SICS/T-90/9006

Specification and Validation of a Simple
Overtaking Protocol using LOTOS
by

Patrik Ernberg, Lars-ake Fredlund
and Bengt Jonsson

SICS technical report
T90006
ISSN 1100-3154

Specification and Validation of a Simple
Overtaking Protocol using LOTOS*

Patrik Ernberg
Lars-ake Fredlund
Bengt Jonsson!
Swedish Institute of Computer Science
Box 1263, S-164 28 Kista, Sweden

October 18, 1990

Abstract

We present a specification of a simple Overtaking protocol for vehicles using
the Formal Description Technique LOTOS. A detailed description of the design
process leading to this specification is given. The design process involves early use
of simulation and validation tools available for LOTOS. We discuss the applicability
of existing tools in the context of this example.

1 Introduction

We present a specification of a simple overtaking protocol for vehicles using the standard-
ized formal description technique LOTOS. Emphasis is placed on describing the actual
design process leading to the protocol specification. The purpose of this exercise is to
evaluate the applicability of LOTOS for the early design stages in the construction of a
communication protocol, and to illustrate an interactive design process involving exten-
sive use of available validation tools.

Previous work performed by SICS and Swedish Telecom Radio within the PROME-
THEUS! project has mainly made use of specification and verification methods based
on labelled transition systems (LTS)[HJOP89a, ELN*89, LNEF90]. Some advantages of
LTSs are that they are easily understood and that a substantial theoretical framework to
analyze their correctness exists. A number of process algebras such as CCS [Mil89] and
CSP [Hoa85] which allow operations to be performed on LTSs have also been developed.

Furthermore, tools exist for automatically analyzing LTSs and process algebras [CPS89,
Fer89, SV89, VdS89, JKZ88].

*This work has been partially funded by the ESPRIT BRA project CONCUR and the EUREKA-
PROMETHEUS project.

T Authors’ email: pernberg@sics.se; bengt@sics.se; fred@sics.se

IPROMETHEUS is a European project which ultimately aims at improving traffic safety and reducing
traffic pollution.

However, experience has shown that labelled transition systems as well as some of the
process algebras lack certain structural constructs which are desirable when specifying
medium to large sized software systems [BEH89, HBE90, Ern90]. Desirable constructs
are, for example, data types, process instantiation, and certain other operators which
improve the structure and legibility of a specification.

One FDT which caters for some of the deficiencies of simple process algebras and
LTSs is LOTOS [BB89]. LOTOS has been successfully used to specify and validate
large protocols [EVD89] and is an accepted ISO standard [ISO87]. This contributes to
a wider recognition and use of the language as well as providing a basis for extensive
tool development. Tools for validating reasonable size LOTOS specifications are starting
to emerge [Eij89, QPF89, Tre89], and the Caesar tool [Gar89] can translate LOTOS
specifications into LTSs.

Much work in the literature seems to address the issue of specifying already existing
protocols using FDTs, whereas very little work has, to our knowledge, been published on
specifying and verifying protocols in the early stages of the design process. Also, many
papers describing specifications give the impression that validation is either completely
omitted or performed when the protocol has been fully specified.

The design of the Overtaking protocol was inspired from [PRO89] where desirable
PROMETHEUS functions such as safe overtaking are informally specified. Previous pa-
pers [ELN*89, LNEF90, HJOP89a, HJOP89b] have presented variations of this protocol
using communicating LTSs. The functionality of our specification is approximately the
same as that presented in earlier papers and it is still far from being a realistic proto-
col. We are limited by the automatic validation tools, which have difficulty handling
protocols larger than the one presented here. However, LOTOS provides us with the
structural constructs to scale up a specification, and we are confident that this scaling
can be performed on a specification which is correct.

In Section 2 we present the overtaking protocol and specify it formally in LOTOS.
We will assume that the reader has basic familiarity with LOTOS and refer to [BB89]
for a concise introduction to the language. The validation of the protocol specification
is presented in Section 3 and a discussion of our results and conclusions are presented in
Sections 4 and 5.

2 Specification of the Overtaking Protocol

In this Section we will first describe the overtaking protocol informally and list some basic
assumptions that we made regarding its functionality. We then formalize this informal
description in LOTOS.

2.1 Informal Description of the Overtaking Protocol

The overtaking protocol assumes the existence of a queue of cars following each other. To
be more specific, we will in the following assume that the queue consists of three vehicles:
the Tail vehicle succeeds the Middle vehicle, which in turn succeeds the Head vehicle
of the queue (see Figure 1). Each vehicle in the queue can communicate with adjacent
vehicles through unique radio channels.

Figure 1: The Overtaking Scenario

When a driver wishes to overtake, the protocol entity in its vehicle will initiate a
negotiation with the preceding vehicle, i.e. the adjacent vehicle closer to the head of the
queue. Henceforth, the vehicle requesting permission to overtake will be referred to as a
client vehicle whereas the requested vehicle will be referred to as a server vehicle. The
server vehicle decides if overtaking is possible, in which case a positive response is sent to
the client vehicle. If overtaking is not possible, the server waits for the next overtaking
request from the client.

To keep our specification of the overtaking protocol relatively simple, we have made
certain assumptions regarding the environment as well as the involved vehicles and com-
munication channels. We will mention a few general assumptions here and point out
others as we explain the protocol specification:

o We only consider a fixed and finite number of vehicles in the queue, i.e. we do not
allow vehicles to join or leave the queue. This also means that we do not allow the
head vehicle to overtake or the tail vehicle to be overtaken.

o The channels used to negotiate the overtaking are simplex mediums which are
presumed to be unreliable, i.e. they may lose messages nondeterministically with-
out warning. The contents of a message cannot be altered by the communication
medium. Either a message is received unchanged or it is lost completely.

e At the actual overtaking moment, communication is assumed to be reliable. The
intuition behind this is that the vehicles have equipment for sending and receiving
very short-range messages safely (not necessarily by radio). At the overtaking
moment, the two vehicles involved in the overtaking will be sufficiently close to
each other to allow the use of this equipment. The established temporary channel
(represented by the overtaking medium) can then be viewed as a perfect point-to-
point communication medium between the two vehicles.

o A vehicle may only overtake its directly preceding vehicle. To pass two vehicles, at
least two overtaking protocol negotiations must be performed.

e We assume that the environment will remain “friendly” once a vehicle has received
a go ahead signal from the preceding vehicle, i.e. no unexpected events, such as the
sudden appearance of a large moose on the road, will occur.

o Once a client vehicle has engaged in an overtaking negotiation, it will keep on
negotiating until it is given a positive acknowledgment from the server vehicle, 1.e.
it is not possible to abort an overtaking.

2.2 Formal Description of the Overtaking Protocol in LOTOS

Our formal specification consists of Vehicle processes which communicate with each
other through the Medium process, and during an overtaking through the Overtake Medium
process. We call primitives that are exchanged between vehicle and medium processes
Protocol Data Units (PDUs). These will all be prefixed with a “p_ot.”. Primitives that
are exchanged between the vehicle and the overtaking service user? are referred to as
Service Primitives and are prefixed with “ot.”. A rcv or a snd value is appended to
all PDUs to distinguish the sending of a PDU from the reception of a PDU. The entire
specification is presented in Appendix A.

2.2.1 Formal Specification of the Vehicle Process

The Vehicle process has three ports for communication purposes. Below we give a brief
description of each port.

S The interface between the overtaking service user and the vehicle.

M The interface between the vehicle and the communication medium which is used to
send messages to the succeeding and preceding vehicles in the queue.

0t The interface between the vehicle and the overtaking medium, used only at the
moment of overtaking.

Each Vehicle has knowledge of the communication medium addresses of the suc-
ceeding and the preceding vehicles (B and F), and the overtaking medium address of the
preceding vehicle (Op). Additionally, a Vehicle has information about its own name
(car), and whether it is at the head, middle, or tail of the vehicle train (pos).

The address of the recipient of a PDU is added before the message is sent over the
selected medium. For example, M!F!snd!pdu sends pdu to the preceding vehicle over the
M port (via the Medium process). During an overtaking, the protocol takes care to swap
the information of addresses between the two involved vehicles to reflect the new ordering
of vehicles in the queue.

The passing of addresses between the processes involved in an overtaking scenario is
illustrated in Figure 2. The scenario consists of a road with two-way traffic, with two
vehicles, Volvo and Saab, travelling from left to right. In the other lane, traffic normally
flows from right to left. In each vehicle process, the name of the vehicle as well as
the current values of the F, B, and Op addresses are illustrated. In the Volvo vehicle,
for example, the F address has the value FT, the B address has the value BT, and the
Op address has the value T. The figure starts in the left hand configuration, and tries to
illustrate how the values of the F, B and Op addresses change during an overtaking. The

2A user of the overtaking service in a given vehicle may either be the physical driver of the vehicle or
another process in the vehicle

Figure 2: An overtaking situation

connection between a pair of addresses, a communication channel, is implemented by the
Medium and Overtake Medium processes. In the figures such a connection is illustrated
by an arrow between two vehicles. The initial situation of the figure is that the Volvo
vehicle is negotiating an overtaking with the Saab vehicle. The overtaking then starts and
the two vehicles communicate address values. Finally, when the overtaking has finished,
the Volvo vehicle is at the head of the queue.

Our specification of a Vehicle can be divided into three parts:

1. A description of how an overtaking entity can become either a server or a client in
a given overtaking scenario, formalized in the LOTOS process Vehicle.

2. A client part, to enable the local service user to overtake safely, specified in the
LOTOS process Client.

3. A server part, to serve the overtaking request initiated by another overtaking entity,
formalized in the LOTOS process Server.

process Vehicle[S,M,UT](F:M_Port,B:M_Port,Dp:Ot.Port,pos:Position,car:CarId):noexit 1=
Slot_req!car!pos[pos <> Head]; Client[S,M,0T] (F,B,0p,pos,car)
[1 M!B!rcvip_ot_reqlpos <> Taill; Server([S,M,0T](F,B,0p,pos,car)

endproc

If the Vehicle process first accepts an overtaking request ot_req from the service
user, which is not possible at the head of the queue (i.e. [pos <> head]), the vehicle
becomes a client. If however a p_ot_req PDU is received from a succeeding vehicle the
vehicle becomes a server.

The client process starts by sending a p-ot_req to the preceding vehicle announc-
ing its intention to overtake, and awaits a response. A timer may then either time
out (client_timer), in which case the Client process is restarted (which will resend
p_ot_req), or a positive acknowledgment is received (p-ot_conf_ok) from the preceding
car, thus initiating the actual overtaking procedure. If a positive acknowledgment arrives
too late from the preceding car, i.e. the client_timer has already timed out and the
client wants to send a new overtaking request p_ot_req, the system may deadlock since
the medium only supports simplex communication (there is a conflict between the sending

of p-ot_req and the reception of p_ot_conf_ok). This problem is resolved by accepting
“0ld” acknowledgments in the Client, but ignoring them since they are out-of-date.

The client starts the actual overtaking procedure by informing the service user that
overtaking is about to begin (ot.begin). The client then sends its own position, its own
overtaking medium address, and the communication medium address of its successor to
the server via the overtaking medium. When the client receives the servers’s position
and the addresses to the vehicle preceding the server, the client first informs the service
user that the overtaking has been successfully completed (ot_end), and then restarts the
Vehicle process with updated addresses and position.

process Client [S,M,0T](F:MPort,B:M.Port ,0p:0t_Port ,pos:Positiou,car:CarId) imoexit =
hide client_timer in
M!Flsnd!p.ot.req;
((+ time out ¥
client.timer!car; Client[S,M,0T](F,B,0p,pos,car)
[(* or positive acknowledgment ¥
M!F!revip_ot.conf_ok;
S'ot_begin!car!pos;
OT!0p!B!0Op!pos;
0T!0p7s.F: M Port?s.0p: 0t Port?s.pos:Position;
Slot.end!car!pos;
Vehicle[S,H,0T](sF,F,s.0p,s.pos,car))

(x+ We ignore "old” confirmation messages *)
[1 M!Ftrcvip.ot_conf.ok; Client[S,M,0T](F,B,0p,pos,car)

endproc

The server part is activated when a p_ot.req PDU is received from a succeeding
vehicle. This will result in an ot_ind service primitive being sent to the overtaking
service user. We assume that the overtaking service user has the intelligence to decide
if it is reasonable to overtake and appropriate responses are given to the server. If the
response is negative, the server will await another p_ot_req from the succeeding vehicle.
Otherwise, if the response is positive, this will be forwarded to the succeeding vehicle
by means of a p_ot_conf_ok, and the server will be ready for the actual overtaking. In
order to avoid deadlocks in the system, the Server_answer and Server_ok processes have
been modified to handle the case when the client times out and resends the overtaking
request p.ot.req (either due to slow processing in the server, or message loss in the
communication medium).

process Server[S,M,0T](F:MPort,B:M.Port,0p:0t._Port,pos:Position,car: CarId) :noexit :=
Stot.ind!car!pos;
(Slotxespno!car!pos;
M!B!rcv!p.ot.req; Server[S,M,0T](F,B,0p,pos,car)
[1 S!ot_resp.ok!car!pos; Server_answer[S,M,0T](F,B,0p,pos,car))

endproc

process Server_answer[S,M,0T] (F:MPort,B:M_Port,Op:0t_Port,pos:Position,car:CarId) :noexit :=
M!B!snd!p.ot_conf.ok; Server.ok[S,M,0T](F,B,0p,pos,car)

[1 MB!rcv!p_ot.req; Server[S,M,0T](F,B,0p,pos,car)

endproc

process Server_ok[S,M,0T] (F:M.Port,B:MPort,0p:0t_Port,pos:Position,car:Carld) :noexit :=
0T!0p7c.B:M.Port {F?c_0Op:0t_Port!0p?c_pos:Position!pos;
Vehicle[S,M,0T](B,cB,c.0p,c.pos,car)
{1 M!Blrcv!p.ot_req; Server[S,H,0T](F,B,0p,pos,car)

endproc

The server part of the overtaking synchronization is activated upon the reception of
the client’s position and the addresses to the client’s succeeding vehicle. In the same
communication, the server transmits its own position, and the addresses of its preceding
vehicle. After this synchronization (over the overtaking medium), the Vehicle process
is restarted with addresses and position parameters updated to reflect the result of the
overtaking.

2.2.2 Formal Specification of the Communication medium

The communication medium used for negotiating overtakings is modelled as two static
channels, each channel connecting two ports. Using actual LOTOS ports for this purpose
is not possible because LOTOS ports cannot be communicated in a process synchro-
nization. Instead we modelled these abstract ports using addresses (constant values of a
LOTOS type), and a global port M. Each channel thus connects a fixed address (which can
be communicated in a process synchronization) to another fixed address. As previously
mentioned, the communication channels are lossy and simplex.

process Medium[M] :noexit :=
M_Chamnel [M] (F.Tail,B.Middle) ||| M-.Channel[M] (F.Middle,B.Head)

endproc

process M_Channel[M] (P1:M_Port,P2:M Port) :noexit :=
hide medium loss in
M!P1!snd7pdu:PDUsort;

(M!'P2!rcv!pdu; M_Channel[M](P1,P2)
[1 medium.loss; M.Channel[M](P1,P2))

[1 M!P21snd?pdu:PDUsort;
(M'Plircvipdu; M.Channel[M](P1,P2)
[] medium.loss; M_Channel[M](P1,P2))

endproc

2.2.3 Formal Specification of the Overtaking medium

The overtaking medium is similar to the communication medium, except that the medium
is perfect and one-way. Thus only one address per vehicle is needed: if the vehicle is a
client in the current overtaking scenario, it communicates only with the preceding vehicle;
if it is acting as a server, it communicates only with the succeeding one.

process Overtake Medium[OT]:noexit :=
0t_Channel [0T] (ot.Tail, ot.Middle)

1

0t_Channel[0T] (ot .Middle, ot _Head)

endproc

process 0t_Channel[0T](P1:0t_Port,P2:0t Port):noexit :=
OT!P17c.B:M.Port?c Op:0t_Port?c_pos:Position;
OT!P2'cB7s F:M Port!c.0p?s. Dp:0t.Portic_pos?s_pos:Position;
0T!P1!s F!s_ Op!s._pos;
0t_Channel[0T} (P1,P2)

endproc

3 Validation of the Overtaking Protocol

In this Section, we present the different tools and methods used when validating the
Overtaking protocol. It should be emphasized that the process of proving the protocol
correct was closely intertwined with the specification work. In order to make the verifi-
cation methods work well, care had to be taken to write the specification in a verifiable
way (this remark is especially valid given the rather severe constraints todays tools place
on verifiable specifications).

In order to make efficient validation possible, we restricted our queue to a length of
three vehicles. The vehicles are called Volvo, Saab, and BMW, and are initially in this
order with BMW at the head of the queue. Below we present a skeleton specification of the
Overtaking protocol for three vehicles:

specification overtaking [S]:noexit

(% ... Abstract data type definitions ... *

(+ Behavioural specification ¥

behaviour
hide M, 0T in

(
Vehicle[S,M,0T](F.Tail, B.Tail, ot.Tail, Tail, Volvo)

i

Vehicle[S,M,0T](F.Middle, B.Middle, ot.Middle, Middle, Saab)
i

Vehicle[S,M,0T](F-Head, B.Head, ot.Head, Head, BMW)

)
|[M,0T]|

(
Medium[M]

I

Overtake Medium[0T]

where
(* ... Rest of Specification . #)

Parameters prefixed with F_ and B. are communication medium addresses to the
preceding and succeeding vehicles, while those prefixed with ot_ are overtaking medium
addresses to the preceding vehicle. Notice that each vehicle also has a name and a current
position.

Below, the different tools and methods will be described in the order in which they
were applied.

3.1 Simulation

When our specification had become reasonably complete, we simulated it using the
Hippo[Tre89] tool. The simulator essentially performs a step by step expansion of the
protocol, allowing the user to specify which nondeterministic steps should be taken. We
stepped through a number of key scenarios that were central to the workings of the pro-
tocol. We checked, for instance, that the tail vehicle could overtake the middle vehicle,
and that the new tail vehicle could then overtake the new middle vehicle. Several errors
in the protocol were discovered by testing such selected scenarios. The errors were fixed
and the simulation repeated until no more errors were found.

3.2 Expansion and Minimization

Once we were fairly sure that the LOTOS specification was correct, we translated it into
a labelled transition system using the Caesar[Gar89] tool. This produced a transition
graph with 89879 states and 286716 transitions. The transition system was then mini-
mized with respect to branching bisimulation semantics using an implementation (BB)
of the algorithm presented in [GV90] to produce a graph with 156 states and 318 transi-
tions. The reason for using branching bisimulation was that BB was the only tool which
could efficiently handle such a large state space on a SPARCstation-1 with 16 Megabytes
of memory. It also turned out that minimizing the agent produced by BB with respect
to observation equivalence using the Aldébaran[Fer89] tool produced no further identifi-
cations.

3.3 Projection

As a first preliminary test of correctness we verified that there were no deadlocks in the
specification using the Concurrency Workbench[CPS88, CPS89).

It is difficult to provide a global service specification for a specification with approx-
imately 150 states. A more realistic method of validating the protocol is therefore to

choose suitable projections. This involves looking at only a subset of all primitives which
are visible to the environment. Technically, this can either be done by hiding additional
ports explicitly in the LOTOS specification using the hide operator, or by renaming
unwanted actions to the internal action (i) using a tool working on LTSs, and then mini-
mizing the result using Aldébaran. The latter method is often preferred as it can be done
on an already minimized automaton and specific actions at a certain port may also be
hidden.

The projections were displayed graphically using the Auto and Autograph[SV89,
VdS89] tools, resulting in an increased understanding of how and why the protocol works.
As an example of a picture created by Autograph, the projection of the actions of the
Volvo vehicle for the three vehicle scenario can be found in Figure 3. St_0 represents the

§ tot_req !Volvo !Tail!

S 1ot_begin !Volvo !Tail!

S tot_end 'Volvo !Tail!

lot_req 'Volvo IMiddle!

S tot_begin !Volvo !Middle!

tau

. ! IVblvo IMiddle!
1éa $ tot_resp o Volvo IMiddle! $ lot_end 1Volvo IMiddle

S tot_resp_ok !Volvo !Head!
ste Y€ (i @ $_tot_ind.!Volvo_{Head!

S tot_resp_ok !Volvo IMiddle!

! Volvo IMiddle!

S lot_ind

S lot _resp_no ! Volvo !Head!

Figure 3: The graphical representation of the actions of the Volvo vehicle.

initial state, with the Volvo at the tail of the queue. St_2 represents the state when the
Volvo has just overtaken to reach the middle position in the queue and st.10 represents
the state where the Volvo has reached the head of the queue. Observe that the tau
transitions are analogous to the internal i action in LOTOS.

10

3.4 Model Checking

We additionally validate the protocol using model checking. This amounts to proving
that a given specification satisfies a set of properties expressed in a modal logic. The
advantages of the method are mainly

e Computational efficiency

o Abstract service specification, i.e. certain temporal properties of a protocol can be
concisely described using modal logic.

In the following, we will make use of Hennessy-Milner Logic (HML). We will here
introduce HML, see [CPS89, CPS88] for in depth descriptions of the logic. More general
discussions about temporal logics for communicating systems can be found in [Sti87] and

[Sti89b).

3.4.1 Hennessy-Milner Logic

HML is a propositional modal logic with relativized modal operators. The set of HML
formulae is defined as follows:

e tt is a HML formula

o if P and Q are HML formulae then so are =P, P V), and <e>P where e is an
event.

The truth of a proposition in HML is defined relative to a transition system. We use a
satisfaction relation, denoted |=, to define when a proposition is true in a state. S = P
should be read: “the proposition P is true in the state S”. The semantics of the HML
formulae is defined as follows:

o S |= tt for all states S. The proposition tt is the most primitive proposition and
is satisfied by all states.

e S =P if and only if not S |= P.
e SEPVQifandonlyif SEPorS Q.

o S =<e>P if and only if there exits a transition labelled with event e from state S
to state S’ and S’ |= P.

We also have the derived modal operators £f = —tt, PAQ = (=P V —-Q), and [e]P =
~< e>-P. We shall also use the two derived operators [.]P and <.>P, where “.” can
be regarded as wild card events. Thus, a state satisfies [.]P if all its derivatives satisfy P,
and it satisfies <.>P if it has a derivative that satisfies P.

In order to further increase the expressive power of the language we introduce max-
imal and minimal fixpoint operators. The maximal fixpoint operator, v.X .(P), can be
interpreted as the infinite conjunction Py A PyA, ..., where Py = tt and Piy; = P[P/ X].
This operator is useful for expressing invariance properties. The minimal fixed point
operator uX.(P) is the dual of the maximal one and can be interpreted as the infinite
disjunction Py V P.V, ..., where Py = £f and Py, = P[P;/X]. This constructor is useful
for expressing eventuality properties.

11

3.4.2 Validating the Overtaking protocol using HML

The general method of validation involves taking the minimized LTS produced by Caesar
and feeding it into the Concurrency Workbench. It is then possible to verify that the LTS
satisfies certain HML formulae. Most interesting properties described in HML make use
of fixed point operators. Unfortunately, these are, at least to a novice, rather unintuitive.
The best way of using them is therefore to define some well-understood properties and
code these as macros. Below, we define some macros which have proved useful when
specifying desirable behaviours:

AGP = vX.(PA[)X)
EF P = uX.(PV<.>X)
APU Q) pX.(QV (P A[)JX A <.>tt))

AG P holds in a state s if P holds in every state reachable from s. This macro is used
to describe a property which invariantly holds for a labelled transition system. EF P
holds in a state s if P holds in some future state reachable from s. EF P can be used
to describe properties which will eventually hold in some future state. A(P U @) holds
in a state s if Q is guaranteed to hold in some future state and P holds in every state
until then. Using the macros defined above, we can go on and specify some interesting
properties which the Overtaking protocol should satisfy:

Property 1 The protocol does not contain any deadlocks.

In order to specify that no deadlock occurs we merely have to make sure that the initial
state can perform an event and that all states reachable from the initial state can perform
an event:

NoDeadlock = AG <.>tt

Property 2 It is always possible for all vehicles to reach a state where they can initiate
an overtaking operation.

This property ensures that there exist no “sink” states in the protocol from which other
states are unreachable. An alternative formulation of the above property could be that
there exist no future states where the S!ot_req action remains invariantly deadlocked.

NoSink = ~EF AG [S'ot_req|ff

Property 3 Once the tail vehicle has started overtaking, neither the tail vehicle nor
the middle vehicle will attempt to start overtaking before the tail vehicle has finished
overtaking.

This property ensures that all overtaking operations performed by the middle vehicle are
safe.

12

SafeOver = AG [Slot_begin!Tail]
(A(([S'ot_begin!Tail}tf A [Slot_begin!Middle]ft) U < Slot_end!Tail >tt))

A similar formula could also be written for the case when the middle vehicle engages
in an overtaking operation. For the sake of simplicity, both Properties 2 and 3 have
been defined using service primitives which do not include any information about vehicle
names. Of course, HML formulae which are applied directly to a graph produced by
Caesar from the specification in Section 2 would have to take vehicle names into account.

It should also be noted that the list of properties presented here is by no means
exhaustive. We have only described a few interesting safety properties to give a flavour
for what behaviours can concisely be described in HML. Safety properties are properties
that assure that no undesirable events will ever occur. On the other hand, they do not
require that anything ever does happen. The agent nil, for example, which can not
perform any action, satisfies property 3. In fact, it turns out that this protocol does
not satisfy certain liveness properties which are expressible in HML. Liveness properties
assure that desirable events will eventually happen. A liveness property could for example
be that a vehicle requesting an overtake will eventually be allowed to overtake. We will
not give any HML formulas describing liveness properties as this would require a more
subtle description of the logic which is beyond the scope of this paper (see [Wal89, Sti89a)
for examples of liveness properties which can be modelled in HML).

4 Discussion

In this Section we discuss some important issues regarding the specification of the Over-
taking protocol in LOTOS. We divide our discussion into three parts. The first part
discusses issues related to the LOTOS language. In the second part, we discuss the tool
environment and the restrictions that it places on the specification and validation of the
Overtaking protocol. Lastly, we consider the actual protocol and possible enhancements
which can be made to the specification.

4.1 Comments about LOTOS

We originally planned to specify the Overtaking protocol using only Basic LOTOS (i.e.
LOTOS without data types) constructions because the Caesar tool did not fully support
LOTOS data types. Furthermore we had previously specified protocols in basic CCS
(which lacks value-passing constructions) so we did not believe that the restriction to
Basic LOTOS was critical. However, our trial specifications using Basic LOTOS looked
ugly. This was mainly due to the fact that all ports used in a process had to be passed
to it as actual parameters when it was instantiated. From a specifier’s point of view,
Basic LOTOS specifications would look much better if the scoping of ports in LOTOS
were extended to allow subprocesses to refer to the formal parameters of their process
ancestors (lexical scoping).
The following Basic LOTOS expression would then be legal whereas today it isn’t:

process test[P1,P2]:noexit := sub.test

13

where
process sub_test:noexit := P2; P1 endproc

endproc

Due partly to this problem, we decided to write the specification using full LOTOS
with data types. In retrospect, this turned out to be a wise decision since:

o Tt reduced the number of ports and thereby made the specification more readable.

o The value-passing concept made the specification more realistic; in reality most
ports can synchronize on more than one value.

o The parameterization of processes (in this case the position and name of the vehicle
were parameters in the vehicle process) kept the specification concise.

All communication in our protocol has a direction in the sense that there is always a
sender and a receiver. LOTOS communication does not distinguish between senders and
receivers. We therefore had to append a value to each action indicating if the intention
of the action was a send operation or a receive operation. For example, sending to the
vehicle in front may be accomplished by the action M!F!snd!pdu. The communication
medium will pass this message along to the vehicle in front (if no message loss occurs)
where it can be received using M!B!rcv?pduvar: PDUtype.

There are nevertheless a number of advantages with the LOTOS parallel composi-
tion operator. Firstly, the fact that all ports have to be explicitly hidden means that
the specifier has a lot of freedom in choosing what actions he wants to observe when
debugging his/her specification. This should be compared with the CCS parallel com-
position operator where all communication between processes is implicitly hidden as an
internal T-event. Secondly, the fact that the parallel composition operator is a broadcast
operator means that it is easy to introduce new processes which synchronize on already
existing ports. These processes can either be part of the actual specification or they may
be “testers” introduced to test certain properties of a specification. Both these advan-
tages seem to make the parallel composition operator in LOTOS more appropriate for
interactive design than the corresponding CCS operator.

Another shortcoming of LOTOS is that it is not possible to pass port names be-
tween processes. Our specification circumvents this problem by coding ports as abstract
data types, and passing these as values between processes. A cleaner specification could
probably have been achieved by using a specification formalism such as the w-calculus
[MPW89a, MPW89b], where port names can be passed as parameters between processes.

4.2 Comments about the Tool Environment

While specifying and validating our specification we made extensive use of a collection
of different tools. The fact that we could move between different tools and analyze our
protocol using different methods made work both more interesting and more efficient.
Still, this tool interaction could be greatly enhanced if a common format for LT'Ss could be
used by all the tools. In our example, we had to change the transition names produced by
Caesar manually when we wanted to analyze the LTS using the Concurrency Workbench.
Discussions within the tool development community are under way to decide upon a
common format for LTSs which will hopefully make tool interfacing easier.

14

A related problem was that validation messages produced by the Concurrency Work-
bench and Auto referred to the LTS generated by Caesar and not to the original LOTOS
specification. Validation could be improved if there were some hook from the common
format back to the original system description, so that information generated by the tool
can be presented to the user at the level he or she understands.

Besides the problem of tool interaction, tools also place restrictions on what can be
realistically verified. We were therefore forced to specify our Overtaking protocol in a
verifiable way. The most serious restrictions were due to the Caesar verification tool:

o The specification had to be finite-state (we only consider a finite, fixed amount of
vehicles), and furthermore, had to satisfy the more restrictive static control con-
straints (see section 2.3 in [Gar89]).

e When writing the specification, care had to be taken to cut down on the size of
the state-space which otherwise easily becomes too large for effective analysis. In
essence this involves cutting down on the number of parallel and disable operators in
the specification. In fact, we did not use any disable operators in our specification.

As specifications become larger, verification becomes more difficult and simulation and
testing are often the only possible methods of validation. In contrast to Caesar, Hippo can
be conveniently used even for large specifications. Simulation is also an interesting method
of validation because of its interactive nature. In our example, simulating the protocol
often gave us more understanding of how the protocol worked than using projection or
model checking techniques. In our work using the Hippo simulator, we would have liked
a feature allowing the generation of random traces of actions from the specification. This
form of validation has also proved to be effective in practice (see [Wes86]).

4.3 Comments about the Overtaking Specification

The specification of the Overtaking protocol presented in this paper is a simple and naive
one. We have deliberately kept it simple to make it easy for the reader to follow the
specification and to allow for verification using tools which can only cope with a very
limited state space. Several improvements could be made to the existing protocol:

e The protocol does not allow a driver to abort an overtake operation.

e No attempts have been made to model the rest of the environment in an explicit
way. This is of course very unrealistic. A good protocol should take into account
vehicles in the opposite lane as well as unexpected events such as obstacles on the
road.

e Assuming a fixed queue size is unrealistic. The protocol should cater for attach-
ments to and detachments from the vehicle queue.

Most of the improvements suggested above would not permit the verification tech-
niques presented in Section 3, at least not using the Caesar tool. We would probably
have to rely more on validation techniques based on simulation and correctness-preserving
transformations (see [Lan90] for an example of a correctness-preserving transformation)

15

which can be used even for large specifications. However, the structural constructs as well
as the abstract data types present in LOTOS should make these protocol enhancements
more feasible than if we had used a simple LTS or process algebra.

5 Conclusions and Further Work

We have presented a simple specification of an Overtaking protocol in LOTOS using an in-
teractive design process involving the early application of different validation techniques.
The validation was performed using a variety of different tools. We used a simulation
tool, Hippo, to step through key scenarios of the protocol and identified a number of
errors when doing this. Caesar was then used to compile the LOTOS specification into a
labelled transition system (LTS). The resulting LTS was first minimized with respect to
branching bisimulation semantics using BB and then with respect to observation equiva-
lence using Aldébaran. Appropriate “projections” were made to further reduce the state
space and graphical representations of these projections were produced using the Auto
and Autograph tools. Furthermore, model checking using the Concurrency Workbench
was applied to verify certain properties of the Overtaking protocol.

Our experience suggests that LOTOS is an appropriate language to use for the early
steps in the design of a protocol; the structural constructs available in LOTOS make
it possible to produce concise specifications and the parallel composition operator lends
itself to efficient interactive validation. The validation techniques, involving a number of
different methods and tools, as well as considerable interaction between the designer and
specification, also seem applicable in the early design process.

As the specification becomes more complex, verification using the Caesar tool becomes
more difficult. OQur present specification is close to the limit of what the current version
of Caesar can efficiently handle. On the other hand, our specification is quite loosely
synchronized leading to a relatively large state space. Other LOTOS specifications which
are textually larger but more tightly synchronized can probably be successfully handled
in Caesar. Regardless, validation techniques based on simulation tools such as Hippo are
useful even for large specifications.

The virtues of LOTOS presented above should simplify steps from an early specifica-
tion to a more enhanced design. It would be interesting to try to improve the specification
in this paper with some of the suggestions presented in Section 4.3 in order to verify this
conjecture.

6 Acknowledgements

We would like to thank Joachim Parrow for valuable comments on earlier versions of the
paper.

References

[BB39] T. Bolognesi and E. Brinksma. Introduction to the ISO specification lan-
guage LOTOS. In P. van Eijk, C. Vissers, and M. Diaz, editors, The Formal
Description Technique LOTOS, pages T7-82. North-Holand, 1989.

16

[BEHSY]

[CPSSS]

[CPS89]

[Eij89]

[ELN+89)

[Ern90]

[EVDS8Y)]

[Ferg9]

[Gar89)

[GV90]

[HBE90]

[HJOP89a]

[HJOPS9b)]

[Hoa85]

L. Beckman, P. Ernberg, and H. Hansson. Utvardering av en CCS-baserad
metod for specifikation och verifiering av protokoll. Result of project per-
formed by SICS in cooperation with ELLEMTEL(in Swedish), 1989.

R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench:
Operating Instructions, 1988.

R. Cleaveland, J. Parrow, and B. Steffen. A semantics-based verification tool
for finite-state systems. In Protocol Specification, Testing, and Verifiation,

IX, 1989.

P. Eijk. Lotos tools based on the cornell synthesizer. In E. Brinksma,
G. Scollo, and C. Vissers, editors, Proceedings of IFIP IX, 1989. (to be
published).

P. Ernberg, K. Laraqui, A. Nazari, C. Odmalm, B. Pehrson, and M. Svardh.
A PROMETHEUS - PROCOM framework, a specification model for
PROMETHEUS functions and communication services. In PROMETHEUS
proceeedings of the 2nd Workshop, Stockholm. SICS and Swedish Telecom
Radio, 1989.

P. Ernberg. CCS as a method of specification and verification: Analysis of a
case study. Technical report, SICS, 1990. (draft).

P. van Eijk, C. Vissers, and M. Diaz, editors. The Formal Description Tech-
nigue LOTOS. North-Holand, 1989.

J-C. Fernandez. Aldébaran: A tool for verification of communicating pro-
cesses. Technical Report RTC 14, IMAG, Grenoble, 1989.

H. Garavel. Caesar 3.2 Reference Manual. IMAG - LGI, Grenoble, France,
1989.

J. Groote and F Vaandrager. An efficient algorithm for branching bisimula-
tion and stuttering equivalence. Report CS-R9001, Centre for Mathematics
and Computer Science, Amsterdam, 1990.

T. Hovander, L. Beckman, and P. Ernberg. Statusrapport protokollprojektet.
Result of project performed by SICS in cooperation with ELLEMTEL (in
Swedish), 1990.

H. Hansson, B. Jonsson, F. Orava, and B. Pehrson. Guidelines for the spec-
ification and verification of services and protocols. In PROMETHEUS pro-
ceedings of the 1st workshop, Wolfsburg. SICS, 1989.

H. Hansson, B. Jonsson, F. Orava, and B. Pehrson. Specification for verifi-
cation. In FORTE, 1989.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

17

[1S087]

[JK7Z88]

[Lan90]

[LNEF90]

[Mil89]
[MPW$9a]

[MPW89b]

[PROSY]

[QPF89]

[Sti87]

[Sti89a)

[Sti89b)

[SV89)]

[Tre89]

[VdS89)]

ISO Information Processing Systems - Open Systems Interconnection. LO-
TOS - a formal description technique based on the temporal ordering of
observational behaviour. DIS 8807, 1987.

J.Godskesen, K.Larsen, and M. Zeeberg. TAV (Tools for Automatic Verifi-
cation) Users Manual. Aalborg University Center, Aalborg, Denmark, 1988.

R. Langerak. Decomposition of functionality: a correctness-preserving LO-
TOS transformation. In L. Logrippo, R. Probert, and H. Ural, editors, Tenth
International Symposium on Protocol Specification, Testing, and Vertfication,
1990. (to be published).

K. Laraqui, A. Nazari, P. Ernberg, and L. Fredlund. Communication sys-
tems architecture - a case study. In PROMETHEUS Proceedings of the 3rd
Workshop. Swedish Telecom Radio and SICS, 1990.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part
1. LFCS Report Series ECS-LFCS-89-85, LFCS, Department of Computer
Science, Edinburgh, 1989.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part
2. LFCS Report Series ECS-LFCS-89-86, LFCS, Department of Computer
Science, Edinburgh, 1989.

PROMETHEUS. Functions or how to achieve PROMETHEUS objectives,
1989.

J. Quemada, S. Pavon, and A. Fernandez. State exploration by transforma-
tion with LOLA. In Workshop on Automatic Verification Methods for Finite
State Systems, 1989.

C. Stirling. Modal logics for communicating systems. Theoretical Computer
Science, (49):311-347, 1987.

C. Stirling. An introduction to modal and temporal logics for ccs. In Pro-
ceedings of joint UK /Japan Workshop on Concurrency, Ozford. LNCS, 1989.

C. Stirling. Temporal logics for CCS. In Lecture Notes in Computer Science,
volume 354, 1989.

R. de Simone and D. Vergamini. Aboard Auto. INRIA, Sophia-Antipolis,
1989.

J. Tretmans. Hippo: A lotos simulator. In P. Eijk, C. Vissers, and M. Diaz,
editors, The Formal Description Technique LOTOS, pages 391-396. North-
Holland, 1989.

V.Roy and R. de Simone. An Autograph Primer. INRIA, Sophia-Antipolis,
1989.

18

[Wal89] D.J. Walker. Automated analysis of mutual exclusion algorithms using CCS.
Technical Report ECS-LFCS-89-91, Universisy of Edinburgh, Dept. of Com-
puter Science, 1989.

[Wes86] C. West. Protocol validation by random state exploration. In Protocol Spec-
ification, Testing and Verification, VI. North-Holland, 1986.

19

A The Entire LOTOS Overtaking Specification

This specification can be directly fed into the Hippo simulator. In order for the Caesar
tool to be able to compile the specification into an LTS, appropriate C files have to be
defined for all the specified datatypes.

(+ A LOTOS specification of the famous Overtaking protocol *)

specification overtaking [S]:moexit

(+ Type definitions ¥
library BOOLEAN, NaturalNumber endlib
type CarId is sorts Carld

opns
volvo, saab, bmw :-> Carld

endtype

(+ Position type ¥)

type Position is Boolean, NaturalBumber sorts Position

opns
Head : -> Position
Middle : -> Position
Tail : -> Position
<>_ : Position, Position -~> Bool
ord : Position -> Nat
eqns
forall x, y, z : Position
ofsort Nat
ord(Tail)
ord(Middle)

ord(Head) = succ(succ(0));

0;

succ(0);
ofsort Bool
x <> y = ord(x) ne ord(y);
endtype

(+ Type to specify ditection of PDUs being sent #)
type SENDdirection is sorts SENDdirection

opns

20

snd, rcv :~> SENDdirection

endtype

(x Service Primitives ¥)

type SAPsort is sorts SAPsort

opns
ot req,
ot_ind,
ot _begin,
ot.end,
ot.resp.no,
ot.resp.ok,
ot.conf_ok :~> SAPsort

endtype

(¥ Protocol Data Units *)
type PDUSORT is sorts PDUsort

opns
p-ot_req, p-ot_conf.ok : -> PDUsort
endtype

(* Port type for communication medium %

type M_Port is Boolean sorts M.Port

opns

F_Tail,

F.Middle,

F.Head,

B_Tail,

B.Middle,

B_Head :-> M_Port
endtype

(* Port type for overtaking communication medium *
type O0t.Port is sorts Ot Port

opns
ot.Tail,
ot.Middle,
ot.Head :-> Ot_Port
endtype
O e e e e e e e e S e e e

(* Behavioural specification *

behaviour
hide M, OT in

(
Vehicle[S,M,0T](F.Tail, B.Tail, ot.Tail, Tail, Volvo)

Vehicle[S,M,0T](F.Middle, BMiddle, ot.Middle, Middle, Saab)

Vehicle[S,M,0T] (F_Head, B_Head, ot_Head, Head, BMW)

)
|, 0T]|
(
Medium[M]
I
Overtake.Medium[0T]
)
where
(¢ e e *

(Lossy Point-to-Point medium *¥)

process Medium[M] :noexit :=
M.Channel [M] (F_Tail,B.Middle) ||| M-Channel[M] (FMiddle,B.Head)

endproc

process M_Channel[M] (P1:M.Port,P2:M Port):noexit :=
hide medium.loss in
M1P1!snd?pdu:PDUsort;
(M!P2!'rcv!pdu; M.Channel[M](P1,P2)
[1 medium_loss; M_Channel[M](P1,P2))
[1 M!P2!snd?pdu:PDUsort;
(M!Pilrcv!pdu; M.Channel[M](P1,P2)
[] medium.loss; M_Channel[M](P1,P2))

endproc

(+ Perfect Overtaking medium *

process Overtake Medium[0T]:noexit :=
0t.Channel [0T] (ot.Tail, ot.Middle)

0t.Channel[DT] (ot.Middle, ot_Head)

endproc

22

process 0t.Channel[O0T](P1:0t.Port,P2:0t.Port) :noexit :=
OT!P17c.B:M Port?c.Op:0t Port?c_pos:Position;
OT!P2'c B7s F:M Port!c_Op?s_Op:0t_Port!ic_pos?s_pos:Position;
0T!P1!s F!s Op!s.pos;
0t_Channel [0T] (P1,P2)

endproc

(* Vehicle *)

process Vehicle [S,M,0T](F:M Port,B:M_Port,0p:0t_Port,pos:Position,car:CarId):noexit :=
Slot_req!car!pos[pos <> Headl; Client[S,M,0T](F,B,0p,pos,car)
[1 M!Blrcvip.ot.reqlpos <> Taill; Server[S,M,0T](F,B,0p,pos,car)

endproc

(+ Client %)

process Client [S,M,0T](F:M.Port,B:M Port,0p:0t Port,pos:Position,car:CarId) noexit :=
hide client.timer in
M!F!snd!p.ot.req;
((+ time out *)
client_timer!car; (* Slot.confwaitlcar; *
Client[S,M,0T] (F,B,0p,pos,car)
[1 (* or positive acknowledgement *)
M!Fl!rcv!p.ot_conf ok;
(+ Overtaking starts! ¥)
Stot_begin!car!pos;
OT!0p!B!0p!pos;
0T!0p?s.F:M Port?s.0p:0t_Port?s.pos:Position;
Slot.end!car!pos;
Vehicle[S,M,0T](s_F,F,s_0p,s_pos,car))

(+ We ignore old” confirmation messages *)
[3 M!'Fircv!p_ot_conf.ok; Client[S,M,0T](F,B,0p,pos,car)

endproc

(x Server ¥

process Server[S,M,0T] (F:M.Port ,B:M.Port,0p:0t_Port,pos:Position,car:Carld) :noexit :=
Slot.ind!car!pos;
(Slot.respmolcar!pos;

M!Blrcv!p.ot.req; Server[S,M,0T](F,B,0p,pos,car)

23

endproc

process

endproc

process

endproc

endspec

[] S!ot.resp.ok!car!pos; Server_answer[S,M,0T](F,B,0p,pos,car))

MiB!snd!p_ot_conf_ok; Server.ok[S,M,0T](F,B,0p,pos,car)
[1 M!Blrcv!p.ot_req; Server[S,M,0T](F,B,0p,pos,car)

0Tt0p7?c.B:M Port!F?c.0p: 0t Port!0p?c_pos:Position!pos;
Vehicle[S,M,0T](B,c.B,c.Op,c_pos,car)
[1 M!'Blrcv!p.ot.req; Server[S,M,0T](F,B,0p,pos,car)

24

Server_ok[S,M,0T] (F:M.Port,B:M.Port,0p:0t.Port,pos:Position,car:Carld) :noexit :

Server_answer[S,M,0T] (F:MPort,B:M.Port,0p: 0t Port,pos:Position,car:CarId) :noexit :

