Each construct is associated to a particular behaviour, and
therefore corresponds to a specific LNT operator. More pre-
cisely, the LNT code generated for operator a) is given in fig.
10.

Semantically, the LNT operator [] means an exclusive
selection among a set of different optional paths - respectively
proc_A, proc_B and proc_C in the running example.
These three paths are each associated to a state in the
choreography specification, therefore they are encoded as LNT
processes. The example b) introduces the parallel composition
operator - || - which is an other construct used to describe
concurrent processes. Its semantics are to activate all of the
outgoing branches simultaneously, i.e. the three processes run
concurrently.

process Example_b [...] is
select

proc_A[...]
|| proc_B[...]
|| proc_C[...]

end select
end process

Fig. 11: Parallel Composition - LNT code

The encoding presented in fig. 12 translates the SubsetSelect
choreography construct into LNT process. Its behavior consists
in making an inclusive choice between one or several outgoing
branches to run at the same time. However a default path is
specified in the case of no choice is made. In order to preserve
the semantics of this construct, we have to be exhaustive and
thus we take into account all the possible paths which are
likely to occur during the execution of the process. Back to
our running example, this means that we consider the possible
execution of proc_A concurrently to the choice between
proc_B or null - the terminating process, which does nothing
- and reciprocally. Then, if no choice occurs, we execute the
default path.

process Example_c [...] is
select

proc_A[...] || (proc_B[...] [] null)
[]
proc_B[...] || (proc_A[...] [] null)
[]
proc_Def[...]

end select
end process

Fig. 12: Subset Selection - LNT code

Once the LNT processes and communication messages have
been generated for each state in the choreography specification
(itself expressed with the intermediate format), we compute
the parallel composition of these processes. The resulting
LNT-encoded choreography is then analysed using the CADP
toolbox, and we perform some formal analysis so as to check
interesting properties which are detailed in the following
section.

V. VERIFICATION PACKAGE

This section presents some key-properties which need to
be checked when designing choreography-based distributed
systems. To ensure that these properties are satisfied, one can
use model and equivalence checking techniques in a fully au-
tomated way. For instance, [1] already provides a verification
tool suite for choreographies described via BPMN 2.0 notation.
We remind that our framework extends this previous work
so as to support various choreography description languages
as input. In practice, the key-properties we mainly focus on
are respectively synchronizability, realizability, conformance
and deadlock detection. The analysis of such properties in a
first development step is crucial, because it may reveal design
errors which could induce additional costs - e.g. changing a
part of the implementation, debugging code... - if detected
lately.

Synchronizability: This is a property of a choreography
ensuring that all peers can correctly synchronize with each
others in both synchronous and asynchronous ways. Formally,
a system is synchronizable if and only if the system behavior
(over send actions) remains unaltered for any receive queue
size [6]. Concretely, synchronizability checks that all inter-
actions in the asynchronous system are also possible in the
synchronous one.

This property is necessary for ensuring the realizability and
conformance of possibly infinite systems (choreographies with
loops). A recent decidability result [6] proposes a decision
procedure for checking synchronizability. This result asserts
that a system is synchronizable if and only if its behaviors
assuming synchronous communication and asynchronous one,
with interaction buffers bounded to size one, are equivalent.

Synchronizability is checked as follows. The choreography
is first projected in order to generate the set of peers cor-
responding to the distributed implementation of the system.
Then, on the one hand the system consisting of peers inter-
acting synchronously is computed, and on the other hand the
system consisting of peers interacting via 1-bounded FIFO
buffers. Finally, equivalence checking is used for verifying
that the two systems are equivalent. If this is the case the
choreography is synchronizable.

Realizability: This property checks that the distributed
version of the system exactly behaves as specified in the
choreography. This is crucial in a top-down development
process in order to ensure that the implementation perfectly
matches the global specification. Concretely, given the set of
interacting peers obtained via projection (as previously done
for synchronizability checking), it consists in verifying that
the behaviour resulting from the parallel composition of all
these peers matches the global choreography specification.

Realizability is checked as follows. First synchronizability
must be verified to avoid analyzing a possibly infinite system.
This may be the case if the choreography specification involves
looping behaviours. Then, LTS models are computed from
the choreography specification and from the set of interacting
peers (the synchronous version is enough because our check

6 / 8

relies on synchronizability property). We finally compare these
two LTSs and if they are equivalent (i.e. they generate the same
behaviour), the choreography is realizable.

If the set of peers is not first synchronizable, one cannot
decide whether the choreography is realizable for all interac-
tion buffer sizes. However it is still possible to perform some
bounded model checking, i.e. to set the buffer size to fixed
value, and decide if the system is realizable for this specific
case. Therefore the distributed implementation of a system can
be realizable assuming synchronous communication whereas
it is unrealizable assuming asynchronous one.

Conformance: This property is very close to realizability
checking. The aim is to decide whether a set of peers generates
the same behaviour (when running concurrently) as the one
specified in the choreography. In realizability checking, we
obtain the corresponding peers via projection according to the
specification : this approach is rather integrated in a top-down
design process.

At the opposite, in a bottom-up development process, peers
are being reused and integrated into a new composition. The
choreography serves as a contract that the implementation
under construction must respect. From a verification point of
view, it can be checked exactly as realizability, except that
projection is not necessary. Conformance checking takes as
input a choreography and a set of peers, whereas realizability
checking only requires a choreography specification.

Deadlock detection: An other key-property that is rele-
vant to verify is deadlock detection. A deadlock is commonly
defined as a situation wherein two or more competing actions
are each waiting for the other to finish, and thus neither ever
does. Back to the choreography context, a deadlock is likely
to occur when a peer locks its execution, ready to receive a
message which the other peer will never send. The behaviour
of the peers is represented using a LTS, and deadlocks are non
final states with no outgoing transitions in the corresponding
LTS. In such a configuration, the choreography designer has
to revise the specification so as to avoid deadlock issues in
the implementation.

VI. TOOL SUPPORT

Basically, all of these properties can be checked using
the CADP verification toolbox, thanks to an encoding of
the intermediate format into the LNT process algebra, one
of the CADP input languages. The verification of several
properties (including the ones presented above) is fully auto-
mated through SVL scripts. These scripts are generated from
the Python internal model and enable one to check precise
properties according to the choreography LNT encoding - e.g.
realizability, synchronizability...

Experiments: The following experiments have been
achieved in [9] by INRIA Convecs team and give statistical
information about the amount of data processed in CADP tool-
box. These results show that the framework we implemented
works for more than 200 choreographies. The experiments
have been carried out on a Xeon W3550 (3.07GHz, 12GB
RAM) running Linux.

For each experiment, table 13 gives first the specification
language used for describing the input choreography and the
size of the choreography : number of peers (P), interactions
(Inter.), and selection operators (Sel.). Then, we give the size
of the corresponding LTS and the size of the biggest inter-
mediate state space for generating the asynchronous version
of the distributed system (number of transitions and states).
Finally, we provide the overall time for generating all LTSs
(synchronous and asynchronous versions of the distributed
system), and verifying synchronizability and realizability.

We have not checked conformance because we only used
a choreography as input in our experiments (we remind that
conformance checking requires a choreography and a given
set of peers as inputs). The last column details the results for
checking synchronizability (S) and realizability (R).

We can see that choreography specifications can result
in huge LTSs (s̃everal thousands of states), mainly because
parallel operators are expanded in all the possible interleaved
behaviours when the corresponding LTS is generated. We
also notice that the overall time for generating LTSs for
choreography and both distributed systems (synchronous and
asynchronous) as well as for verifying properties S and R
is reasonable for medium-size choreographies. In other cases
the analysis may take a lot of time due to the exhaustive
exploration of all cases. The state space size raises quickly
when the choreography implies several parallel behaviours.

Ex. Lang. |P| |Inter.| |Sel.| |T |/|S| Async. parallel Time Verif.
compo. |T |/|S| S | R

1 Chor 3 10 1 21 / 29 127 / 200 48s
√
|
√

2 BPMN 6 19 1 580 / 1,828 4,054 / 12,814 1m43s
√
|
√

3 BPMN 6 19 1 18 / 20 750 / 3,298 1m40s
√
|
√

4 BPMN 6 19 1 580 / 1,842 16,129 / 51,317 1m45s
√
|
√

5 CP 7 11 1 11 / 11 158,741 / 853,559 5m47s × | ×
6 BPMN 12 25 4 577 / 2,499 ∼1*106 / ∼7*106 8m43s

√
|
√

7 BPMN 15 31 5 65,556 / 573,479 ∼2*106 / ∼18*106 1h34m × | ×

Fig. 13: Experimental Results [9]

7 / 8

VII. CONCLUDING REMARKS

Team Contributions: In this work, we have implemented
a framework for automating choreography verification. This
analysis tool is divided into three parts. First, we have pro-
posed an intermediate format used to describe choreographies
in a formal way. Already existing interaction-based notations
for such specifications (like BPMN 2.0 or Chor) have been
connected to this intermediate format.

The intermediate format transposition to CADP toolbox is
the second part of the framework. It consists in a Python
library which generates primitives to translate choreography
state machine into LOTOS NT process algebra, one of CADP
input languages. This library was first implemented in [1]
and some changes have been realised to support our input
format specification. It now provides a connection between
the intermediate format and our verification package.

The last module implemented is a verification package re-
lying on the CADP toolbox. It presents a set of key-properties
that choreographies must respect for ensuring realibility of the
system under development. These properties are automatically
tested in practice using model and equivalence checking
techniques. This work, further detailed in [9], fosters the
development of verification techniques and tools for formally
analyzing choreographies.

Personal Contribution: We have mainly concentrated our
efforts on the intermediate format development and also on
the way it is connected to the Python library, while other
Inria Convecs team members were providing the backend
connection to the CADP toolbox.

Challenges: To this day, the BPMN 2.0 and Chor speci-
fication languages for choreographies are supported as inputs
in our framework. As future works, connections to additional
choreography description notations or to other verification
tools could be achieved, so as to improve the modularity
of our library. Currently it does not provide full support
for the DominatedChoice construct, because of its encoding
complexity.

An other interesting feature would be to extend our inter-
mediate format to new constructs, in order to offer greater
expressiveness to choreography modeling tools. This includes
to consider data types and values in the specification. Such a
feature requires to adapt the existing verification techniques to
these kinds of variables.

Last, some features could be implemented in the checking
package. If the choreography is not realizable, it would be use-
ful to automatically integrate entities within the choreography
specification. Such controllers would synchronize together in
order to enforce the distributed system to respect the order of
messages as specified in the global contract.

ACKNOWLEDGMENTS

The author would like to thank Gwen Salaün (INRIA -
Grenoble INP) and Matthias Güdemann (INRIA) for their
work and their relevant comments, without whom this work
would not have been possible.

REFERENCES

[1] P. Poizat and G. Salaün, Checking the Realizability of BPMN
2.0 Choreographies. In Proc. of SAC’12, March 2012, Riva del
Garda, Italy.

[2] G. Gössler and G. Salaün, Realizability of Choreographies
for Services Interacting Asynchronously. In Proc. of FACS’11,
September 2011, Olso, Norway.

[3] Q. Zongyan, Z. Xiangpeng, C. Chao and Y. Hongli Towards the
Theoretical Foundation of Choreography. In Proc. of WWW’07,
pages 973-982. ACM Press, 2007

[4] G. Salaün, L. Bordeaux and M. Schaerf, Describing and Reason-
ing on Web Services using Process Algebra. In Proc. of ICWS’04,
IEEE Computer Society Press, pages 43-51, July 2004, San
Diego, USA.

[5] G. Salaün and T. Bultan, Realizability of Choreographies using
Process Algebra Encodings. In Proc. of IFM’09, LNCS 5423,
Springer, pages 167-182, February 2009, Dsseldorf, Germany.

[6] S. Basu, T. Bultan and M. Ouederni, Deciding Choreography
Realizability. In Proc. of POPL’12, pages 191-202, Philadelphia,
Pennsylvania, USA, January 2012

[7] OMG, Business Process Model and Notation – Version 2.0.
January 2011

[8] PyXB Library Documentation. http://pyxb.sourceforge.net. March
2012

[9] A. Dumont, M. Güdemann and G. Salaün, VerChor : A Frame-
work for Verifying Choreographies. In Proc. of ICSOC’12, Sub-
mitted.

8 / 8

