Refinement and Verification Applied to
an In-Flight Data Acquisition Unit *

Wan Fokkink!, Natalia Ioustinova!, Ernst Kesseler?, Jaco van de Pol?,
Yaroslav S. Usenko!, Yuri A. Yushtein?

! Centre for Mathematics and Computer Science (CWI)
Department of Software Engineering

PO Box 94079, 1090 GB Amsterdam, The Netherlands

wan@cwi.nl, ustin@cwi.nl, vdpol@cwi.nl, ysu@cwi.nl

? National Aerospace Laboratory (NLR)

Department of Embedded Systems

PO Box 90502, 1006 MB Amsterdam, The Netherlands
kesseler@nlr.nl, yushtein@nlr.nl

Abstract. In order to optimise maintenance and increase safety, the
Royal Netherlands Navy initiated the development of a multi-channel
on-board data acquisition system for its Lynx helicopters. This AIDA
(Automatic In-flight Data Acquisition) system records usage and loads
data on main rotor, engines and airframe. We used refinement in com-
bination with model checking to arrive at a formally verified prototype
implementation of the AIDA system, starting from the functional re-
quirements.

Keywords: refinement, verification, B-method, model checking, uCRL.

1 Introduction

A good method for developing (safety-critical) software is by means of a step-
wise refinement, starting from the original user requirements. Furthermore, for-
mal methods can be applied to guarantee correctness at the different stages of
refinement.

B method [1] provides a notation and a toolset for requirements modelling,
software interface specification, software design, implementation and mainte-
nance. It targets software development from specification through refinement,
down to implementation and automatic code generation, with verification at
each stage. Refinement via incremental construction of layered software is the
guiding principle of B.

Refinement verification is a methodology for verifying that the functionality
of an abstract system model is correctly implemented by a low-level implemen-
tation. By breaking a large verification problem into small, manageable parts,
the refinement methodology makes it possible to verify designs that are much

* This research was carried out in the framework of the KTV-FM project funded by
the Dutch Ministry of Defense under the order #726,/1,/00301.

too large to be handled directly. This decomposition of the verification prob-
lem is enabled by specifying refinement maps that translate the behaviour of
the abstract model into the behaviour of given interfaces and structures in the
low-level design.

Refinement verification targets safety properties, which guarantee that a bad
thing will never happen. However, in general one also wants to verify progress
properties, which guarantee that a good thing will eventually happen. Special
purpose theorem provers and model checkers have been developed which can
check progress properties. Since these tools use their own languages, they cannot
be applied to B specifications directly.

wCRL [3,9] provides a notation and a toolset for the specification and verifi-
cation of distributed systems in an algebraic fashion. It targets the specification
of system behaviour in a process-algebraic style and of data elements in the form
of abstract data types. The uCRL toolset, together with the CADP toolset [6],
which acts as a back-end for the yCRL toolset, features visualisation, simulation,
state space generation, model checking, theorem proving and state bit hashing
capabilities. It has been successfully applied in the analysis of a wide range of
protocols and distributed systems.

In this paper we combine the B refinement paradigm based on imperative
programming with the pCRL verification support based on algebraic specifi-
cation. The idea is that the models that are produced during the subsequent
refinement stages in B can be quite easily transformed into puCRL specifications,
where excellent tool support is available for the verification of these models.

In order to reduce maintenance costs and increase safety, the Royal Nether-
lands Navy initiated the development of a multi-channel on-board data acquisi-
tion system for its Lynx helicopters [19]. This AIDA (Automatic In-flight Data
Acquisition) system records usage and loads data on main rotor, engines and air-
frame, thus making it possible to optimise the maintenance of Lynx helicopters.
In a project funded by the Royal Netherlands Navy, the National Aerospace Lab-
oratory (NLR) in collaboration with the Centre for Mathematics and Computer
Science (CWI), made an effort to arrive at a formally verified implementation of
the AIDA system, starting from the functional requirements, using refinement.

We built B models of the AIDA system, including a number of its monitoring
tasks. These models are based on the functional requirements document for the
ATDA system [5]. We started with a high level abstract description in the form of
abstract machines; on this level we performed animation, and a number of inter-
nal consistency proof obligations were generated and discharged. Next, some of
the machines were refined, and once more internal consistency proof obligations
were generated and discharged. As a final refinement step, all abstract machines
were implemented, and the resulting executable specification was tested. We also
built a xCRL model of the AIDA system, including the same monitoring tasks,
based on the B model. Moreover, correctness criteria for the AIDA system were
formalised in modal logic. Using the uCRL toolset, we verified the system does
not contain deadlocks. Furthermore, using a model checker within the CADP
verification toolbox we verified that all usage and loads data are recorded, and

that no recordings are made without reason. For the validity of these proper-
ties it turned out to be essential that some of the requirements in the original
requirements document were strengthened.

Concluding, we found that the refinement paradigm together with formal
verification methods can be successfully applied in the development of naval
equipment.

This paper is set up as follows. Section 2 contains a description of the AIDA
system and of the formal model that we designed. Section 3 sets forth the
methodology behind our approach. Section 4 explains the basics of refinement
in general and B in particular, and describes how refinement was applied to the
formal model of the AIDA system. Section 5 deals with the uCRL model of
the system and with the model checking analysis. Section 6 gives references to
related work. Finally, Section 7 sums up our conclusions.

2 System overview

2.1 AIDA

The Lynx helicopter is in service with the Royal Netherlands Navy since the late
70’s. In September 1994, a fatal accident with a UK Lynx helicopter occurred
in Germany as a result of failure of a tie-bar, which connects the rotor hub with
the blade. In response, at the end of 1996, the Royal Netherlands Navy initiated
the development of an Automatic In-flight Data Acquisition Unit (AIDA) for
its Lynx helicopters, in order to optimise maintenance and increase safety.

As inputs, the AIDA system gathers data from 15 analog and 2 discrete sig-
nals produced by several measurement and control devices. 39 different tasks of
the AIDA system are responsible for data storage, conditioning and processing.
The AIDA system performs several logging tasks simultaneously. Each of the
tasks checks values of one or more input signals and depending on them performs
some logging activities, such as writing to a data acquisition file, or producing
a signal via an audio or video channel. Some of the tasks use timers to check
whether a particular situation persists for some period of time, and only after
that period the logging is performed.

In Figure 1, an overview of a part of the system is presented. The environment
represents the measurement and control devices of a helicopter. TASK2 receives
NR (main rotor rotational speed) and WOW (weight-on-wheels) signals from
the environment and uses timer TIMERZ2. The task can write data to the data
administration file (DAF) and can set video warnings for the crew. TASK27
performs activities similar to the activities of TASK2, but according to NR and
LHMY (strain in left-hand side of rear spar sponson) signals. TASKS3 produces
an audio warning depending on the values of NR and WOW signals. TASK/ also
sets an audio warning according to the value of NR signal.

With respect to the functional requirements of the AIDA system [5], there
are the following groups of tasks:

ENVIRONMENT

TASK2 —%—] DAF
| |
TIMER2
"= VIDEO
NR, WOW
B> TASK3
% AUDIO

B> TASK4

NR, LHMY

TASK27

TIMER27

Fig. 1. System overview

Data reduction tasks monitor and process signals using standard algorithms,
with subsequent storage of data into memory. (For example, the so-called
SPTTS algorithm searches the load trace for successive peaks and troughs
and stores them with time stamps and momentary values of any slaved
signals.)

Level crossing detection tasks monitor signals to check whether a predefined
level is crossed upwards or downwards. If so, audio or video warnings are
given and relevant information is stored into AIDA memory. (A typical
example is main rotor overspeed or underspeed.) Such tasks are usually a
safety issue for the helicopter and its crew.

FEvent count and event duration tasks provide signal monitoring, count the
number of times that a signal reaches a certain predefined level, and deter-
mine the time span that the signal is at this pre-defined level. (A typical
example is the weight-on-wheels task, which determines whether or not a
helicopter is at the ground.) Such tasks provide direct compact event infor-
mation without a further need for processing.

System integrity tasks verify the status of the ATDA recorder and monitor
various signals during the AIDA recorder operation to check whether a
predefined malfunctioning condition is met. If so, integrity of the signals
and/or the total system is considered questionable.

Since the AIDA system handles critical flight data, it should not change the
data content or influence timing in any way. On the other hand, the monitoring
system should not miss or discard the data on any of the monitored channels, as
this could lead to incorrect calculations of the estimated helicopter operational
status and required maintenance cycle.

2.2 Formal specification

Our goal was to build a formal specification of the AIDA system and to verify
the specification with respect to functional requirements for an on-board loads
and usage monitoring system for the Lynx helicopter. Considering the functional
requirements we identified the following key entities of the system: monitor,
tasks, data administration file, input and output channels. The monitor schedules
the tasks, and also plays the role of system clock. The data administration file
is used to store the data and the results of data processing.

Since AIDA is a real-time system, some primitives are needed to represent
time aspects of the system. We employed a concept of timers, where a timer can
be either active or deactivated, and time progression is discretised. An active
timer is represented by a variable that is set to the delay left until expiration of
the timer. System time elapses by counting down all the active timers present
in the system. We refer to a segment of time separated by the transitions decre-
menting active timers as a time slice. A timer with zero delay expires, and in
the next time slice is deactivated.

Since the specification of the system should abstract from details that de-
pend on the hardware implementation of the system, we assume that operations
performed by tasks are atomic and can be handled within a time slice.

All tasks are triggered by some kind of condition (either a safety-critical
condition, a level crossing condition, or a condition checking whether a predefined
level is reached). Considering the functional requirements, we divided tasks into
three groups with respect to the activities that the tasks should perform:

— Tasks that use a timer, can write data to the data acquisition file and can
produce a warning signal for the crew.

— Tasks that only produce a warning signal for the crew.

— Tasks that only write to the data acquisition file.

Tasks of the first type are usually triggered by a safety-critical condition.
Being triggered, the task sets a timer and waits until the timer expires. After
the timer is expired, the task checks whether the safety critical condition is still
satisfied. If the condition is still true, then the data and time when the condition
was recognised are stored into the data acquisition file and a warning signal is
provided for the crew.

Tasks of the second type are triggered when a predefined level is crossed.
Being triggered, the task provides a warning signal for the crew. The third kind
of tasks mostly detect when a signal reaches a predefined level, process data
with respect to some standard algorithm, and store the data. Since tasks of the
same group show similar observable behaviour, we have decided to concentrate
our attention on the refinement and verification of a part of the system.

3 Combining refinement and model checking

3.1 Refinement

A good method for developing safety-critical software is by means of a stepwise
refinement, starting from the original user requirements. Formal methods can be
applied to guarantee correctness at the different stages of refinement.

Refinement verification is a methodology for verifying that the functionality
of an abstract system model is correctly implemented by a low-level implementa-
tion. By breaking a large verification problem into small, manageable parts, the
refinement methodology makes it possible to verify designs that are too large to
be handled directly. This decomposition of the verification problem is enabled by
specifying refinement maps that translate the behaviour of the abstract model
into the behaviour of given interfaces and structures in the low-level design. This
makes it possible to verify small parts of the low-level design in the context of
the abstract model. Thus, proof obligations can be reduced to a small enough
scale.

B [1] provides a notation and a toolset for requirements modelling, soft-
ware interface specification, software design, implementation and maintenance.
It targets software development from specification through refinement, down to
implementation and automatic code generation, with verification at each stage.
Refinement via incremental construction of layered software is the guiding prin-
ciple of B. Development with B is based on the concept of an abstract machine,
a refinement and an implementation of the machine. The B Abstract Machine
Notation [1] is used with many alternative development processes and with a
number of existing development methods [18].

3.2 Model checking

Model checking is a completely different approach. Here we have one system
model, described in some high-level programming language. Separately, we for-
mulate a number of user requirements in some temporal logic. The model checker
generates all reachable program states exhaustively (in principle) in order to
check that the user requirements hold in all possible runs.

Several efficient algorithms exist, in order to verify that all states in a state
space satisfy a certain formula from temporal logic. The main bottleneck of
model checking is the state explosion problem: the size of the state space of a
system tends to grow exponentially with respect to the number of concurrent
components of the system. However, owing to recent advances such as model
checking of symbolic representations of state spaces and state bit hashing, model
checking is by now a mature technique for the analysis of real-life hardware and
software systems.

pCRL [9] is a language for specifying and verifying distributed systems in an
algebraic fashion. It targets the specification of system behaviour in a process-
algebraic style and of data elements in the form of abstract data types. The uCRL
toolset [3,20] supports efficient state space generation of pCRL specifications.

The CADP toolset [6] acts as a back-end for the uCRL toolset, so that model
checking can be applied with respect to the state spaces generated from pyCRL
specifications.

3.3 The combination

We note that in a refinement step from an abstract to a concrete model, new
details are added. In refinement tools it is only checked that the concrete model
is internally consistent (by invariants and preconditions) and consistent with the
abstract model. Except consistency, nothing is checked about the initial most
abstract model, nor about the added details. So refinement verification is limited
to safety properties, which guarantee that a bad thing will never happen.

However, in general one wants to verify that the initial model and the refined
model satisfy certain user requirements. In particular, one also wants to verify
progress properties, which guarantee that a good thing will eventually happen.
Model checking can be applied for the verification of progress properties [13].

Another reason to apply model checking could be that the automated proof
search capabilities of B turn out to be relatively limited; model checking can be
used as a debugging device for proof obligations [16].

For these reasons we combined the refinement paradigm and verification of
safety properties using B with the verification of progress properties using the
model checking capabilities of yCRL and CADP. We applied this combination
with respect to the functional requirements of the AIDA system. In the next
two sections, refinement using B and model checking using uCRL are explained,
respectively.

4 Refinement using B

4.1 The B method

A typical development process using B [14] might cover requirement analysis,
specification development, design, and coding, integration and test phases of soft-
ware development. For all these phases, some tool support exists. The B-Toolkit
of the company B-Core in the UK supports the incremental construction of soft-
ware, where validation is supported by static analysis such as type checking, by
dynamic analysis using simulation, and by proof of correctness using an inte-
grated theorem prover. An alternative commercial toolset that supports the B
method is offered by Atelier B in France.

Informal structured models of the problem domain are created during re-
quirement analysis. Specification development results in formalisation of anal-
ysis models in terms of abstract machines. The specification can be validated
by animation in B-Toolkit. Internal consistency obligations can be generated
and proved to check whether all operations of the machines respect their in-
variants. During the design phase, the decomposition of the system is identified
and selected components of the system are refined. The proof obligations gener-
ated by B-Toolkit during this phase are used to prove whether refinements are

correct with respect to the specification. At the end, a code generator can be
applied to the model. Generated code can be tested using test cases based on
the requirements.

4.2 Specification design

To get a more concrete picture, we focus on one of the tasks within AIDA,
viz. TASK2. Some tasks of the system, including TASK2, use timers. For this
reason we specified timer machines; the timer for TASK2 is called Timer2. The
timer can be either active (on) or deactivated (off). The state of the timer is
represented by two variables tstat2 and tval2. The first one shows whether
the timer is active or deactivated, the second one represents the delay left until
expiration of the active timer.

Each timer machine contains the following operations: reset deactivates the
timer, set activates and sets up the timer, expire returns true if and only if
the timer is active and expired, and tick decreases the value of the timer if it is
active and carries a value greater than zero (see Figure 2). The invariant of the
machine imposes a restriction on the possible value of the delay as well as typing
constraints for variables tval2 and tstat2. The precondition of operation set
states that the delay should not exceed the maximum prescribed by the system
requirements.

MACHINE Timer2
SEES Bool_TYPE, CommDefs
VARIABLES tval2, tstat2
INVARIANT tval2:0..max & tstat2:TISTATE
INITIALISATION tval2:=0 || tstat2:=off
OPERATIQONS
reset2 = BEGIN tstat2 := off END ;
set2(del) = PRE del:NAT & del <= max
THEN tval2 := del || tstat2:=on END;
ok <-- expire2 = IF tval2 = 0 & tstat2=on
THEN ok := TRUE ELSE ok := FALSE END;
tick2 = IF tstat2=on & tval2>0
THEN tval2 := tval2-1 ELSE tval2:=tval2 END
END

Fig. 2. High-level machine description for Timer2

Figure 3 shows a high-level machine specification of TASK2. It has two oper-
ations: initialisation tinit and “do some work” work. Doing some work depends
on the state, which is one of idle, wait or check:

— in the state idle, the condition is watched. If it holds, the timer is set and
we go to state wait.

— in the state wait, the timer has been set. If it expires we go to state check.
— in the state check, the condition is checked again, and we go to state idle.

On this abstract level, it is only defined which transitions are possible, but not
when they are taken. Machines Bool TYPE and CommDefs are seen by Task2.
Bool_TYPE contains a specification of the Boolean operators. CommDefs defines
sets, constants and their properties reused by several components of the spec-
ification. The invariant defined for Task2 provides a typing constraint for the
variable of the machine. Operation ttick2 calls operation tick2 of the timer.
This operation is invoked itself by the monitor to decrease values of all active
timers at the same time.

MACHINE Task2
SEES Bool_TYPE, CommDefs
INCLUDES Timer2
VARIABLES tstate2
INVARIANT tstate2:TSTATE
INITIALISATION tstate2:=idle
OPERATIQONS
tinit2 = BEGIN reset2 || tstate2:=idle END;
work2 = CASE tstate2 OF
EITHER idle THEN CHOICE tstate2:=wait || set2(5)
OR tstate2:=idle END
OR wait THEN CHOICE tstate2:=check OR tstate2:=wait END
OR check THEN tstate2:=idle END
END;
ss <-- getstate2 = ss:=tstate2;
ttick2 = tick2
END

Fig. 3. High-level machine description for Task2

To make the definition of task behaviour independent on particular values
of signals triggering the task, we defined a condition machine for each task.
We can easily change the condition without modifying the specification of the
task. Initially, the condition machine (see Figure 4) has only one operation
issatisfied2, which returns either TRUE or FALSE.

To mimic the input channels, we developed sensor machines. We consider
the operations of a sensor machine using the weight-on-wheels (WOW) sensor
as an illustrative example. Since the WOW signal can be either high or low, the
operation refreshWOW of SensorWOW is defined as a non-deterministic choice of
the machine state between high or low (see Figure 5). Operation getstateWOW
returns the current state of the sensor. This approach to specification of the
input channels allows us to cover the possible inputs of the system.

MACHINE Condition2

SEES Bool_TYPE, CommDefs

OPERATIONS

xx <-- issatisfied2 = CHOICE xx := FALSE OR xx := TRUE END
END

Fig. 4. High-level machine description for WOW sensor

MACHINE SensorWOW

SEES Bool_TYPE, CommDefs
VARIABLES sstateWOW

INVARIANT sstateWOW:LHLEVELS
INITIALISATION sstateWOW:=low
OPERATIONS

refreshWOW = CHOICE sstateWOW := high OR sstateWOW := low END;
xx <-- getstateWOW = xx := sstateWOW
END

Fig. 5. High-level machine description for WOW sensor

Audio and video output channels and the data administration file are shared
by several tasks. Therefore we specified a controller for each output channel and
for the data administration file.

4.3 Refinement and implementation

A B development consists of a set of components defined by abstract specification
machines and a path of refinement steps down to an executable description,
called an implementation. An implementation of the component is decomposed
via IMPORTS and SEES clauses. A specification of the component may itself
be constructed from a set of machines using INCLUDES, USES, SEES and
EXTENDS mechanisms.

Usage of IMPORTS and SEES constructs implies a layered approach to sys-
tem development whereby the internal details of implementation of one layer
are hidden from the next layer. Such a structure improves the maintainability of
the system because higher layers are independent of the internal details of lower
layers and rely only on the specification of these layers.

The implementation of Monitor relies only on the specifications of tasks,
sensors and controllers of output channels and data administration file. Since
we have no information about scheduling the tasks, we have chosen one of the
possible scenarios. To simulate fresh inputs, the monitor refreshes values of the
sensors at the beginning. Then it allows each task to do some work and finally

10

it decreases the values of all active timers, by which the system time elapses
(Figure 6).

IMPLEMENTATION MonitorI

REFINES Monitor
SEES CommDefs, Bool_TYPE, basic_io, String_ TYPE
IMPORTS Monitor_Vvar (MSTATE),

Task4, Task2, Task27, Task3,
SensorLHMY, SensorWOW, SensorNR,
OutChController, DAFController, AudioChController

INVARIANT (mstate=Monitor_Vvar)
INITIALISATION Monitor_STO_VAR(start)
OPERATIONS

minit = BEGIN
Monitor_STO_VAR (monitor);
tinitl; tinit2; tinit3; tinit27;
resetanalog;resetaudio
END;
monitortask = VAR curmstate IN
curmstate<--Monitor_VAL_VAR;
IF curmstate=monitor THEN
refreshWOW; refreshNR; refreshLHMY;
work2; work3; work4; work27;
ttick2; ttick27
ELSE PUT_STR("Initialisation error"); END
END
END

Fig. 6. Implementation of Monitor machine

The implementation of Condition2 refines operation issatisfied2 as is
shown on the Figure 8. Now issatisfied2 returns TRUE only if the condition
triggering Task?2 is satisfied, i.e. the value of the NR sensor is below 50%RPM
and the WOW signal is low.

The refinement of Task2 (Figure 7) defines INCLUDES and SEES relations
for Task2 and the other components of the system. A task sees the condi-
tion Condition2 that acts as its trigger, the data acquisition file controller
DAFController, the video channel controller OutChController and includes the
Timer2 machine. The controllers of the data administration file and the video
channel regulate access to these entities by the tasks of the system.

Figure 7 contains a refinement of Task2. The refinement not only specifies
possible transitions but also defines enabling conditions for those transitions.
For example, after refinement, the operation work2 changes the state of the task
from wait to check only if the timer is expired. The timer is deactivated by

11

REFINEMENT Task2R

REFINES Task?2

SEES Bool_TYPE, CommDefs, Condition2, QutChController,
DAFController

INCLUDES Timer2

VARIABLES tstate2

INVARIANT tstate2:TSTATE

INITIALISATION tstate2:=idle

OPERATIONS

tinit2 = BEGIN reset2 END;
work2 = VAR exp IN
CASE tstate2 OF
EITHER idle THEN exp<--issatisfied2;
IF exp=TRUE THEN tstate2:=wait; set2(5)
ELSE tstate2:=idle END
OR wait THEN exp <--expire2;
IF exp=TRUE THEN tstate2:=check ; reset2
ELSE tstate2:=wait END
OR check THEN exp <--issatisfied?2;
IF exp=TRUE THEN tstate2:=idle;
setanalogon; writetodaf
ELSE tstate2:=idle END
END
END
END;
ss <-- getstate2 = ss:=tstate2;
ttick2 = tick2
END

Fig. 7. Refinement of Task2

reset, after the task state is changed to check. If the condition triggering the
task is still satisfied after timer expiration, the task writes data to the data
acquisition file (by means of the writetodaf operation of the data acquisition
file controller), sets up an output signal (by means of the setanalogon operation
of the output channel controller) and becomes idle. Otherwise, the task just
goes back to state idle.

4.4 Proof and validation

B-Toolkit generates and assists to prove a number of proof obligations. In our
development we have proved that all operations of the machines respect their
invariants and that the invariants are established by the initialisation. We proved
that preconditions for any invoked machine operations are satisfied. For example,
it was shown that the specification, the refinement and the implementation of

12

xx <-- issatisfied2 = VAR currNR, currWOW IN
currNR <-- getstateNR;
currWOW <-- getstateWOW;
IF (currNR=110 or currNR=meq10150) & currWOW=low
THEN xx:=TRUE ELSE xx:=FALSE END
END

Fig. 8. Refinement of issatisfied2 operation of Condition2 machine

Task2 do not violate the precondition imposed on the input parameter of the
operation set2 of the machine Timer2.

At the specification development phase, we also used animation supported
by B-Toolkit. The animation can be really helpful for debugging the specifica-
tion. It allows to test the specification against various scenarios. At the design
phase we used B-Toolkit’s theorem prover to check whether the refinement and
implementation machines satisfy the refinement constraints and whether the
implementations are correct refinements of machines.

Since the development of test cases for this kind of the systems is not a trivial
task, we used the code, generated by B-Toolkit, to test the system against a
“chaotic” environment. In this case “chaotic” means that we abstracted from real
values of analog signals NR and LHMY and implemented the refresh operation
of the sensors as a random choice (provided by B-Toolkit) on the set of abstract
values. So we have specified an environment that covers all combinations of input
signals.

5 Model checking using uCRL

5.1 The pCRL toolset

uCRL [9] is a language for specifying and verifying distributed systems in an
algebraic fashion. It targets the specification of system behaviour in a process-
algebraic style and of data elements in the form of abstract data types. System
specification takes place in the form of recursive equations that include recursion
variables, the basic process algebraic constructors (atomic actions, alternative
and sequential composition), parallelism, synchronous communication, encapsu-
lation of actions, and hiding of internal activity. Furthermore, atomic actions
and recursion variables can carry data parameters, data elements can influence
the course of a process via an if-then-else construct , and a summation operator
allows to take the alternative composition with respect to all possible values of
some data parameter.

The uCRL toolset [3,20] supports the analysis and manipulation of xCRL
specifications, based on term rewriting and linearisation techniques. It supports
efficient state space generation, deadlock detection, interactive simulation, and

13

theorem proving. The CADP toolset [6] acts as a back-end for the yCRL toolset,
so that state spaces can be visualised, analysed and minimised, and model check-
ing and state bit hashing are available.

The toolset is constructed around a restricted linear form of yCRL specifi-
cations, which does not include parallelism, encapsulation and hiding. The tool
mcrl checks whether a certain specification is well-formed and brings it into lin-
ear form, which is stored as a binary file. All other tools use this linear form as
their starting point. These tools come in four kinds:

1. (msim) steps through a process described in pCRL;

2. (instantiator) generates a state space that can serve as input to the CADP
toolset;

3. several tools optimise linearised specifications:

(a) rewr applies the equations of the data types as rewrite rules;

(b) constelm removes data parameters that are constant throughout any
run of the process;

(c) parelm removes data and process parameters that do not influence the
behaviour of the system;

(d) structelm, expands variables of compound data types;

4. a tool (pp) to print the linearised specification.

An overview of the relations between the tools in the yCRL toolset is sketched
in Figure 9. Some other tools rely on a recently developed automated theorem
prover. These tools implement reachability and confluence analysis, and some
sophisticated control flow analysis methods.

Specification (MCRL)

merl

|
Linearised specification mer

(rewr, constelm, parelm, structelm)

PP

instantiator
msim

Simulation finite transition system (.aut) Readable linearised specification

Model checking

Fig. 9. The main relations between the tools in the uCRL toolset

14

1CRL was successfully applied in the analysis of a wide range of protocols
and distributed systems. Recently it was used to support the optimised redesign
of the Transactions Capabilities Procedures in the SS No. 7 protocol stack for
telephone exchanges [2], to detect a number of mistakes in an industrial protocol
over the CAN bus for lifting trucks [8], and to analyse the coordination languages
SPLICE [4,11] and JavaSpaces [17].

5.2 AIDA model in pCRL

We specified the different components of the AIDA system (tasks, sensors,
buttons, monitor, data acquisition file, output channels, environment) as in-
dependent uCRL processes. These components communicate synchronously by
performing communication actions. During these communications data can be
transferred between the components.

The uCRL specification of the ATDA system consists of several parts. The
first part specifies the data types used by means of equations. Some of them
are general data structures, like booleans, natural numbers and lists. Others are
specific to AIDA, like states of tasks, sensors, buttons, data acquisition file,
output channels, etc. Next, the atomic actions are specified, and it is declared
which actions can communicate. The different processes are defined by means of
recursive equations. Finally, the initial state of the whole system is given, being
a parallel composition of components where some actions are encapsulated or
hidden. Figure 10 shows the various processes in the yCRL specification

Figure 11 shows the definition of Task 2 as a uCRL process. According to this
definition TASK2 has one state variable. It can synchronise on init, run and tick
actions (4 is alternative choice). After an init action the timer is reset (- denotes
sequential composition), and the state is set to idle. If a run action occurs the
process TASK2RUN is executed, provided the state is either idle or wait (zy
means do z if b, else do y). A tick action results in ticking the accompanying
timer, provided the task is in waiting state. TASK2RUN first checks the state.
If the state is wait, the timer value is obtained (sum denotes alternative choice
over a data sort). If no timeout occurs, TASK2RUN finishes. Otherwise, the
timer is reset, the sensors are inspected, and depending on the safety condition
a logging action is performed. If the state is not wait, the sensors are inspected,
and depending on the safety condition, either the timer is set and the state is
changed to wait, or we stay in idle. Eventually, in all cases, control is returned
to the TASK2 process.

The mcrl tool was used to check the syntax and static semantics of the speci-
fication, and also to transpose it to linear form. The specification was thoroughly
simulated using the msim tool in a way that all parts of the code were reached.
Several specification errors were discovered and corrected. The linear form of
the ultimate (after corrections of section 5.3) uCRL specification contained 47
data parameters and 132 summands. Using the tool constelm, the number of
parameters was reduced to 32, and the number of summands to 85.

State space generation took approximately 1 minute and 10 seconds on an
AMD Athlon 1.4GHz machine, and resulted in a state space with approximately

15

Monitor

reset L
T run | tick init
change Buttons —————————— set
get Task2 =1 |set[| Audch T
init get
update
reset set
[.
(NR)
get
Task3 I~
get .- Vidch |—]
change Sensorl2 [get
(LHMY) Task4 ~
1 get
change Sensor16 get Task27 1 DAF 1=
(WOW) |=- log
e -
Environment

Fig. 10. System decomposition in the yCRL model

250,000 states and 900,000 transitions. The state space did not contain deadlocks
(checked with the pCRL toolset) and livelocks (checked with the CADP toolset).

Reduction of the state space (modulo branching bisimulation equivalence [7])
took approximately 47 seconds on the same machine and produced 1,072 states
and 5,855 transitions.

5.3 Validation of user requirements

The informal description of the AIDA system contains a rather technical speci-
fication. It provides several kinds of operational details, for instance when timers
must be set and reset. This made it difficult to validate the specification. We
took the following approach: we invented “reasonable” user requirements for the
system, formalised them in temporal logic, and checked automatically whether
the yCRL model of the AIDA system satisfies these requirements.

We formulated the following user requirements, that seemed plausible to us.
For each task, it should hold that:

16

TASK2(st:TaskSt)=
init_task(2)._reset_timer(2).TASK2(TST_IDLE)
+
run_task(2).
(TASK2RUN(st)
<|or(eq(st,TST_IDLE),eq(st,TST_WAIT)) |>
TASK2(st)
)
+
tick_task(2).
(_tick_timer(2).TASK2(st)
<|eq(st,TST_WAIT) |>
TASK2 (st)
)

TASK2RUN (st : TaskSt)=
sum(t:Nat,_get_timer(2,t).
(TASK2(st)
<| gt (TIMEOUT2,t) |>
_reset_timer (2).
sum(sst:SensorSt,_get_state_sensor(1,sst).
sum(sstl:SensorSt,_get_state_sensor (16,sstl).
(TASK2LOG.TASK2(TST_IDLE)
<|and(eq(sst,sst1(1)),eq(sstl,sst16(F)))|>
TASK2 (TST_IDLE)
N
<leq(st,TST_WAIT) |>
sum(sst:SensorSt,_get_state_sensor(1,sst).
sum(sstl:SensorSt,_get_state_sensor (16,sstl).
(_set_timer(2).TASK2(TST_WAIT)
<|and(eq(sst,sst1(1)),eq(sstl,sst16(F))) >
TASK2 (TST_IDLE)
D))

TASK2L0G=_log(LogEntryTask(2)) ._set_vidch(VidchSt1)

Fig. 11. Specification of Task2

17

Property 1. if the condition checked by some task is satisfied during a certain
period of time, then this task will perform its logging activity.

Property 2. the task only performs a logging activity if the condition checked
by it was satisfied during a certain period of time.

The first requirement indicates that all strains and loads are logged, and the
second one indicates that no false alarms are logged.

The properties were formulated in the regular alternation-free p-calculus [15].
We show this for Task2, which watches the sensors NR and WOW (see Figure 1).
The following abbreviations are used (in CADP these are defined as macros): NR
— indicates the event that the NR-sensor is below 50%RPM. WOW - indicates
the event that the weight is not on the wheels (so the combination NR and WOW
indicates that the helicopter is probably falling down). OTHER - any sequence
of actions that does not contain logging actions, reset buttons, or changes to
NR-sensor and WO W-sensor.

From now on we assume that the timeout value TIMEOUT2 is equal to 20
time units. The first property can be expressed as follows: There is no execution
trace of the AIDA system with a subsequence consisting of 23 (NR, WOW) or
(WOW,NR) pairs, interspersed only with OTHER, sequences (see Figure 12).

[truex.((NR.OTHER.WOW) | (WOW.OTHER.NR))
.OTHER. ((NR.OTHER.WOW) | (WOW.OTHER.NR))

. dropped 19 similar lines
.OTHER. ((NR.OTHER.WOW) | (WOW.OTHER.NR))

.OTHER. ((NR.OTHER.WOW) | (WOW.OTHER.NR))
] false

Fig. 12. Modal formula expressing Property 1

The second property can be expressed as follows: there is no execution trace
of the AIDA system ending in a logging activity, preceded by at most 20 time
slices where WOW = low (see Figure 13). A similar formula is needed for the
NR-sensor. The full source code of the properties will be available in a technical
report.

The next step is to verify that these properties hold for the AIDA system. To
this end we applied the CADP model checker to the reduced transition system
generated by the puCRL toolset. The first formula holds straight away, but sur-
prisingly, the second formula failed. In this case, the model checker provided a
counter-example in the form of a wrong execution trace. This trace was carefully
inspected, and appeared to correspond to the following situation (see Figure 14):
The condition on WOW and NR holds in the first time slice, and the timer is

18

[(not (WOW) *.
(true|nil) . (not WOW)*.

. dropped 17 similar lines ...

(true|nil) . (not WOW)=*.
(truelnil) . (not WOW)*
).
"__log(LogEntryTask(x2p2(0)))"
Jfalse

Fig. 13. Modal formula expressing Property 2

start timer
timer expires

condition satisfied
condition not satisfied

logging
activity

Fig. 14. Spurious logging activity

correctly set. After some time slices, the timer expires, and the condition on
WOW and NR holds again. However, it was not checked by the system whether
the condition holds between setting and expiration of the timer.

We could now proceed in two ways: either adapt the model, or the user
requirements. As our properties seem quite natural we adapted the pCRL model.
In the modified version, a task goes from idle to wait if the condition checked by
it is satisfied. In the wait phase, it continuously checks the condition, and if it
fails it returns to idle and resets the timer. If the condition remains true until the
timer expires a logging action is performed. This is implemented in the yCRL
specification by modifying the TASK2RUN process according to Figure 15 (cf.
Figure 11).

In this new model, both properties appear to hold. It is interesting to remark
that the mentioned time slices (20 and 23) are strict boundaries. This means that
if the condition holds during exactly 21 or 22 time slices, then the system may
or may not log this event, depending on the exact order in which the NR- and
WO W-sensors are changed by the environment and read by the TASK2 process.

We conclude that the informal specification was too operational, in the sense
that the user requirements were missing, only the solution in terms of timers
was mentioned. At the same time, they were ambiguous, because it was not
indicated what the system should do between starting the timer and expiration

19

TASK2RUN (st : TaskSt)=
sum(sst:SensorSt,_get_state_sensor (1,sst).
sum(sstl:SensorSt,_get_state_sensor (16,sstl).
((_set_timer(2).TASK2(TST_WAIT)
<|eq(st,TST_IDLE) |>
sum(t:Nat,_get_timer(2,t).
(TASK2(st)
<|gt (TIMEQUT2,t) |>
_reset_timer (2) .TASK2LO0OG.TASK2 (TST_IDLE)
)))
<|and(eq(sst,sst1(1)),eq(sstl,sst16(F)))|>
(_reset_timer(2).TASK2(TST_IDLE)
<|eq(st,TST_WAIT) |>
TASK2(TST_IDLE)
VIDIDED

Fig. 15. Modified specification of Task2

of the timer. In the formal specification this ambiguity must be resolved in some
way. We showed two ways to resolve this ambiguity, and proved that one of the
solutions is preferable, because it meets certain plausible user requirements.

6 Related work

Combination of different formal techniques to support the development of veri-
fiable correct systems is an active line of research. Our work is closely related in
spirit and techniques to [13] and [16].

Julliand, Legeard, Machicoane, Parreaux and Tatibouét [13] used B Atelier
in combination with the model checker Spin [10] to analyse a protocol within the
Integrated Circuit Card (European Standard EN 27816). First a B model of the
protocol was constructed, which was manually translated to a PROMELA speci-
fication (the input language for Spin). Similar to our approach, safety properties
were verified within B, while progress properties were verified using temporal
logic.

Mikhailov and Butler [16] used the B Method in combination with the state-
based model checker Alloy Constraint Analyser [12] to derive the proof obliga-
tions generated by B. Their approach is motivated by the fact that a formal
proof using a theorem prover of all proof obligations generated by B is often
practically unfeasible. Sometimes, proof obligations are actually false, due to
underspecification or to a specification error. Detecting such flaws by means of
theorem proving is very difficult indeed. Therefore, in [16] model checking was
used as a debugging device. The B specification of a student grades data base was
manually translated to an Alloy specification. In cases where proof obligations
were left unproved, these were transposed to the Alloy language, and the Alloy

20

constraint analyser was applied. The counter-examples that the Aloy constraint
analyser can generate are usually suggestive, so that the developer may realise
how and why a certain property is invalidated. This leads to a debugging process
with a shorter life-cycle than when only an interactive theorem prover is used.

7 Conclusion

We have shown that one can perform a whole cycle of software development from
an informal task description to a specification close to an executable prototype
implementation within the B-Method. By identifying the key entities in the
informal description, a designer can easily develop the needed data structures.
We captured the functional requirements of the system in a stepwise manner.
The layered design method advocated with B allowed us to obtain an elegant
and succinct implementation.

The relationship between the initial formal requirements and the final imple-
mentation is given by formal refinement maps, whose correctness is expressed
by proof obligations. For the developed system, 127 nontrivial proof obligations
of internal consistency of the system were generated and proved. Also invariants
led to proof obligations and were proved. Generation of these proof obligations
was sometimes time consuming. The automated proof search capabilities of the
B-Toolkit are rather limited. It is time consuming for the user to decide whether
a failed proof indicates an error in the specification. In some cases, we adapted
the specification in order to assist the theorem prover.

In a refinement step many details are added. Even formally correct refinement
steps can introduce new errors, so there is a need to validate the models at
various levels. To this end we used a model checker. This also makes it possible
to check a wider set of properties. In B only safety properties can be checked (a
bad thing will never happen). Using model checking, we can also check progress
properties (something good will eventually happen). Therefore, the core part of
AIDA system was formally specified in uCRL, and absence of deadlocks and
some temporal properties were established using the model checker CADP. For
the validity of these temporal properties, the original model had to be modified.

Although the uCRL toolset is not directly applicable to the B model, the
translation from B to yCRL turned out to be relatively straightforward. The
specification language of uCRL is sufficiently expressive for this kind of applica-
tions. Also the specification of the user requirements was rather straightforward
owing to the use of regular expressions. The combination of the yCRL and CADP
toolsets turned out to be very effective for a completely automated verification
of properties with respect to the AIDA model.

Compared to the informal requirements we started with, the formal descrip-
tion is much better structured. Also, we concluded that the informal specification
was not abstract enough, in the sense that operational details were given instead
of user requirements. On the other hand, many ambiguities were detected, and
had to be resolved in the formal specification. The analysis carried out on the
formal models (e.g. exact conditions on when safety conditions lead to logging

21

activity) cannot be performed on the informal models. Also, formal analysis was
used to choose how to resolve certain types of ambiguity.

The industrial partners could use the B specification, extend it to contain
descriptions of the other tasks, refine it to the special purposes of the imple-
mentation, and use the yCRL toolset to verify additional properties. For these
activities, however, some expert knowledge is still needed in order to understand
the specification languages and make effective use of the tools.

Acknowledgements: This research was funded by the Dutch Ministry of De-
fense. We would like to thank Wim Pelt and Jan Friso Groote for their support
and valuable input, and Radu Mateescu for his advice on using the regular
alternation-free p-calculus.

References

1. J.R. Abrial. The B-Book. Cambridge University Press, 1996

2. Th. Arts and I.A. van Langevelde. Correct performance of transaction capabilities.
In Proceedings 2nd Conference on Applications of Concurrency to System Design
(ICACSD’2001), Newcastle upon Tyne, UK, pp. 35-42. IEEE Computer Society
Press, 2001.

3. S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser, and J.C.
van de Pol. uCRL: a toolset for analysing algebraic specifications. In G. Berry,
H. Comon, and A. Finkel, eds, Proceedings 13th Conference on Computer Aided
Verification (CAV’01), Paris, France, LNCS 2102, pp. 250-254. Springer-Verlag,
July 2001.

4. P.F.G. Dechering and I.A. van Langevelde. The verification of coordination. In A.
Porto and G.-C. Roman, Proceedings 4th Conference on Coordination Languages
and Models (COORDINATION’2000), Limmasol, Cyprus, LNCS 1906, pp. 335
340. Springer-Verlag, 2000.

5. J.A.J.A. Dominicus, A.A. ten Have, M.C. Buitelaar, P.R. Hoek, and F.J. Carati.
Functional requirements for an on-board loads and usage monitoring system for the
WHL Lynx SH-14D helicopter. Report CR 97568, National Aerospace Laboratory,
November 1997.

6. J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighire-
anu. CADP - a protocol validation and verification toolbox. In R. Alur and
T.A. Henzinger, eds, Proceedings 8th Conference on Computer-Aided Verification
(CAV’96), New Brunswick, New Jersey, LNCS 1102, pp. 437—440. Springer-Verlag,
1996.

7. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of the ACM, 43(3):555-600, 1996.

8. J.F. Groote, J. Pang, and A.G. Wouters. A balancing act: Analyzing a distributed
lift system. In S. Gnesi and U. Ultes-Nitsche, eds, Proceedings 6th Workshop on
Formal Methods for Industrial Critical Systems (FMICS’2001), Paris, France, pp.
1-12, 2001.

9. J.F. Groote and A. Ponse. The syntax and semantics of uCRL. In A. Ponse, C. Ver-
hoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating Processes 1994,
pages 26—62. Workshop in Computing Series, Springer-Verlag, 1995.

10. G.J. Holzmann. The model checker Spin. IEEE Transactions on Software Engi-
neering, 23(5):279-295, 1997.

22

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. Hooman and J.C. van de Pol. Formal verification of replication on a distributed
data space architecture. In Proceedings 17th Symposium on Applied Computing
(SAC’2002) — Coordination Models, Languages and Applications, Madrid, Spain,
pp. 351-358. ACM Press, 2002.

D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the alloy constraint analyzer.
In Proceedings 22nd Conference on Software Engineering (ICSE’2000), Limerick,
Ireland, pp. 730-733. ACM Press, 2000.

J. Julliand, B. Legeard, T. Machicoane, B. Parreaux, and B. Tatibouét. Specifi-
cation of an integrated circuit card protocol application using the B method and
linear temporal logic. In D. Bert, ed., Proceedings 2nd B Conference (B’98) — Re-
cent Advances in the Development and Use of the B Method, Montpellier, France,
pp- 273292, LNCS 1393. Springer-Verlag, 1998.

K. Lano and H. Haughton. Specification in B: An Introduction Using the B Toolkit.
World Scientific, 1996.

R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Technical Report 3899, INRIA, March 2000. To ap-
pear in Science of Computer Programming.

L. Mikhailov and M. Butler. An approach to combining B and Alloy. In D. Bert,
J.P. Bowen, M.C. Henson, and K. Robinson, eds, Proceedings 2nd Conference of
B and Z Users (ZB’2002) — Formal Specification and Development in Z and B,
Grenoble, France, pp. 140-161, LNCS 2272. Springer-Verlag, 2002.

J.C. van de Pol and M. Valero Espada. Formal specification of JavaSpaces architec-
ture using pCRL. In F. Arbab and C.L. Talcott, eds, Proceedings 5th Conference on
Coordination Languages and Models (COORDINATION’2002), York, UK, LNCS
2315, pp. 274-290. Springer-Verlag, 2002.

E. Sekerinski and K. Sere (eds). Program Development by Refinement. Springer-
Verlag, 1999.

A.L. Vergroesen, P.R. Hoek, F.J. Carati, J.A.J.A. Dominicus, A.A. ten Have, and
D. Schiitz. An automatic in-flight data acquisition system for the RNLN Lynx
helicopter. In Proceedings 19th International Symposium on Aircraft Integrated
Monitoring Systems (AIMS’98), Garmisch Partenkirchen, Germany, May 1998.
A.G. Wouters. Manual for the uCRL tool set (version 2.8.2). Report SEN-R0130,
CWI, December 2001.

23

